88 ;‘wq L A
By .“ 'ﬁ! 5.
‘-4’;' ’
-

Monograph

Al in Asset Management:

ools, Applications,
and Frontiers

Joseph Simonian, PhD
Editor

_\\I/ Ez‘gelgfct[!.tUte —\\I” CFA Institute

NS Foundation ///\\ Research & Policy Center






Al in Asset Management:

ools, Applications,
and Frontiers

Joseph Simonian, PhD
Editor

:.\\\”/' CFA Institute _-_-\\\”/’ CFA Institute
=77 Research = .
NS Foundation  Z\S Research& Policy Center



Statement of Purpose

CFA Institute Research Foundation is a not-for-profit organization established to promote
the development and dissemination of relevant research for investment practitioners
worldwide.

© 2025 CFA Institute Research Foundation. All rights reserved.

Neither CFA Institute Research Foundation, CFA Institute, nor the publication's editorial staff is responsible
for facts and opinions presented in this publication. This publication reflects the views of the author(s)
and does not represent the official views of CFA Institute Research Foundation.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, with-
out permission of the copyright holder. Requests for permission to make copies of any part of the work
should be mailed to: Copyright Permissions, CFA Institute, 915 East High Street, Charlottesville, Virginia
22902. CFA® and Chartered Financial Analyst® are trademarks owned by CFA Institute. To view a list of
CFA Institute trademarks and the Guide for the Use of CFA Institute Marks, please visit our website at
www.cfainstitute.org.

CFA Institute does not provide investment, financial, tax, legal, or other advice. This report was prepared
for informational purposes only and is not intended to provide, and should not be relied on for, invest-
ment, financial, tax, legal, or other advice. CFA Institute is not responsible for the content of websites and
information resources that may be referenced in the report. Reference to these sites or resources does not
constitute an endorsement by CFA Institute of the information contained therein. The inclusion of com-
pany examples does not in any way constitute an endorsement of these organizations by CFA Institute.
Although we have endeavored to ensure that the information contained in this report has been obtained
from reliable and up-to-date sources, the changing nature of statistics, laws, rules, and regulations may
result in delays, omissions, or inaccuracies in information contained in this report.

Photo credit: Loomis Creative

Print ISBN: 978-1-952927-64-5

Ebook ISBN: 978-1-952927-65-2


www.cfainstitute.org

AUTHOR BIOS

Paul Bilokon, PhD, is the Chief Executive Officer of Thalesians Ltd. and a Visiting Professor

at Imperial College London. He has over two decades of experience as a quantitative analyst,
strategist, trader, and portfolio manager, holding senior roles at Morgan Stanley, Citigroup, and
Deutsche Bank. He is the co-author of Machine Learning in Finance: From Theory to Practice
and has developed cross-asset trading and risk systems in multiple programming languages.
Dr. Bilokon has published research across fields such as artificial intelligence, high-performance
computing, and finance and has mentored numerous startups at London's Level39 incubator.
He earned his education from Oxford University's Christ Church College and Imperial College
London.

Francesco A. Fabozzi, PhD, is research director at Yale School of Management's International
Center for Finance and director of data science at CFA Institute Research Foundation. He has
extensive experience in quantitative investing, data science, and financial econometrics. His
research explores applications of large language models, natural language processing, and
machine learning in investment management. Dr. Fabozzi has published widely in leading jour-
nals such as The Journal of Financial Econometrics and The Journal of Portfolio Management
and serves as managing editor of The Journal of Financial Data Science. Through his edito-

rial and leadership roles, he advances the integration of artificial intelligence and data-driven
methods in asset management.

Maxim Golts, PhD, is vice president of multi-asset solutions at PGIM, and a senior advisor

at Boston University’'s Questrom School of Business. He has previously held investment

and research roles at Acadian Asset Management, State Street Global Advisors, Fidelity
Investments, and GMO. Dr. Golts has contributed to the advancement of quantitative
strategies and portfolio management across global markets. Before entering finance, he taught
mathematics and statistics at Boston University, MIT, and Duke University. He earned his PhD in
mathematics from Yale University.

Tony Guida is a quantitative portfolio manager and researcher at Atonra, where he leads
efforts to integrate large language models and knowledge graphs into investment processes.
He has built and managed systematic equity and macro strategies at major financial institu-
tions, including Unigestion, EDHEC-Risk Scientific Beta, and a UK pension fund. Mr. Guida has
authored several influential books, such as Big Data and Machine Learning in Quantitative
Investment and Machine Learning for Factor Investing. He serves on the advisory board of

the Financial Data Professional Institute and regularly reviews academic journals in finance.

He holds bachelor's and master’s degrees in econometrics and a master's degree in economics
and finance.

Igor Halperin, PhD, is group data science leader for GenAl Asset Management Technology

at Fidelity Investments, where he applies artificial intelligence, reinforcement learning, and
information theory to financial decision-making. He has previously served as executive direc-
tor of quantitative research at JPMorgan, a quantitative researcher at Bloomberg LP, and a
research professor of financial machine learning at NYU. Dr. Halperin has published widely and
co-authored Machine Learning in Finance: From Theory to Practice. In February 2022, he was

© 2025 CFA Institute Research Foundation. All rights reserved. e iii




Al in Asset Management: Tools, Applications, and Frontiers

named "Buy-Side Quant of the Year” by Risk magazine. Dr. Halperin holds a PhD in theoretical
high energy physics from Tel Aviv University and an MSc in nuclear physics from St. Petersburg
State Technical University.

Petter N. Kolm, PhD, is a clinical professor at New York University's Courant Institute, where

he directs the Mathematics in Finance master's program. He received the 2021 Quant of the
Year award from Portfolio Management Research for his contributions to quantitative port-

folio theory. Mr. Kolm previously worked in quantitative strategies at Goldman Sachs Asset
Management and currently serves on several corporate and editorial boards. His expertise spans
machine learning, portfolio theory, and systematic trading. He holds a PhD in mathematics from
Yale University, an MPhil in applied mathematics from the Royal Institute of Technology (KTH),
and an MS in mathematics from ETH Zurich.

Gueorgui S. Konstantinov, PhD, is senior portfolio manager in fixed income and currencies at
DekaBank, where he oversees research, strategy development, and portfolio management.
He has nearly two decades of experience in quantitative investing, risk management, and
multi-asset strategies. Dr. Konstantinov serves on the editorial advisory boards of The Journal
of Portfolio Management and The Journal of Financial Data Science and is executive director
for the German chapter of CAIA. He holds a doctorate in international finance and an MSc

in economics from Vienna University of Economics and Business, along with CAIA and FDP
designations.

Anna Martirosyan is strategy and transactions manager at EY Parthenon, where she leads M&A
and financial due diligence projects with a focus on banking and capital markets. She began

her career at EY Armenia and has since developed expertise in strategic advisory and valua-
tion. Ms. Martirosyan teaches finance and economics courses and conducts research on ethi-
cal Al and quantitative methods in finance. She has been published in The Journal of Portfolio
Management and coordinates EU policy programs supporting economic development in Eastern
Europe. She holds an MBA from Hult International Business School and an MS in economics and
finance.

Mona Naqvi is managing director, research, advocacy, and standards at CFA Institute, where
she oversees the Research and Policy Center, advancing independent research, policy, and stan-
dards for the investment profession. Previously, she held senior leadership roles at S&P Global,
including global head of sustainable capital markets and investment research. Earlier in her
career, she advised the Obama Administration on climate policy, led research at the 2° Investing
Initiative, and served as an economist at the Bank of England. Mona graduated summa cum
laude in government and economics from the London School of Economics and has received
multiple industry honors for her leadership in sustainable finance.

Gordon Ritter, PhD, is a partner at Ritter Alpha LP and an adjunct professor at NYU’s Courant
Institute and Tandon School of Engineering. He is a leader in systematic trading and portfolio
optimization, having founded Ritter Alpha to apply advanced statistical and scientific meth-
ods to investment management. Dr. Ritter has published extensively in leading finance jour-
nals and was named “Buy-Side Quant of the Year” in 2019 and "Quant Educator of the Year”
in 2024. Previously, he held senior quantitative roles at GSA Capital and Highbridge Capital
Management. He earned his PhD in physics and a master's degree from Harvard University.

iv e CFA Institute Research Foundation



Author Bios

Agathe Sadeghi, PhD, is a quant research fellow at Uniswap Labs, where she applies network
theory and causal inference to decentralized finance. Her research explores risk factors, market
dynamics, and the interaction of participants in digital asset ecosystems. Dr. Sadeghi previously
completed a quant analytics internship at Bloomberg, where her work on causal network dis-
covery gained recognition in both academia and industry. She earned her PhD in financial engi-
neering from Stevens Institute of Technology and continues to advance responsible innovation
in financial data science.

Joseph Simonian, PhD, is founder and chief investment officer of Autonomous Investment
Technologies and senior affiliate researcher at CFA Institute. He has more than 20 years of
experience in portfolio management, machine learning, and quantitative investing. Dr. Simonian
serves on the editorial boards of The Journal of Portfolio Management and The Journal of
Financial Data Science and has authored over 40 publications, including Computational Global
Macro. He frequently lectures on quantitative methods and investment strategy. Dr. Simonian
earned his PhD from the University of California, Santa Barbara.

Alireza Yazdani, PhD, is senior vice president of applied artificial intelligence at Citi Issuer &
Investor Services. He has nearly two decades of experience in quantitative research, fintech,
and applied machine learning for credit and risk management. Dr. Yazdani has held academic
and professional appointments in data science and fintech education and is a frequent confer-
ence speaker and author in applied mathematics and finance. He holds a PhD in applied mathe-
matics and additional executive certifications in data science and Al strategy.

Oswaldo Zapata, PhD, is cofounder of The Quantum Finance Boardroom, an online community
advancing the use of quantum computing in finance. He is dedicated to bridging theory and
practice through publications, professional outreach, and educational e-books on quantum
finance. Dr. Zapata actively collaborates with global finance and technology experts to promote
innovation in the field. He holds a PhD in theoretical physics.

CFA Institute Research Foundation ¢ v






CONTENTS

Foreword viii
Mona Nagqvi (CFA Institute)

Preface ix
Joseph Simonian, PhD (CFA Institute)

Unsupervised Learning I: Overview of Techniques 1
Joseph Simonian, PhD (CFA Institute)

Unsupervised Learning ll: Network Theory 15
Gueorgui S. Konstantinov, PhD (DekaBank), and Agathe Sadeghi, PhD

(Stevens Institute of Technology)

Support Vector Machines 40
Maxim Golts, PhD (PGIM)

Ensemble Learning in Investment: An Overview 52
Alireza Yazdani, PhD (Citi)

Deep Learning 72
Paul Bilokon, PhD (Thalesians, Ltd.), and Joseph Simonian, PhD

(CFA Institute)

Reinforcement Learning and Inverse Reinforcement Learning:

A Practitioner’'s Guide for Investment Management 92
Igor Halperin, PhD (Fidelity Investments), Petter N. Kolm, PhD

(New York University), and Gordon Ritter, PhD (New York University)

Natural Language Processing 127

Francesco A. Fabozzi, PhD (Yale International Center for Finance)

Machine Learning in Commodity Futures: Bridging Data,

Theory, and Return Predictability 151
Tony Guida (Atonra)
Quantum Computing for Finance 178

Oswaldo Zapata, PhD (The Quantum Finance Boardroom)

Ethical Al in Finance 187
Anna Martirosyan (EY Parthenon)

N h . PROFESSIONAL LEARNING QUALIFIED ACTIVITY
7/>\\I<// CFA I nstltute This publication qualifies for 5.5 PL credits, inclusive of 0.25 SER credits,
(\S3

under the guidelines of the CFA Institute Professional Learning Program.

© 2025 CFA Institute Research Foundation. All rights reserved. ¢ vii



FOREWORD

Mona Naqvi
Managing Director, Research, Advocacy, and Standards
CFA Institute

Artificial intelligence (Al) continues to reshape the very foundations of our financial system.
From portfolio construction to client engagement, its reach seems to expand daily across every
facet of investment practice, challenging long-held assumptions about how to create, measure,
and deliver value. The pace of this transformation demands not only technical adaptation but
also ethical clarity and professional leadership.

At CFA Institute, our mission is to lead the investment profession globally by promoting the
highest standards of ethics, education, and professional excellence. In the age of Al, this mis-
sion takes on new urgency. The transformative power of this technology must be unlocked

in ways that strengthen—not supplant—human judgment, trust, and fiduciary responsibility.
We stand at a pivotal moment, when innovation and integrity must advance hand in hand.

This publication, Al in Asset Management: Tools, Applications, and Frontiers, represents a col-
lective effort to illuminate that path forward. Produced in collaboration between CFA Institute
Research Foundation and CFA Institute Research and Policy Center, it draws on the insights of
leading scholars, technologists, and investment practitioners who are shaping the frontiers of
the field. Their contributions reflect the dynamism of the ecosystem already at work: pushing
boundaries, testing models, and redefining what it means to make investment decisions in a
world of intelligent machines.

Building on the 2023 Handbook of Artificial Intelligence and Big Data Applications in
Investments, this compendium advances our exploration of how machine learning, natu-
ral language processing, and data analytics continue to transform the craft of investing.
More than a technical guide, it represents an invitation to think critically, to experiment
responsibly, and to ensure that innovation serves the enduring goals of financial security
and societal progress.

We believe that the future of finance depends not on the technology itself but on how wisely
we apply it. Through this and related work, we aim to empower practitioners to navigate the
digital transition with competence, confidence, and conscience.

This publication would not have been possible without the deep engagement of the experts,
authors, and reviewers who generously shared their knowledge and perspective. Their work
exemplifies the spirit of collaboration that will be essential as our profession enters this next
frontier. My thanks to all of them for their insightful and learned contributions.

As we collectively shape the future of finance in the age of Al, may this volume serve as both a
guide and a catalyst for understanding, for innovation, and for leadership grounded in purpose.

viii ¢ © 2025 CFA Institute Research Foundation. All rights reserved.
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PREFACE

Joseph Simonian, PhD
Senior Affiliate Researcher
CFA Institute

The integration of artificial intelligence (Al) and machine learning has become increasingly prev-
alent across the investment industry. Although we remain in the nascent stages of widespread
adoption, these technologies are undeniably revolutionizing how investors analyze and interpret
financial markets. Therefore, investment professionals must stay abreast of the latest develop-
ments in Al, machine learning, and data science.

CFA Institute continues to lead in educating investors and investment professionals on emerg-
ing topics, particularly the evolving applications of Al within investment management. In 2023,
CFA Institute Research Foundation published an Al handbook that provided a comprehensive
overview of the field's core areas." This current volume not only updates that foundational work
but also presents fresh insights from distinguished investment practitioners. Although this
publication addresses all major branches of Al, each chapter offers a unique perspective on the
technology'’s relevance and practical applications across diverse investment contexts.

We encourage you to use this guide as a navigational compass, helping you chart a course
through the often turbulent waters of technological innovation and its intersection with finance.
It examines both the achievements realized and the future trajectory of Al applications in port-
folio management, risk analysis, and trading.

The unifying theme throughout these chapters is, of course, how Al applications can deepen
our understanding of market phenomena. This theme serves as the cohesive thread binding
the handbook together. However, we have afforded the authors considerable stylistic latitude
to articulate their ideas and structure their chapters in ways they deem most impactful. Similar
to an ensemble of jazz musicians performing together, they must harmonize with one another
while remaining free to express their perspectives in the manner they consider most effective.
With that in mind, note that each chapter prioritizes the practical dimensions of the frameworks
discussed. Although pertinent mathematical details are not omitted, the emphasis clearly rests
on demonstrating how Al can enhance investors' daily practice.

Ultimately, this volume represents not the conclusion of the financial data science story but,
rather, a chapter written during a pivotal moment in technological development and market
innovation. We hope this handbook will serve as both inspiration and an informative roadmap
for practitioners, enriching and expanding their quantitative arsenals. This is indeed an exciting
time to be an investment professional. With the overwhelming amount of information being
generated, however, distinguishing signal from noise has become increasingly challenging. If
this work can help readers cut through the “data fog” by illuminating the various ways Al tools
can assist their day-to-day work, we will consider our mission accomplished.

TLarry Cao, Handbook of Artificial Intelligence and Big Data Applications in Investments (Charlottesville, VA: CFA
Institute Research Foundation, 2023).

© 2025 CFA Institute Research Foundation. All rights reserved.
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UNSUPERVISED LEARNING I:
OVERVIEW OF TECHNIQUES

Joseph Simonian, PhD
Senior Affiliate Researcher
CFA Institute

Unsupervised learning is a branch of machine learning that encompasses algorithms used
to discover hidden patterns and structures in data without labeled examples from which

to learn. Unlike supervised learning, there is no “ground truth” to guide the learning pro-
cess, which means that the algorithm must discover hidden patterns and relationships in
data without any explicit guidance from real-word observations regarding what constitutes
the correct answer. Without ground truths, unsupervised learning algorithms must rely on
mathematical principles, such as maximizing likelihood or minimizing error, to capture the
essence of the data. This makes unsupervised learning both an art and a science, requiring
careful consideration of what constitute meaningful patterns versus mere noise.

In financial contexts, unsupervised learning can be particularly useful because financial markets
are often opaque, labeled data are often scarce or expensive to obtain, or such data quickly
become obsolete. In other words, the “correct” answer is often elusive to varying degrees.
Financial markets are also dynamic, and as market regimes change, new patterns emerge and
traditional relationships often break down. In such cases, unsupervised learning methods

can be invaluable in helping practitioners discover structures in financial data that may prove
valuable in their portfolio and risk management efforts.

Clustering

Perhaps the most well-known framework for unsupervised learning is clustering. Simpler
clustering algorithms, such as k-means clustering (Lloyd 1982), operate according to a criterion
of compactness, with observations grouped into different clusters based on their distance from
designated centroids. These centroids are the average (mean) positions of all the data points
that belong to a particular cluster. The algorithm for k-means clustering is shown in Figure 1.

A k-means clustering approach makes a good choice when data are numeric, clusters are
roughly spherical and similar in size, and a fast, scalable clustering for large datasets is needed.
It is mathematically simple, efficient, and easy to interpret. However, k-means also assumes
that clusters are spherical and equal sized, which is not always the case. Further, it is sensitive
to initialization and outliers and requires a specification of the number of clusters, k. Finally,
k-means clustering can detect only clusters that are linearly separable, limiting its usefulness
in applications in which nonlinear or otherwise nuanced relationships are present.

With the foregoing in mind, however, note that k-means has nevertheless been applied to
portfolio construction. For example, Wu, Wang, and Wu (2022) used k-means to cluster stocks
according to their continuous trend characteristics and then used inverse volatility weighting,
risk parity, and mean-variance-type considerations to arrive at final portfolio weights.

© 2025 CFA Institute Research Foundation. All rights reserved.
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Figure 1. Algorithm: k-Means Clustering
Input: Dataset X with n points, number of clusters k, maximum iterations
Output: Cluster assignments and centroids

Begin:

Initialize k centroids randomly: |, L, ..., 14
2. Foriteration =1 to max iterations:
a. For each data point x; in X:
e Calculate distance to each centroid: d(x; p;) forj=1to k
e Assign x; to closest centroid: ¢; = argmin; d(x; L)
b. Foreach clusterj=1to k:
e Update centroid: yi; = mean of all points assigned to cluster j
c. If centroids have not changed significantly:
e Break (convergence achieved)

3. Output: Cluster assignments and final centroids (see Exhibit 1)

An alternative clustering algorithm that provides a remedy to the limitations of k-means cluster-
ing is spectral clustering, which involves using matrix representations of finite graphs in order
to determine the similarity between observations in a dataset (see Figure 2). Indeed, any set of
observations or set of vectors of observations may be represented in graphical form. Spectral
clustering can thus be viewed as a graph partition problem, in which clusters correspond to
connected graph components.

The basic ideas behind spectral clustering were introduced in important papers by Hall (1970),
Donath and Hoffman (1973), and Fiedler (1973). For a historical overview of spectral clustering,
see Spielman and Teng (2007). Spectral clustering has also been applied in finance. In portfolio
management and financial network analysis, spectral clustering excels at identifying groups of
correlated assets, detecting market sectors based on complex interdependencies, and analyzing
systemic risk by revealing the underlying network structure of financial markets where assets
may be connected through indirect relationships that are not apparent in the original feature
space. For example, Simonian and Wu (2019) used spectral clustering to build a regime-based
trading model. They showed that their framework both produces predictively effective macro
signals and classifies regimes in an economically intuitive way. In their framework, graph com-
ponents are composed of vectors, with each vector consisting of respective values for growth,
inflation, and leverage factors.

Hierarchical clustering creates a tree-like structure of clusters by merging smaller clusters
into larger ones (agglomerative) or by splitting larger clusters into smaller ones (divisive).

2 e« CFAnstitute Research Foundation



Unsupervised Learning |: Overview of Techniques

Exhibit 1. Clustering Output (k-means)
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0.0 +
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-2.5 1

-8 -6 -4 -2 0 2 4 6
Feature 1

@® Cluster1 @ Cluster2 @ Cluster3 Centroids

Source: All synthetic data created by author.

Figure 2. Algorithm: Spectral Clustering

1. Construct similarity matrix W:

e For each pair (i, j): W[i, j] = exp[-||x; — x;||*/(252)]
2. Compute degree matrix D:

e DI, i]=%WIi, j], D[i,j] = O for i =]
3. Compute normalized Laplacian:

e L,,.,=D2x(D-W)xD"2

Find k smallest eigenvectors of L: v;, v,, ..., v,

Form matrix V = [v;, v,, ..., v,] (n x k matrix)
Normalize rows of V to unit length

Apply k-means clustering to rows of V

©® N o ow o

Output: Cluster assignments
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Agglomerative clustering is more common and works “bottom up” by initially treating each
data point as a separate cluster and then iteratively merging the closest pair of clusters until
all points belong to a single cluster or a desired number of clusters is reached (see Figure 3).

Figure 3. Agglomerative Clustering Algorithm

1. Initialize: Each point as its own cluster C = {{x;}, {x,}, ..., {x,}}

Compute distance matrix D between all pairs of points
3. While|C|>1:

o & 0 U

Find closest pair of clusters (C;, C) using linkage method:
e Single: min{d(x, y):xe C,ye C}

e Complete: max{d(x, y):xe C, y e C}

e Average: mean{d(x, y):xe C, ye C}

Merge C;and C;into new cluster C, = C;u G

Update C by removing (C, C) and adding C,

Update distance matrix D for new cluster C,

Record merge in dendrogram

4. Output: Dendrogram structure (Exhibit 2)

Exhibit 2.

60 -

50

Distance
N w N
o o o
)

-
o
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0

Hierarchical Clustering Dendrogram

e e e, e, L

Note: Different colors represent different clusters at different distance cutoffs.
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The algorithm requires a distance metric between data points as well as a linkage criterion to
measure distances between clusters—for example, single linkage (minimum distance), complete
linkage (maximum distance), average linkage (average distance), or Ward linkage (minimizes
within-cluster variance).

A well-known investment application of hierarchical clustering is Hierarchical Risk Parity (HRP),
introduced by Lépez de Prado (2016). HRP uses hierarchical clustering to infer relationships
between assets, which are then used directly for portfolio diversification, addressing three
major concerns of quadratic optimizers: instability, concentration, and underperformance. The
approach departs from classical mean-variance optimization by using a three-step process that
organizes assets into hierarchical clusters based on their correlation structure, reorganizes the
correlation matrix according to this tree structure, and then allocates capital recursively through
the hierarchy using inverse variance weighting within each cluster.

Another prominent technique is DBSCAN (density-based spatial clustering of applications with
noise), a density-based clustering algorithm that groups together points in high-density areas
while marking points in low-density regions as noise or outliers, making it particularly effective
for discovering clusters of arbitrary shapes and sizes (Ester, Kriegel, Sander, and Xu 1996). The
algorithm requires two parameters: epsilon (g), which defines the neighborhood radius, and
minimum points (MinPts), required to form a dense region. Core points have at least MinPts
neighbors within € distance, border points within € distance of core points, and noise points
not meeting either criterion. In contrast to k-means, DBSCAN does not require advance spec-
ification of the number of clusters and can identify clusters with irregular shapes, making it
robust against outliers and noise. In financial applications, DBSCAN excels at fraud detection
by identifying unusual transaction patterns, market anomaly detection, and customer behavior
analysis where normal clustering algorithms might fail because of the presence of outliers or
nonspherical cluster shapes that are common in financial data distributions.

An extension of DBSCAN is OPTICS (ordering points to identify the clustering structure), which
creates an ordering of data points that represents the density-based clustering structure, pro-
viding more detailed insights into cluster hierarchies and varying density regions within the
dataset (Ankerst, Breunig, Kriegel, and Sander 1999). The algorithm computes core distances
and reachability distances for each point, creating a reachability plot that visualizes the cluster-
ing structure across different density thresholds, allowing analysts to extract clusters at multi-
ple scales without specifying parameters in advance. This hierarchical approach is particularly
valuable when dealing with clusters of varying densities or nested clusters or when the optimal
clustering parameters are unknown because it provides a comprehensive view of the data's
density structure. In high-dimensional financial data analysis, OPTICS proves invaluable for iden-
tifying complex market structures, detecting multiscale patterns in trading data, and analyzing
portfolio correlations where traditional clustering methods might miss important structural rela-
tionships because of varying density patterns for different market conditions or time periods.

Affinity propagation (AP), introduced by Frey and Dueck (2007), belongs to the family of
graph-theoretic clustering techniques and is based on the concept of “message passing”
(Mézard 2007) between the candidate members of a cluster that continues until each candidate
is sufficiently informed to join the appropriate cluster. AP begins by measuring the similarity,
s(i, k), between vectors, which represents the similarity of vector k to vector i. Similarity is mea-
sured by a metric chosen by the model builder (e.g., Euclidean distance).

CFA Institute Research Foundation ¢ 5
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The basic input to AP is a real-valued number s(k, k), called a preference, for each observation.
Observations with larger preference values are more likely to be selected as cluster centers, also
known as exemplars. However, cluster selection is a function of not only preference size but
also the two message-passing operations that are the essence of the AP algorithm. The first—
the responsibility, r(i, k)—is a message transmitted from observation i to a candidate exemplar
k that expresses the suitability of observation k as an exemplar for observation i given the suit-
ability of other candidate exemplars. The second—the availability, a(i, k)—works in the opposite
direction and is sent from a candidate exemplar k to an observation i. Availability expresses how
appropriate it would be for observation i to select observation k as its exemplar, given the exist-
ing support that observation k has from other observations to serve as an exemplar. The AP
process begins by initializing the availabilities to zero, a(i, k) = 0, and then proceeds to compute
the responsibilities using the following rule:

r(i,k)= (ik) —kmiék{a(i,k')+s(i,k')}. (1)
The following formula then determines whether an observation is a good exemplar:
a(i k)= min{O,r(k,k) +2 maXf{ch(E;k)}} } (2)
The “self-availability” of an observation is expressed as follows:
a(i.k) = Zmax{{sq,ffz’,k)}} (3)

An investment application of AP is presented by Simonian (2020), who used it to determine the
level of diversity within a set of investment signals. To classify signals according to their sta-
tistical predictive properties, the author posited a vector consisting of information coefficient
(IC) and IC variance values in various regime-specific subsamples as inputs into the clustering
algorithm. Using AP in this manner allows us to gain a multidimensional view of investment
signal diversity, with each measure providing information on a different aspect of predictive
effectiveness.

Cluster Evaluation Techniques

Although many clustering algorithms require positing the number of clusters, techniques have
been developed that allow the user to determine the most suitable clustering scheme. Two
techniques in particular have become popular. The first is the silhouette score, an internal clus-
tering evaluation metric that measures how similar each point is to points in its own cluster
compared with points in other clusters, providing both individual point scores and an over-

all clustering quality measure. For each data point, the silhouette coefficient is calculated as

(b — a)/max(a, b), where a is the mean distance to other points in the same cluster (intracluster
distance) and b is the mean distance to points in the nearest neighboring cluster (intercluster
distance). The silhouette coefficient ranges from -1 to 1. Values close to 1 indicate that the
point is well matched to its cluster and poorly matched to neighboring clusters, values around 0
suggest that the point is on or very close to the decision boundary between clusters, and
negative values indicate that the point might have been assigned to the wrong cluster.

The mathematical foundation of the silhouette score relies on distance-based cohesion and
separation measures. For a point i in cluster C, the intracluster distance, a(i), represents the

6 ¢ CFA Institute Research Foundation
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average distance between point i and all other points in the same cluster, measuring cluster
cohesion. The intercluster distance, b(i), is the minimum average distance from point i to points
in any other cluster, measuring cluster separation. The silhouette coefficient, s(i) = [b(i) — a(i)]/
max[a(i), b(i)], provides a normalized measure that balances cohesion and separation, with
higher values indicating better clustering quality.

The second popular cluster evaluation technique, the Adjusted Rand Index (ARI), introduced

by Hubert and Arabie (1985), builds on the measure introduced by Rand (1971) and is a more
explicitly probabilistic measure of cluster uniqueness. Two important characteristics distinguish
an ARl value from a silhouette score. The first is that a Rand Index value is relational. Whereas

a silhouette score tells us how tight a particular clustering scheme is, an ARl value ranges

from 1 to -1 and tells us how similar two clustering schemes are. A value of 0 represents two
independent clusters, and a value of 1 represents identical clusters. Negative values indicate
worse-than-random clustering. Accordingly, the second distinguishing characteristic of an ARI
value is that lower values indicate more unique pairs of clustering schemes. The metric is partic-
ularly valuable because it adjusts for the expected similarity that would occur by chance alone,
making it more reliable than the basic Rand Index when comparing clusterings with different
numbers of clusters or when dealing with imbalanced cluster sizes.

The mathematical foundation of the original Rand Index begins with the contingency table,
which cross-tabulates the cluster assignments from two different clusterings. Given two clus-
terings U={U;, U, ..., U}and V={V;, V,, ..., V.}, the contingency table entry n; represents the
number of objects that are in both cluster U, and cluster V.. The Rand Index is calculated by
counting the number of pairs of objects that are either in the same cluster in both clusterings
or in different clusters in both clusterings and dividing by the total number of pairs. This raw
measure does not account for the expected agreement that would occur by random chance,
however, which is where the adjustment becomes crucial. The mathematical formula for ARI
can be expressed as ARI = (Rl — Expectedg)/[max(RI) — Expectedg], where Rl is the Rand Index,
Expectedg, is the expected value of the Rand Index under the null hypothesis of random cluster-
ing, and max(RI) is the maximum possible value of the Rand Index. This adjustment ensures that
the expected value of ARl is zero when clusterings are independent, making it a more interpre-
table measure than the raw Rand Index.

Dimension Reduction Techniques

Finance is a data-driven enterprise. Indeed, the sheer size of data processed and the number
of variables considered in financial applications may at times test the limits of mathematical
models and information technology infrastructure. Given this fact, reducing the dimensions
of a problem when possible is a critical aspect of any investment process.

Principal component analysis (PCA) is a dimension reduction technique that has been used in
finance for many years (Pearson 1901; Hotelling 1933). PCA transforms high-dimensional data
into a lower-dimensional space while preserving maximum variance. PCA works by finding the
principal components, which are orthogonal directions in the feature space that capture the
most variance in the data. The algorithm computes the covariance matrix of the data, performs
eigendecomposition to find eigenvectors (principal components) and eigenvalues (variance
explained), and then projects the original data onto the space spanned by the top k eigenvec-
tors (see Figure 4). This linear transformation creates uncorrelated features ordered by the
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Figure 4. PCA Algorithm

1. Center the data: X, ;...q = X — mean(X)

Compute covariance matrix: C=[1/(n — 1)] X X_cptered’ * Xcentered
Perform eigendecomposition: C=V x A x VT

e V:eigenvectors (principal components)

e A:eigenvalues (variance explained)

Sort eigenvectors by decreasing eigenvalues

Select top k eigenvectors: W = V[:, 0:k]

Transform data: Y= X__,.c.cq X W

N oo ow o

Output: Y, W, explained variance ratio

amount of variance they explain, making PCA particularly useful for data visualization, noise
reduction, and feature extraction in preprocessing pipelines.

Perhaps the most well-known example of a financial application of PCA appears in the decom-
position of the yield curve by Litterman and Scheinkman (1991). Their application of PCA
involves constructing a matrix where each row represents a specific date and each column rep-
resents yields at different maturities (such as 3-month, 6-month, 1-year, 2-year, 5-year, 10-year,
and 30-year rates). PCA then decomposes the yield curve data into orthogonal components
ranked by their explanatory power. Their study (and others that followed) revealed that three
principal components explain approximately 95%-99% of yield curve movements:

e First principal component (level): This component typically accounts for 80%-90% of the
variance and represents parallel shifts in the yield curve. When this factor moves, all yields
tend to move up or down together by similar amounts. This behavior reflects broad mone-
tary policy changes, inflation expectations, or general economic conditions.

e Second principal component (slope): Explaining roughly 5%-15% of variance, this com-
ponent captures the steepening or flattening of the yield curve. It represents the spread
between long-term and short-term rates, often reflecting expectations about future
monetary policy or economic growth.

e Third principal component (curvature): Accounting for 1%-5% of variance, this component
captures changes in the curve's convexity or "bow” shape. It reflects relative movements
in medium-term rates compared with short- and long-term rates, often related to market
expectations about intermediate-term economic conditions.

Another popular dimension reduction technique is t-distributed stochastic neighbor
embedding (t-SNE), a powerful dimension reduction technique that can be used to visualize
high-dimensional data in a lower-dimensional space, typically 2D or 3D (van der Maaten and
Hinton 2008). It is particularly effective for exploring complex datasets and identifying clusters

8 e« CFA Institute Research Foundation
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Figure 5. t-SNE Algorithm

1. Compute high-dimensional similarities:

e For each point x; calculate conditional probabilities: py; = exp(-||x; - x;||*/25:2)/
zk#i exp(=||x; = xi|[*/207)

e Symmetrize: p; = (py3 + Pyip)/2n
2. Initialize low-dimensional embedding:
e Randomly place points y; in target dimensional space
3. Iterative optimization: For each iteration, compute low-dimensional similarities:
e Use t-distribution: g; = (1 + ||y, = y;||2)/Zk=I (1 + ||y, = yil[?)
Calculate gradient:
e Minimize Kullback-Leibler (KL) divergence: KL(P||Q) = %; p; log(p;/q;)
e Gradient: C/dy; = 4%; (p; = qy)(y: = y)(1 + |ly; = y|19)™
Update positions:
e Apply gradient descent with momentum to move points y;

4. Output: Final low-dimensional embedding Y

or patterns that might not be apparent in raw data. In finance, t-SNE can be applied to analyze
and visualize market segmentation, such as grouping stocks or assets based on their historical
performance, risk profiles, or other features. The algorithm for t-SNE appears in Figure 5.

To provide a supervised counterpoint, we mention linear discriminant analysis (LDA), a tech-
nique that finds linear combinations of features that best separate different classes, making it
particularly useful for classification preprocessing (Fisher 1936). LDA can serve as a powerful
classification tool in financial applications, particularly for identifying trading signals. In credit
risk modeling, LDA can help separate borrowers into distinct risk categories using financial
ratios and other predictive variables, optimizing the linear combination of features that best dis-
criminates between default and nondefault cases. For algorithmic trading, LDA can be used to
classify market conditions into bullish, bearish, or neutral regimes based on technical indicators
and market microstructure variables.

Another technique, independent component analysis (ICA), assumes that data are generated
by mixing independent source signals and attempts to recover these original independent
components, making it valuable for blind source separation problems such as audio signal pro-
cessing (Comon 1994; Bell and Sejnowski 1995). ICA is therefore useful in financial applications
that require blind source separation, particularly in identifying independent market factors from
mixed signals. For example, in multiasset portfolio analysis, ICA separates returns into inde-
pendent components that may represent different economic factors (inflation, growth, senti-
ment) that are not directly observable but drive asset performance. For high-frequency trading,
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ICA helps isolate genuine price signals from market noise by identifying independent sources
of price movement. The technique is particularly valuable in emerging markets, where tradi-
tional factor models may not apply, because ICA can discover country-specific or sector-specific
independent factors that influence asset returns without requiring prior assumptions about
factor structure.

Deep Learning Approaches

Autoencoders are neural networks designed to learn efficient data representations in an
unsupervised manner by training the network to reconstruct its input data (Hinton and
Salakhutdinov 2006). The architecture consists of an encoder that compresses the inputinto a
lower-dimensional latent representation and a decoder that reconstructs the original input from
this compressed representation. The network is trained to minimize reconstruction error, which
forces it to learn meaningful features that capture the most important aspects of the data.
Applications of encoders include dimensionality reduction, denoising, feature learning, and data
compression. The algorithm for autoencoders is shown in Figure 6.

Variations of standard encoders include denoising autoencoders that learn to reconstruct clean
data from corrupted inputs, variational autoencoders (VAEs) that learn probabilistic latent

Figure 6. Autoencoder Algorithm

1. Initialize networks:

Encoder: f,

enc

(; 04nc) = z with parameters 6.,
Decoder: f,..(z; 0,4..) — X with parameters 0,
2. Training loop (for each epoch):
For each mini-batch:
Forward pass:
Encode: z=f,,.(x; 0,,.)—compress input to latent code
Decode: X = f . (z; 84, )—reconstruct from latent code
3. Loss computation:
Reconstruction loss: L = ||x - X||? (mean squared error)
4. Backward pass:
Compute gradients with respect to both networks: V6,,.L, V6,..L
Update encoder: 6,,. < 0., — aV0,,L
Update decoder: 04, < 0,4 — VO, L

5. Output: Trained encoder and decoder networks
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representations, and sparse autoencoders that enforce sparsity constraints on the hidden layer
activations to learn more interpretable features (Kingma and Welling 2014). Unlike traditional
autoencoders, which compress data into a deterministic latent space, VAEs model the latent
space as a probability distribution (typically Gaussian). This probabilistic approach allows VAEs
to generate realistic synthetic data by sampling from the learned latent distribution. VAEs con-
sist of two main components:

e Encoder: Maps input data to a latent space by learning the parameters (mean and variance)
of a probability distribution

e Decoder: Reconstructs the original data from samples drawn from the latent distribution

The key innovation of VAEs is the use of variational inference, where the model learns a latent
distribution that captures the underlying structure of the data. The training process involves
minimizing a loss function that combines reconstruction error (how well the decoder recon-
structs the input) and a regularization term (how close the learned latent distribution is to

a prior, typically a standard normal distribution). Examples of how VAEs are used in finance
include synthetic data generation for testing trading strategies or stress-testing models, uncov-
ering latent factors driving asset prices or market behavior, and identifying unusual patterns in
financial data by comparing reconstructed data with the original input.

Another algorithm used to generate synthetic data is known as a generative adversarial net-
work (GAN; Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio
2014). GANs are a class of generative models that use a game-theoretic framework to learn and
generate new data that mimic the distribution of a given dataset. GANs consist of two neural
networks:

e Generator: Creates synthetic data from random noise, attempting to mimic the real data
distribution

e Discriminator: Distinguishes between real data (from the dataset) and fake data (produced
by the generator)

The generator and discriminator are trained simultaneously in a zero-sum game: The generator
attempts to “fool” the discriminator by producing realistic data, and the discriminator tries to
correctly identify real versus fake data. Over time, the generator improves its ability to create
realistic data, and the discriminator becomes better at distinguishing real from fake. When the
GAN converges, the generator produces data that are indistinguishable from the real data.
GANs are widely used in finance for tasks that involve generating realistic synthetic data, mod-
eling complex distributions, and simulating market scenarios. Simonian (2024) describes how
the synthetic data generated by GANs can be used in the model validation process.

Anomaly Detection

Anomaly detection is an important part of finance because extreme outliers, such as stock
market crashes, can have outsized financial and economic implications. However, anomaly
detection is important not only for investors but also in such areas as credit card fraud detec-
tion, identifying unusual trading patterns, detecting market manipulation, and monitoring port-
folio performance for abnormal behavior patterns that could indicate operational risks or model
failures. Although other types of machine learning models, such as DBSCAN and support vector
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Figure 7. LOF Algorithm

1. Find k-nearest neighbors for each point
2. Calculate reachability distance:
r4st(A, B) = max[k-distance(B), d(A, B)]
3. Compute local reachability density:
Local 4(A) = 1/(ZReach (A, B)/|N(A)|)
4. Output: LOF(A) = [Z/4(B)/.4(A))/|N(A)| for Bin N(A)

machines, can perform anomaly detection, dedicated algorithms have also been developed for
outlier detection. Isolation Forest uses decision trees to isolate anomalies by randomly select-
ing features and splitting the data according to threshold values, operating under the principle
that anomalies are few and different—hence, easier to isolate (Liu, Ting, and Zhou 2008). The
algorithm constructs an ensemble of isolation trees by randomly selecting features and split
values, with anomalies requiring fewer splits to be isolated and thus having shorter average
path lengths in the trees, whereas normal points require more splits and have longer paths.
This approach is particularly effective because it directly targets anomalies rather than profiling
normal instances, making it computationally efficient with linear time complexity and effective
in high-dimensional spaces.

Another popular anomaly detection technique is the local outlier factor (LOF), which detects
anomalies by comparing how densely packed each point is relative to its local neighborhood
(Breunig, Kriegel, Ng, and Sander 2000). The key insight is that outliers exist in sparser regions
compared with their neighbors. As a rough analogy, think of data points as houses in a city:

In dense neighborhoods, houses are close together, and in less populated areas, houses are
spread out. An outlier is like a house that is unusually isolated compared with the density of its
surrounding neighborhood. The LOF algorithm is shown in Figure 7.

Conclusion

In this chapter, | have provided an overview of some major unsupervised learning algorithms
along with examples of how they are applied in various areas of finance. | have shown that unsu-
pervised learning plays a major role in classification, anomaly detection, and synthetic data gen-
eration—all major application areas in finance. The next chapter will delve deeper into an area of
unsupervised learning—network theory—that has become popular in recent years because of its
flexibility and power to illuminate various types of connections that exist between financial and
economic entities and actors.
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Introduction

Decision making and risk assessment have traditionally been grounded in core financial models.
These models have encountered challenges as global interdependencies have grown in com-
plexity as financial markets evolve. Many classical models approach the market as either a
collective system with uniform interactions or groups of unconnected systems where actors
make autonomous decisions. These overly simplified approaches have proved incorrect in many
incidents, such as the financial crisis of 2007-2008 and the COVID-19 pandemic. The failure of
Lehman Brothers and the near-collapse of AlG highlighted how distress is capable of rapidly
spreading from one region of the system to another, revealing hidden links and vulnerabilities.
Conventional models did not foresee these vulnerabilities. These events revealed the sobering
truth that the interconnectivity of financial institutions and the system is much more intricate
than the models of the time could capture and that the interexposures between institutions

are crucial to the systemic stability of the structure. This crisis proves that models are blind

to emerging risks if relationships between players add up in unpredictable asymmetric ways.

To respond to the challenge of managing systemic risk, one needs tools that identify and struc-
ture relationships to analyze connections, no matter how unconventional the direction might be.’

A powerful and intuitive framework for overcoming these constraints is provided by network
theory, a discipline with roots in graph theory. It offers mathematical language for investigating
systems made up of distinct entities (represented as nodes or vertices) and the connections

or interactions among them (represented as links or edges). This method has shown promise
in a wide range of fields, including biology, computer science, transportation, and the

social sciences.

Network analysis is a natural fit for financial systems. Markets, assets, financial institutions, and
even information flows are all interconnected. These relationships create intricate networks
that support the dynamics of the market. Practitioners can examine the true structure of market
interactions and go beyond oversimplified assumptions by depicting these varied financial
relationships as networks. The following are examples of networks:

e Interbank lending networks: A vital network for distributing liquidity is created when banks
lend to and borrow from one another.

TFundamental literature on networks includes Wasserman and Faust (1994), Newman (2010), Barabasi (2016), and Borgatti,
Everett, Johnson, and Agneessens (2022). Financial networks are extensively analyzed by Diebold and Yilmaz (2015).
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e Asset and factor networks: By comparing price movements of stocks, bonds, commodities,
currencies, or factors, one can identify community structures, relationships, associations,
and interactions that improve diversification.

e Ownership networks: Ownership links are created by businesses that own stock in other
businesses.

e Derivative networks: Counterparty exposures in derivative contracts, such as credit default
swaps (CDSs), create a web of contingent liabilities.

e Bank-firm networks: The financial sector is connected to the actual economy through
lending relationships between banks and nonfinancial firms.

e Supply chain networks: Along supply chains, there are dependencies and financial flows.

By demonstrating how information spreads, how sentiment changes, and how various market
segments affect one another, network analysis provides a potent lens through which to view
market dynamics. It is a crucial tool for evaluating systemic risk, a viewpoint that central banks
and regulators have now widely embraced because it enables modeling of contagion pathways
and identification of systemically important institutions. It also supports diversification through
cluster detection, feature selection, importance score determination, and unveiling hidden
relationships between assets. Network models also provide insight into how news and analyst
sentiment affect asset prices by tracking the flow of information through markets.

This chapter introduces key network theory concepts and their practical use in finance. It covers
community detection to find hidden asset groups, centrality measures to identify influential
actors, and fundamental structures such as nodes and edges. It also investigates network
dynamics for modeling contagion and systemic risk. Formal definitions are paired with actual
financial examples to discuss applications in investment management, such as portfolio
construction, market prediction, and pattern recognition.

Concepts

Knowing the fundamentals of graph theory is necessary to comprehend financial systems from a
network perspective. These elements offer the framework for modeling complex dependencies.?

Nodes

Nodes or vertices are the basic components or entities that make up a network. They stand in
for the actors or objects in the system that is being modeled. The definition and selection of a
node are important decisions that depend solely on the particular financial system under study.
Numerous entities can be represented by nodes:

e Institutions, such as central banks, investment banks, mutual funds, and hedge funds

e Corporations, such as nonfinancial businesses that participate in supply chains or credit
relationships

e Assets and factors, such as individual stocks, bonds, currencies, commodities, or
derivatives, such as CDSs

2A detailed explanation of these metrics can be found in Newman (2010) and Barabasi (2016).
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e People, such as market traders, stock analysts, board members, firm employees, and even
politicians in policy networks

e Geographic/political entities, such as nations, jurisdictions, communities, or areas involved
in global networks of capital flows or trade

Financial network nodes are more than just abstract points; they also carry characteristics that
give analysis crucial context. These attributes, such as the total assets of a bank, the sector or
volatility of a stock, the credit rating of a company, or the GDP of a nation, aid in differentiating
nodes and influence how network relationships are interpreted. A key first step in creating
meaningful financial network models is defining nodes and their relevant attributes because
this process establishes what relationships can be captured and what insights can be obtained.

Edges

The connections, relationships, interactions, or dependencies between pairs of nodes in

a network are represented by edges, also referred to as links or arcs. They represent the
connections between the nodes. In finance, they capture the way financial entities interact
with one another. The following are examples:

e Lending and borrowing: In an interbank network, an edge can stand in for a loan from Bank
A to Bank B or a bank credit line to a business.

e Association: Two stocks whose returns show a high degree of association can be connected
by an edge. Association metrics, such as pairwise correlations between asset classes, are
the most widely used tool to measure association and to draw edges in financial networks.

e Counterparty: In a derivative contract (such as a CDS), an edge can stand in for the possible
loss exposure between two parties.

¢ Informational: Two stocks may be linked if they are covered by the same financial analyst.
e Ownership: An edge may indicate that Firm A owns a sizable portion of Firm B's stock.

o Affiliation: Edges can connect businesses that share board members.

Edges in financial networks can have attributes that are essential for network analysis. The dif-
ference between directed and undirected edges is a crucial one. A relationship with a distinct
origin and destination is indicated by directed edges, such as when Bank A lends to Bank B.

The relationship's direction is vital in these situations, particularly when simulating influence or
contagion. Undirected edges, in contrast, show symmetrical or reciprocal relationships in which
order is irrelevant, such as the correlation between two stocks.

Additionally, edges can be weighted or unweighted. Weighted edges, such as trading volume,
correlation coefficients, or loan size, show how strong a relationship is. Ignoring these
weights can result in a substantial loss of information because they provide important detail.
Conversely, unweighted edges do not quantify the strength of a relationship; they show only
whether one exists. They are helpful in situations where a connection's existence is more sig-
nificant than its size. The adjacency matrix of a network is the one that carries the information
about the pairwise weight structure.?

3See the next section for detailed information about the adjacency matrix.
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To create precise and instructive financial network models, edges must be carefully defined,
including their directionality and weighting. The outcomes of network analysis, including conta-
gion simulations and centrality calculations, are directly affected by these characteristics.

Exhibit 1 provides a simple example of the correlation-based network of the Dow Jones
Industrial Average Index. The network consists of 30 nodes (stocks in the index), and according
to the simple algorithm, there are 570 links between the nodes. Given the 30 nodes in the net-
works, the total number of possible links between all 30 nodes is 30 x 29 = 870. In other words,
the algorithm'’s output of 570 links between the nodes shows that not all nodes share a pairwise
link between them. For example, American Express might not have a link to Amazon. Similarly,
the edge between, say, Boeing and Visa might not exist.

® 0 0 06 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

Exhibit 1. A Simple Correlation-Based Network of the Dow Jones
Industrial Average Index
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Path, Trails, Walks, Geodesic Distances, and Network Structure

Higher-level insights can be gained from the general arrangement and connectivity patterns
of a network, which go beyond individual nodes and edges. A crucial distinction lies in the
definitions of paths, trails, walks, and geodesic distances.

A path is a route in a network consisting of a sequence of nodes connected by edges. The terms
geodesic, trail, path, and walk describe different types of node-edge sequences in a network.
They differ in their constraints and the connectivity characteristics they represent.

A geodesic is the shortest path between two nodes in a network. It represents the most direct
route, taking into account the network'’s structure and any weights assigned to its edges (if appli-
cable). Geodesic distances are used to calculate various network metrics, such as average path
length, network diameter, and centrality measures. The length of a path is determined by the
number of edges it traverses; a path with a length of 1 consists of a single edge. For centrality met-
rics, such as closeness and betweenness, the shortest path between nodes is critical because it
minimizes either total weight (in weighted graphs) or the number of edges (in unweighted graphs).

Paths are useful in finance for modeling complex transaction sequences, analyzing the propa-
gation of shocks through counterparties, and tracking the flow of information from analysts to
investors. Konstantinov, Aldridge, and Kazemi (2023) extensively discussed the flow properties
of financial networks. A walk is a sequence of nodes and edges in which each edge is adjacent
to the previous one and both nodes and edges can be revisited. Walks can include loops and
repeated edges. This property is typical in financial networks. A trail is similar to a walk, but

no edge may be repeated, although nodes can still be revisited. For instance, a stock can be
bought multiple times from the same brokerage house, but the exact transaction (edge) cannot
be repeated. A path further restricts the sequence such that no node or edge is repeated.

This type of sequence can be quite limiting in financial networks.

According to Newman (2010), some directed networks have a special structure called cycles.

A cycle is a walk in which no node is repeated (except for the starting/ending node), forming

a closed loop where all edges point in the same direction. Networks without such loops are
referred to as acyclic directed networks, which are widely used in causal inference and prediction.

The primary differences between these sequences are the rules about revisiting nodes and
edges. When analyzing flow processes in networks, each type of sequence can represent differ-
ent aspects of connectivity, traversal, or the spread of information. For example, geodesics can
indicate the most efficient information flow between nodes. Thus, applying geodesic metrics to
financial networks provides a generalizable framework for modeling relationships. The simplest
way to model such relationships is through pairwise correlation metrics.

An important consideration in flow processes is whether money, information, or services

reach a node only once, simultaneously, or multiple times. Financial flows often arrive at

nodes repeatedly over time. For example, a portfolio's exposure to certain assets may change
frequently depending on the economic environment. In this context, systematic financial risk
can become systemic, simultaneously impacting many nodes via multiple links, not necessarily
along a single geodesic path.

Similarly, information can reach multiple points at once, spreading by replication rather than
linear transfer and influencing many nodes simultaneously.
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In contrast, goods and packages are often transferred along geodesic paths—a model that may
not always be appropriate for finance, where assets, factors, or institutions may be discon-
nected. Consider a hedge fund using a sophisticated quantitative strategy with minimal market
exposure. In a hedge fund network, this fund might not be linked to others based on correla-
tion coefficients, meaning no directed path exists. Directionality in networks implies causality,
a key concept in financial markets, although it is often difficult to detect. The direction of
money, information, and technological impacts (e.g., high-frequency trading) reflects this cau-
sality. The processes of paths, trails, and walks help define how relationships form and evolve
between nodes.

The underlying flow process—whether involving information, rumors, money, goods, services,
orders, transactions, or financial contagion—is critical for network modeling. A major distinction
lies in whether flows follow geodesics, trails, paths, or walks. In financial markets, money
typically follows walks rather than trails, which is a defining characteristic of financial flow and
essential for network analysis.

Based on mathematical graph theory, a network (or graph) is a collection of nodes (vertices)
connected by edges (links). A network G is defined as a set of nodes n and edges m, formally
expressed as G = (n, m).

There are two primary ways to construct a financial network:

e by modeling the data at the edge level, keeping the nodes fixed, or

e by modeling the network at the node level, with edges defined between them.

Mathematically, relationships between nodes are often represented using a matrix. Financial
networks can be modeled by an adjacency matrix, where rows and columns represent nodes
and each cell indicates the presence or strength of a connection.

In unweighted networks, entries in the adjacency matrix are binary (0 or 1), whereas in weighted
networks, these entries are real numbers reflecting the strength or weight of the connection.
Generally, in an unweighted network, the adjacency matrix has cell values [i, j] equal to 1 if
there is a link from node i to node j and 0 otherwise. Using this notation, the result is a simple
network whose main diagonal reflects self-edges. An example of self-edge (main diagonal

of nonzeros) indicates that the node has a self-connectedness. Mathematically for a graph,

G = (n, m), where n is the number of nodes and m is the number of edges, the n x n adjacency
matrix is denoted by [A]; and is estimated using following rule:

{1 if node i andj are connected, or {i,j}e m
a =
ij

0 otherwise

The adjacency matrix for an undirected network consisting of 30 nodes for the Dow Jones
Industrial Index is shown in Exhibit 2.

Konstantinov and Fabozzi (2025) provided an extensive review of the useful and practical
ways to construct financial networks. The approaches used to estimate the links between the
assets include correlation coefficients, regression models, econometric models, probabilistic
models that derive probabilities, evaluation of transaction and money flow volumes, assets
under management, and all possible information that applies to exchange in financial markets.
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Exhibit 2. Adjacency Matrix

Goldman.Sachs
UnitedHealth.Group
Microsoft
Home.Depot
Caterpillar
Sherwin.Williams
Salesforce

Visa.A
American.Express
McDonalds
Amgen

Apple

Travelers
JPMorgan.Chase
Honeywell.International
IBM

Amazon

Boeing
Procter.Gamble
Johnson.Johnson
Chevron

NVIDIA

3M

Disney

Merck

Walmart

NIKE.B
Coca.Cola
Cisco.Systems

Verizon.Communications

000000111011101011101101001111
000001111011101011101101001110
000001111011101010101101011110
0000010110111010170101101011110
000001010000001011111100011110
011110111111110011101101111111

111001000101011000111010111010
111111000100111101110011110100
111101000000111101110011110100
000001110010101010101101011110
111101000100011100110011110000
111101100000011101110011110100
111101011100011000111111110110
000001111011101011101101101111
111110111111110111011111111011

00000001101100101011010111T1111
1171111000100011100111011110000
110011011001011000111011111010
1T11111111111110111001111101111

000010111011101111001101101111
111111100100111011110011111101

111111000100111100110011111001
000000111011101011101100011111
1111017011111 111111111100011111

0000011110111 1T1111111100011111

001T11T1111111101111001111101111

111111100100011101111111110001

111111011101110100111011110011

111111100100111101110011110100
100001000000011100111111111100
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Some structural features are frequently seen in real-world financial networks:

e A core-periphery structure displays a densely connected core (mainly large players) sur-
rounded by a sparsely connected periphery (relatively smaller players). For instance, large
international banks with extensive cross-border ties typically form the core of the global
banking system, with national or regional banks that have fewer direct international ties
encircling the core.

e Scale-free networks have a power-law degree distribution, which means that although most
nodes have few connections, a select few (hubs) have a lot of connections. These hubs
frequently have a significant impact on the stability and operation of networks. A few
big, highly linked banks serve as hubs in the interbank lending market, which frequently
has a scale-free structure. Such a hub's failure may have systemic repercussions that are
disproportionately severe.

e Small-world networks are characterized by short average path lengths between any two
nodes and high clustering. Fast transmission throughout the network is made possible by
this structure. Financial markets might frequently act like small-world networks, enabling
information, sentiment, or shocks to spread remarkably quickly.

Understanding these structural patterns aids in understanding the general behavior, resil-
ience, and shock susceptibility of the network. The particular topology has a big impact on
how information moves, how fast contagion spreads, and where systemic risks could be
concentrated.

How to evaluate networks is an important question, and a graph theoretic toolkit allows us to
measure the specific properties of a network. A classical financial network has specific proper-
ties, and the average degree, density, centrality scores, reciprocity, and clustering coefficient
are the most important. The average degree k; of a node i and k; of node j at time t is the most
basic structural property representation of the connections of a node in a network:

k. =k = E a. :E a. =—.
it Jit it j Jiit n

The density, or completeness, of a network, ¢, is given by the ratio between the numbers of
current links relative to the number of all possible links between the nodes in the network:

m

M
(1)

Here, m represents the number of links between nodes in the network and n represents the
number of nodes. The density values range from 0 (no ties are present) to 1 (a completed
network). A density value of 1 means all possible links are used.

The relation between the pairs of nodes in a directed network (a network with direction or
flow, indicated by arrows) at time t is given by the value of reciprocity, g,. The reciprocity mea-
sures whether a node i is linked to a node j and if a node j is also linked to a node i. The values
range between 0 and 1 (with 1 for fully reciprocal network). Given the entries in the adjacency
matrices, the reciprocity is given by
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A node pair (i, j) is called reciprocal if ties exist between both nodes in both directions.

Centrality Measures

After the network is defined, finding the most important nodes is a crucial task. Although
influence can take many different forms, centrality measures assign scores based on a node’s
position and connections. Selecting the appropriate measure depends on the information flow
process because different measures quantify different aspects of the nodes. We discuss the
most important measures of network properties.

Degree Centrality

The simplest measure, degree centrality, counts the number of direct connections a node
has. It is denoted as deg(v), where v is the node. A high degree measure denotes a popular
or active entity—for instance, a bank with many trading relationships or a frequently traded
stock. To compare networks of varying sizes, a normalized version (by number of nodes) is
frequently used.

If the network is directed, the number of incoming edges is called in-degree, and the number of
outgoing edges is referred to as out-degree. A node with a high in-degree is one that receives

a lot of connections or attention, such as a bank that borrows a lot and is therefore at risk of
lender distress or a stock with a lot of buy recommendations. In contrast, a node with a high
out-degree is a source of influence or risk, such as a bank lending to numerous people, which
could spread distress if it fails.

Degree is often used as a measure of a node's connectedness in networks. In real-world net-
works, the average degree typically exceeds 1, indicating that a node is connected to more than
one other node. A higher average degree or greater overall connectedness increases the likeli-
hood of forming communities within the network.

One limitation of degree centrality is its exclusive focus on direct, immediate connections.
This approach does not account for a node's position within the broader network or its indirect
influence via the connections of its neighbors. A node may have a high degree but be linked
only to minor, peripheral nodes, limiting its actual influence. Furthermore, standard degree
centrality ignores the weights of the edges, although this shortcoming can be addressed by
defining a weighted degree centrality.

As noted by Konstantinov and Fabozzi (2025), the key advantage of degree centrality—and
metrics that assess the degree of all nodes in a network—is its ability to measure the immedi-
ate impact of risk at the node level. In contrast, eigenvector centrality captures both direct and
indirect long-term influence across the network.

Importantly, many mathematical models in network science place a central focus on degree
distribution, which plays a foundational role in understanding the structure and dynamics of
complex networks.

CFA Institute Research Foundation
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Betweenness Centrality

The extent to which a node is situated on the shortest routes between any other pair of nodes
in the network is measured by betweenness centrality. Developed by Linton C. Freeman, it
gauges a node's function as a bridge or middleman. The fraction of shortest paths between
each pair of nodes (u,v) that pass through node s is added up using the following formula:

=%,

where ¢, (s) is the number of shortest paths that go through s and ¢, is the total number of
shortest paths between u and v.

The application of betweenness centrality in financial networks depends on the underlying
flow processes within the network. Unlike such metrics as closeness centrality, which assume
random path selection, betweenness centrality is particularly appropriate for networks in which
the flow of resources or information follows specific, predetermined paths.

A key assumption when applying betweenness centrality is that transactions or flows tend to
follow the shortest paths between nodes. This assumption does not always hold in financial
markets, however, where flows may follow more complex, indirect routes. As such, the applica-
tion of closeness centrality in financial contexts requires careful consideration and may not be
universally appropriate.

Nodes with high betweenness centrality are identified as critical intermediaries that control or
facilitate the movement of capital, information, or risk across the network. These may include
banks that bridge market segments, clearinghouses, or major dealers in the financial industry.
Betweenness centrality can also highlight bottlenecks or key links between otherwise discon-
nected institutions or investor groups.

A node with low betweenness is typically not essential for linking other nodes in the network.
Although high betweenness scores often indicate influence, they may also reflect peripheral
connectors between clusters. Therefore, interpreting these scores depends heavily on the
context and structure of the specific financial network being analyzed.

Closeness Centrality

Closeness centrality measures the average distance between a node and every other reachable
node in the network. This metric, based on the foundational work of Linton C. Freeman, is
grounded in the idea that a node's importance is inversely related to its geodesic distance from
other nodes. It is calculated as the reciprocal of the sum of the shortest path distances from the
node to all other nodes in the network.

A node with a higher closeness score (i.e., a lower average distance) can reach other nodes
more quickly, indicating greater efficiency in communication or influence across the network.

In the context of financial networks, assets or institutions with high closeness centrality are
assumed to respond more rapidly to information, shocks, or risk events compared with those
that have lower scores. For example, a financial institution that is well positioned to quickly
disseminate or receive contagion would likely exhibit a high closeness centrality value.
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The conventional formula for closeness is the inverse of the sum of distances:
N -1

Zuw’d(u'u’) ’

where N is the number of nodes and d(u,u’) is the shortest path distance between the
two nodes.

C(v)=

Differentiation can be challenging in highly connected networks because many nodes may have
similar, high closeness scores. This measure is also sensitive to the overall structure of the net-
work. Finding all-pairs shortest paths is necessary for calculations, and for very large networks,
this process can be computationally demanding.

Eigenvector Centrality

The idea behind eigenvector centrality is that a node's significance is determined by the signif-
icance of the nodes it is connected to, not just by the number of connections it has. A node's
eigenvector centrality will be high if it is connected to numerous highly central nodes. The com-
ponents of the principal eigenvector of the network’s adjacency matrix (A), which corresponds
to the largest eigenvalue (1), are mathematically known as the centrality scores (x):

Ax=2x

The key to identifying systemically significant institutions lies in eigenvector centrality, which
captures nodes that are influential not only through their direct connections but also through
links to other highly connected and influential nodes. Conversely, nodes with low eigenvector
centrality are typically connected only to peripheral or less significant nodes.

An important property of eigenvector centrality is that it is only appropriate for analyzing nodes
that are connected to at least one other node. If a node is completely disconnected from the
rest of the network, eigenvector centrality assigns it a score of zero. This scoring may not
accurately reflect the node's importance, however, because it ignores exogenous factors that
can affect a node's role within the broader system.

A simple example illustrates this limitation. Consider an asset such as the risk-free rate,

which may be temporarily disconnected from other assets in a financial network. In this case,
eigenvector centrality would assign it a score of zero, implying no influence. This implication
is misleading, however, because the risk-free rate is determined by exogenous factors—for
instance, central bank policy—that have significant system-wide effects and influence the con-
nectivity and behavior of other assets in the network. Thus, although eigenvector centrality

is a powerful tool for identifying influential nodes based on endogenous network structure, it
should be interpreted carefully, especially in contexts where external forces play a key role in
shaping network dynamics.

A direct comparison of four widely used centrality metrics provides insight into how importance
scores vary among algorithms. Each centrality measure captures a distinct aspect of a node's
role within the network, resulting in different scores for the same node. In the corresponding
network visualizations in Exhibit 3, larger node sizes represent higher importance scores based
on the respective centrality metric. Exhibit 4 presents the numerical values associated with
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each node under the four centrality measures. Obviously, a node's centrality depends on the
specific centrality metric used. For instance, a node with a high betweenness centrality score
may not necessarily have a high eigenvector centrality score, because each metric captures

different aspects of a node's role within the network.

Exhibit 3. Overview of the Betweenness, Closeness,
Eigenvector, and Degree Centrality of a Dow Jones
Industrial Average Correlation-Based Network
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Exhibit 4. Centrality Scores for Betweenness, Closeness,
Eigenvector, and Degree Centrality of a Dow Jones Industrial
Average Correlation-Based Network

Eigenvector Closeness Betweenness Degree
Goldman.Sachs 0.69 0.71 0.01 34
UnitedHealth.Group 0.71 0.71 0.01 34
Microsoft 0.72 0.71 0.01 34
Home.Depot 0.69 0.69 0.01 32
Caterpillar 0.56 0.64 0.00 26
Sherwin.Williams 0.95 0.85 0.02 48
Salesforce 0.66 0.69 0.01 32
Visa.A 0.77 0.74 0.01 38
American.Express 0.71 0.71 0.01 34
McDonalds 0.65 0.67 0.01 30
Amgen 0.62 0.67 0.01 30
Apple 0.70 0.71 0.01 34
Travelers 0.83 0.76 0.01 40
JPMorgan.Chase 0.79 0.74 0.01 38
Honeywell.International 0.99 0.91 0.03 52
IBM 0.66 0.69 0.01 32
Amazon 0.69 0.71 0.01 34
Boeing 0.75 0.72 0.01 36
Procter.Gamble 1.00 0.91 0.03 52
Johnson.Johnson 0.75 0.74 0.01 38
Chevron 0.88 0.81 0.02 44
NVIDIA 0.77 0.74 0.01 38
3M 0.69 0.71 0.01 34
Disney 1.00 0.88 0.02 50
Merck 0.85 0.78 0.01 42
Walmart 0.94 0.85 0.02 48
NIKE.B 0.84 0.78 0.02 42
Coca.Cola 0.87 0.81 0.02 44
Cisco.Systems 0.81 0.76 0.01 40
Verizon.Communications 0.65 0.67 0.00 30
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A simple comparison illustrates the point. Consider the eigenvector centrality of Goldman
Sachs (GS), and compare it with the degree and closeness centrality that GS has in the net-
work. Recall that eigenvector centrality assigns a higher score to a node that is itself con-
nected to other highly connected nodes. Degree centrality measures the total number of links
that a specific node has to other nodes. In this respect, GS has a relatively high eigenvector
centrality (0.69) and is highly connected to other highly connected nodes, but its degree

of 34 is in the lower percentile of degree connectedness. That is, GS has 34 edges to other
nodes. The eigenvector centrality, however, indicates that GS is not connected to highly
connected nodes.

Community Detection

Network analysis offers powerful tools not only for identifying individually significant nodes

but also for uncovering structural patterns, such as clusters of nodes that are more closely con-
nected to each other than to the rest of the network. These groups are commonly referred to as
modules, communities, or components. Identifying such communities helps reveal the under-
lying structure of a network, providing insights into shared characteristics, functional relation-
ships, and potential vulnerabilities within financial systems.

A community is typically defined as a subset of nodes within a network where the density of
internal connections is significantly higher than the density of connections between that subset
and the rest of the network. The emergence of community structure depends on the network
regime. A network is said to be in a connected regime when it forms cohesive components or
communities. The average degree of nodes in the network plays a critical role in this dynamic:
Once it exceeds a certain threshold, the network begins to form a connected component.

To identify these communities, community detection algorithms aim to maximize the number
of intracommunity links while minimizing intercommunity links. These algorithms divide the
network into distinct (and sometimes overlapping) communities, and at a coarser resolution,
this process effectively reveals the network’s global structural organization.

Finding communities in financial networks enables the discovery of significant clusters that may
not be visible through node-level analysis alone. The following list provides examples:

e Banking groups: Groups of banks with comparable balance sheets or a high level of
interbank activity indicate shared vulnerabilities or concentrated risk.

e Asset communities (clusters): Diversification is aided by identifying sectors or risk expo-
sures by classifying assets based on strong return correlations. Unlike static classifications,
such as GICS, these clusters can capture dynamic market structures.

e Functional modules: Communities in supply chains or financial systems frequently repre-
sent groups carrying out related tasks.

e Shared interest groups: Communities in financial information networks identify groups that
share information sources, tactics, or interests.

Exhibit 5 provides an example for the community detection of the Dow Jones Industrial Average
Index according to a correlation-based network and the Cluster Spinglass algorithm according
to the highest modularity score.
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Exhibit 5. A Correlation-Based Network for the Dow Jones
Industrial Average Index

Source: Bloomberg, LLC.

Measuring Community Structure

Assessing the quality of a particular network partition is a major challenge in community
detection. The most popular metric for this assessment is modularity.

By comparing the number of edges that actually fall within the suggested communities with
the number that would be predicted if edges were dispersed randomly throughout the network
while maintaining each node's degree, modularity quantifies how well a network is divided into
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communities. Strong community structure is indicated by a high modularity score, which means
that the identified communities are much more densely connected internally and sparsely con-
nected externally than would be predicted by chance. Usually, modularity values fall between
-0.5and 1. In real-world networks, values higher than roughly 0.3 are frequently regarded as
suggestive of substantial community structure.

The following formula suggested by Clauset, Newman, and Moore (2004) is used to determine
the modularity, Q, for a network'’s partition C with adjacency matrix A:*

Q ! A k"kfscc
R0 T

where A; is the weight of the edge connecting nodes iandj (1 if co1nnected and unweighted
and 0 otherwise). k. :z A_is the weighted degree of node i. A :—z, ~ _is the network’s total
i ji 24&ij ¥

number of edges (or weight sum). The community that node i is assigned to is called C.. §(C;,C)
is the Kronecker delta, which is 0 if nodes i and j are not in the same community and 1 other-
wise. In this formula, the difference between the expected and actual edge weights for every
pair of nodes in the same community is added up.

For many community detection algorithms, modularity serves as both an objective function
and an evaluation metric. One widely used algorithm, the Louvain method, specifically seeks
the network partition that maximizes the modularity score. The choice and performance of
community detection algorithms depend significantly on the type of graph (e.g., directed vs.
undirected) and its characteristics.

According to Yang, Algesheimer, and Tessone (2016), algorithm selection should consider
network size (humber of nodes), number of edges, and the mixing parameter—a measure
of how well defined the communities are. Networks with fewer than 1,000 nodes are gen-
erally considered small, and most standard algorithms, including Louvain, Spinglass, and
fast greedy, are well suited for these. For larger networks, such algorithms as Multilevel,
Walktrap, and Infomap may be more appropriate, particularly as computational efficiency
becomes critical.

Community Detection Models

A variety of algorithms have been developed to identify communities in networks. These can be
broadly categorized by their methodology:

e Bottom-up approaches begin with each node as its own community and merge communi-
ties based on such criteria as modularity gain.

e Top-down approaches start with the full network and iteratively split it, often by removing
edges with high betweenness centrality.

e Optimization-based methods aim to maximize a quality function (e.g., modularity) using
heuristics.

4See Newman (2010) and Bech and Atalay (2010).
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Other techniques include random walks, spectral clustering, and statistical inference.
Commonly used algorithms in financial applications include Louvain, Girvan-Newman,
hierarchical clustering, and k-means.

Louvain Method

The Louvain algorithm is a greedy optimization technique that operates in two iterative stages
to maximize modularity:

e Local optimization phase: Each node begins in its own community. Nodes are moved to
neighboring communities if such moves increase modularity. This process continues until
no further improvement is possible.

e Aggregation phase: Identified communities are collapsed into “super-nodes,” forming
a new network with weighted edges reflecting the total connections between groups.
The two-phase process repeats on the new network until modularity no longer increases.

The Louvain method is widely applied in finance to group large sets of stocks based on correla-
tion matrices, identifying risk groups or sectors for portfolio construction.

Girvan-Newman Algorithm

This algorithm identifies communities by progressively removing edges with the highest edge
betweenness centrality—those that frequently appear in the shortest paths between nodes.
In finance, this approach can be useful for detecting correlated asset clusters or uncovering
cohesive subgroups within interbank networks.

Hierarchical Clustering

Hierarchical clustering creates a tree-like structure (dendrogram) of clusters. Variants include
the following:

e Single linkage—based on the minimum distance

e Average linkage—based on the average distance

e Complete linkage—based on the maximum distance

Typically, correlation is used as the similarity metric. This method is popular for asset clustering.

k-Means Clustering

In k-means, nodes are grouped into a predefined number (k) of clusters by minimizing the
distance between each node and its assigned cluster center. Although simple, this process
requires prior specification of k and is commonly used for clustering stocks or clients in the
financial sector.

The optimal choice of algorithm depends on the network size, network type (weighted/
unweighted, directed/undirected), computational resources, and analytical objectives. Because
different algorithms may produce distinct community structures from the same dataset, it is
crucial to understand their assumptions and test the robustness of the results.

CFA Institute Research Foundation ¢ 31




Al in Asset Management: Tools, Applications, and Frontiers

Case Study: Asset Clustering

A well-known application of community detection in finance is grouping financial
assets (usually stocks) for the purpose of portfolio diversification. The central idea

is that assets in different clusters behave more independently, whereas those in the
same cluster exhibit similar behavior (e.g., high return correlation). This strategy can be
implemented as follows:

Compute pairwise correlations between asset returns over a specified period.

2. Convert the correlation coefficients (p) into a distance metric (d) using a transfor-
mation such asd, = /2(1—pl.j). This step is necessary because correlation coeffi-

cients should be converted to Euclidean distance metrics.

3. Apply a community detection algorithm (e.g., Louvain, Spinglass, fast greedy,
leading eigenvector, Walktrap, or Multilevel) on the resulting network.

4. Select representative assets from each cluster. Selection criteria may include node
centrality, cluster size, or other financial metrics.

The effectiveness of a cluster-based investment strategy can be assessed by compar-
ing portfolio performance with benchmarks or peer strategies. Standard evaluation
tools include the Sharpe ratio, the information ratio, and factor exposure analysis.
These metrics help determine whether the identified clusters and community
structures contribute meaningfully to risk-adjusted returns.

Network Dynamics

Financial systems are inherently dynamic and evolving. Modeling these dynamics—especially
the spread of shocks and the emergence of systemic risk—is a core application of network
theory. Mathematical models from network analysis provide essential tools for evaluating these
network dynamics across different market cycles. Key structural metrics used to capture and
assess financial network behavior include the following:

e Edge density

e Reciprocity (in directed networks)

e Assortativity degree

o Transitivity

e Mean distance

e Diameter

e Mean degree

These measures help reveal patterns in connectivity and vulnerability, offering insights into how
financial systems adapt and destabilize under stress.
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Systemic Risk

Following Konstantinov and Fabozzi (2025), the focus in assessing systemic risk lies not solely
on its origins—often stemming from external factors, such as macroeconomic shifts, financial
distress among key institutions, or sovereign crises—but also on how it spreads and permeates
through the network. Thus, systemic risk analysis focuses on the potential failure of individual
nodes within the system because their risk exposures can precipitate broader systemic reper-
cussions. Nodes play a pivotal role here because this analysis indicates which nodes are most
susceptible to being affected, either simultaneously or in a specific sequence.

Systemic risk is the possibility that a single shock or failure will set off a series of events that
could cause the financial system to collapse or be severely disrupted, affecting its functionality
and potentially impacting the real economy. It is an emergent characteristic resulting from the
interdependence of financial institutions and their group dynamics.

To properly understand the meaning of systemic risk, financial contagion, and spillover, it is
necessary to understand the metrics that describe networks and capture interconnectedness.
Following Konstantinov and Fabozzi (2025), financial networks are characterized by specific met-
rics. A thorough understanding of these metrics is critical for understanding network dynamics
and interconnectedness. Some common network properties include size, degree, density, and
community structure, among others. According to Konstantinov and Fabozzi (2025), “These
metrics refer to the overall properties of a network and aim to describe its underlying structure.
The structure of network connectedness depends on the underlying information flow process,
or how nodes interact over the edges.” The metrics that describe the concentration of intercon-
nectedness and the degree of nodal connectedness deserve special attention.

e Role of density: Network connectivity and financial stability have a complicated relationship
that is frequently characterized as “robust yet fragile.” Although fully connected networks
offer maximum diversification, moderate connectivity can increase resilience by distrib-
uting minor shocks across more institutions. In other words, a network with few links is
more fragile than a network with a large number of links. However, higher connectivity has
the potential to magnify significant shocks beyond a certain threshold, facilitating quicker
contagion and enhancing systemic fragility. As a result, there is a tipping point at which
additional links cause the system to become unstable rather than stable.

e Role of concentration: Das (2016) showed that even when the overall level of connectivity
is the same, financial systems with highly concentrated exposures are typically more sus-
ceptible to contagion and systemic risk than systems with more dispersed exposures. In a
concentrated system, partners may suffer catastrophic losses if a major counterparty fails.

High-centrality nodes often play a critical role in systemic risk. Hubs—measured by degree,

or eigenvector—are systemically important financial institutions whose failure can trigger
widespread contagion, making their identification essential for regulation. Bridges, character-
ized by high betweenness centrality, act as key intermediaries, and their failure can disrupt the
flow of capital or information across the network.

Because of both confidentiality and complexity, a major barrier to financial network modeling is
limited data. Regulators frequently have access to only a portion of the data, such as aggregate
exposures. Although such methods as sparse reconstruction and maximum entropy aid in esti-
mating network structure, they may understate systemic risk if they fail to account for network
sparsity or assume uniform link weights.
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Financial Contagion and Spillover

Risk propagation in financial networks has been studied using mathematical epidemiology
models because of the similarities between financial contagion and disease spread. Financial
contagion occurs when a shock or distress event originating in one part of the financial system
(e.g., an institution, market segment, or asset class) spreads across the network, potentially
causing systemic failures or widespread instability. This process is often compared with epi-
demic spread or a domino effect, driven by the intricate interconnectedness of financial entities.
There are two broad channels of contagion:

e Directlinkages: These arise from explicit contractual obligations between financial institu-
tions. For example, if Institution A defaults on a loan owed to Institution B (as in interbank
lending), Institution B may suffer direct financial losses. These losses can impair its ability
to meet obligations, possibly triggering further defaults.

e Indirect linkages: These occur without direct contractual ties, operating through market-
wide mechanisms, such as liquidity herding, fire sales of assets, information contagion,
or common asset exposures.

Indirect and direct channels often interact. For instance, a direct counterparty loss may induce
fire sales, which depress asset values and spark funding runs, escalating the contagion.
Network models aim to capture and simulate these complex interactions, offering regulators
and analysts a way to assess vulnerability propagation paths.

Case Study: Global Financial Crisis in 2008

Financial shocks can be amplified by network structure, as the 2008 crisis showed.
Through a highly interconnected system that included repos, interbank lending, and
complex derivatives, such as mortgage-backed securities, collateralized debt obliga-
tions, and CDSs, what started as losses in the US subprime mortgage market swiftly
spread throughout the world. The September 2008 collapse of Lehman Brothers,

a major market node, sparked widespread concerns about counterparty risk. This
heightened concern resulted in repos and interbank lending being frozen, demonstrat-
ing how the collapse of a major institution can cause systemic instability. The risk of
direct contagion was also made evident by AlG's near default. Because AlG had sold
significant amounts of CDS protection to big banks, its failure would have resulted in
massive losses all at once, necessitating a government bailout to stop further collapse.
The crisis was made worse by fire sales.

The global financial crisis emphasized how important it is to adopt a regulatory approach
that goes beyond the solvency of individual institutions and specifically takes into
account both network interconnectedness and systemic risk. Tools for network analysis
became crucial for comprehending these weaknesses. The crisis brought to light the
system's “robust-yet-fragile” nature: Interconnectedness that could withstand minor

shocks turned into a pathway for catastrophic failure when those shocks grew too big.
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Investment Management

Network theory provides useful tools and perspectives for investment management prac-
titioners engaged in portfolio construction, market prediction, and pattern recognition,
in addition to risk management and regulatory oversight.

Diversification in Portfolio Construction: Modern Portfolio
Theory vs. Network Theory

Expected returns, variances, and the pairwise covariance matrix of assets are the main compo-
nents of traditional portfolio construction, which is dominated by Markowitz's mean-variance
optimization (MVO). MVO has real-world drawbacks, however, such as sensitivity to errors in
input estimation (particularly expected returns) and potentially unstable or unduly concentrated
allocations. Through the explicit incorporation of the richer structure of asset relationships
uncovered by network analysis, network-based approaches seek to improve or offer alterna-
tives. A direct relationship exists between the MVO framework and network centrality scores,
which is extensively discussed in Zareei (2019), Ciciretti and Pallotta (2024), and Konstantinov
and Fabozzi (2025), among others.

For a minimization of portfolio risk, the mathematical algorithm searches for all possible
weights w that minimize the portfolio risk captured by the portfolio variance 6%, which is
a weighted product of the individual weights and the variance-covariance matrix, X = [;]

(see Konstantinov, Fabozzi, and Simonian 2023). That is,

min o7, =w'Ew

s.t.x>L,
where w is a transposed n-dimensional vector of portfolio weights and X is the n-dimensional
variance-covariance matrix of the portfolio assets. The variable x represents the portfolio

return, while L represents the minimum return value that the portfolio must satisfy. The weights
that satisfy the optimizations are

-1
1

1
w_. = z
mn 1M
where 7 is the inverse covariance matrix and 1 represents vectors of ones.
Using the notion of the covariance matrix, X, that it is a product of the correlation matrix, Q, and

the diagonal matrix, A, whose entries are the variances with ¢, = /csij , then the relationship is
¥ = AQA and the weights subject to the correlation matrix are

1

5 1Q,
Tz

Considering the mean-variance framework, the diversification, or minimum risk given the
expected level of return as measured by the portfolio variance and return E(r), is computed
as follows:

mwin o2, =w’EZw with R, =w’ (r).
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As a result, the weights of the mean-variance framework are a function of the expected
portfolio returns and the covariance matrix of the assets, which gauges risk:

w :#Z‘T(r),
™ E(r)Z7E(r)

where X7 is the inverse covariance matrix, E(r) represents vectors of expected asset returns, and
Rer is the portfolio return. Similarly, we can obtain the weights in the mean-variance framework
using the correlation matrix.

In contrast, in network theory, diversification in a network context is identified by weaker
relationships between nodes in a graph. The shorter the distances between nodes, the

greater the potential impact of risk transmission. This limitation, as noted by Peralta and
Zareei (2016) and Zareei (2019), has been addressed and relaxed by Konstantinov (2022),
whose approach has found broader application in portfolio allocation, as discussed later in

this chapter. Fundamentally, the transfer of risk between nodes is central when using networks
for portfolio allocation.

It is important to highlight that centrality scores—such as degree, eigenvector, or alpha central-
ities—are critical here because they help identify how risk might flow and affect nodes. Degree
centrality is not the preferred score, however, because it measures only the immediate connect-
edness of a node, whereas other centrality metrics capture the more nuanced interconnected-
ness and influence of a node within the network.

When network theory is applied to portfolio construction, several methods can be used to
heighten the diversification of asset portfolios, including the following:

e Network-based asset selection: These techniques seek to combine related assets to ensure
diversified portfolio exposure across various sources of risk and return.

e« Community detection on association, probabilistic, or statistical networks: To find clusters
of co-moving assets, such algorithms as Louvain, Spinglass, leading eigenvector, or fast
greedy provide efficient ways to detect community affiliations with differing factor expo-
sures. Hierarchical clustering or k-means methods are applied to asset correlation or dis-
tance matrices. Instead of relying on static classifications, selecting representative assets
from each cluster can improve diversification and better capture changing market struc-
tures. This approach does not require a specific network formulation and is widely used
in finance.

e Graph filtering: The minimum spanning tree (MST) method highlights important relation-
ships and hierarchies by extracting simplified structures from dense correlation matrices.
MST connects all assets with the smallest possible total edge distances. Asset selection
can be guided by examining these structures (e.g., central versus peripheral nodes). Some
research has shown that portfolios constructed from peripheral MST nodes exhibit strong
performance. However, a major drawback of using MST to visualize graphs is that important
links might be omitted. Therefore, MST should be used with great caution.

e Network-based weighting schemes: Network principles can also guide capital distribution
among assets after selection.
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e Centrality-based weighting: The position of an asset in the network is directly used for
weighting. There is an inverse relationship between centrality scores and the weights
assigned in the minimum-variance framework. Consequently, peripheral assets are favored,
potentially lowering contagion risk. This decision, however, may vary depending on market
conditions. Expected returns also play an essential role because centrality-based algorithms
focus on risk and interconnectedness but do not account for expected return impacts.
Other centrality metrics can be applied to better integrate expected returns.

e Fundamental networks: These link assets not only by price movements but also by financial
fundamentals (such as profits). To enhance diversification, more capital is allocated to
assets that are fundamentally distinct from others. Financial research offers examples of
leveraging such information with centrality metrics and risk management tools.

e Hierarchical risk parity of a community structure: By using clustering to group similar
assets, this model distributes capital among groups to achieve a more balanced risk
allocation (see Raffinot 2018).

e Network risk parity: A variant of hierarchical risk parity, this method uses an asset’s degree
of network connectivity based on risk. To reduce exposure to systematic risks that might
become systemic, assets less central in the network are given more weight.

As the number of assets increases, these network-based techniques aim to achieve more robust
diversification and potentially better risk-adjusted performance than traditional methods rely-
ing solely on pairwise statistics. They do so by explicitly leveraging the topological structure of
asset relationships.

Market Prediction

Network theory offers frameworks and inputs for forecasting market movements and creating
innovative trading tactics. Profitable opportunities or information about future price behavior
can be found in the structure of connections between entities. Predictive signals can also be
derived from network properties, such as reciprocity, edge density, clustering coefficients, and
change in degree centralities.> Variations in network density or structure may indicate changes
in market volatility or regimes. Spillover effects, in which the actions of related entities affect
the performance of a target entity in the future, can be captured by network analysis and
applying appropriate network metrics, such as network nodal entropy, Ricci curvature, fragility,
or criticality indicators.®

One area of quantitative finance that is expanding quickly is the fusion of network science

and artificial intelligence, specifically machine learning and deep learning. Although more
straightforward techniques can still be competitive, deep neural networks (DNNs) frequently
outperform conventional models in forecasting stock returns. Adjusting to shifting market
conditions is a major challenge in these models; by modifying regularization according to recent
performance, however, such strategies as online early stopping are helpful.

5See Das (2016) and Konstantinov, Chorus, and Rebmann (2020) for several network-based indicators to predict
market behavior.

¢See Konstantinov and Fabozzi (2025) for extensive discussion and estimation of risk indicators in portfolio
management.
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Graph neural networks (GNNs) are a category of DNNs that are perfect for modeling financial
relationships such as stock interdependencies because they can learn from both node fea-
tures and network structure, modeling the dependencies between entities. A trading GNN,
for instance, has been proposed as a way to calculate the impact of assets, dealers, and their
relationships on prices (Wu 2025).

By using attention scores to weight neighbors differently, graph attention networks outperform
GNNs in identifying the most pertinent connections. This ability helps with stock prediction and
portfolio optimization in financial networks where relationships are complex and have different
levels of importance.

Conclusion

As this chapter has shown, applying network theory to financial markets and institutions offers
finance professionals useful tools and insightful perspectives. The intricate reality of inter-
connectedness is not captured by the conventional perspective of isolated actors or homo-
geneous systems. Network theory provides a strong framework for explicitly modeling these
connections.

The integration of Al, the use of multiplex and multilayer networks, developments in explainable
Al (XAl) for improved interpretability, and the inclusion of alternative data sources are some new
trends in the application of network theory to finance.

Although network analysis provides insightful information, some obstacles exist for applying
it in finance. Because data on exposures such as loans or derivatives are often confidential,
practitioners are forced to work with partial or proxy data, which introduces potential biases.
Complexity, speed, and interpretability must all be balanced in advanced models, which can be
computationally taxing, particularly for dynamic or Al-driven models. Additionally, there is no
one-size-fits-all tool. The data, research question, and objectives must all be considered when
selecting a network structure, metrics, or algorithms. Drawing reliable conclusions requires an
understanding of each tool’s limitations.
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Introduction

Support vector machines (SVMs) are a powerful machine learning tool developed by Vladimir
Vapnik and Corinna Cortes in the 1990s as an alternative to neural networks (see Cortes and
Vapnik 1995; Vapnik 1999, 2000). They were developed to address classification problems. The
basic idea is to separate the training data points corresponding to two different classes, often
labeled +1 and -1, by an affine hyperplane in the feature space (see Exhibit 1). According to
Vapnik (1999, p. 996), "We say that this set of vectors is separated by the optimal hyperplane
(or the maximal margin hyperplane) if it is separated without error and the distance between
the closest vector and the hyperplane is maximal.”

Exhibit 1. SVM Setup: Data in the Feature Space, Support Vectors,
and the Optimal Separating Hyperplane

Optimal
separating
hyperplane

Feature Space

e Hyperplane = Support Vector(s) ® Class+1 ® Class -1

Note: This is a generic SVM illustration with random data generated by the author.
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Technical Concepts

Let us start by considering a classification problem with training data of the following form:

(XY )i (X)) xe R, ye {+1,-1}.

In other words, vectors x e R", often called inputs or features, in the training data belong to two
classes: those paired with y = +1 and those paired with y = —1. The goal of any learning machine
is to find a functional form for this classification, fitting the training data as well as possible but
not overfitting.

One simple case is when the two classes of x e R" can be separated by a hyperplane: an affine
subspace of R" of codimension 1. Then the class of x e R” corresponding to y = +1 will simply be
on one side of the hyperplane, and the class corresponding to y = -1 will be on the other side.

In practice, such a separating hyperplane does not exist for many real-life problems. Following
Cortes and Vapnik (1995) and Vapnik (1999, 2000), there are two major approaches to
constructing learning machines for the classification problems:

e Use functional approximations by nonlinear (e.g., sigmoid) functions. This approach leads
to neural networks, which are beyond the scope of this chapter.

e Map (nonlinearly) the input vectors x e R" into a higher-dimensional feature space, and
construct a separating hyperplane in this higher-dimensional space. This approach leads
to SVMs, which we will consider here in more detail.

An SVM linear model developed in such a higher-dimensional feature space corresponds to a
nonlinear class separation model in the original feature space. Support vector machines (and
neural networks) can be used in machine learning beyond classification problems, such as
regression and density estimation problems (see, e.g., Vapnik, Golowich, and Smola 1997;
Smola and Schoélkopf 2004; Awad and Khanna 2015).

Figure 1. Hyperplane-Separable Data

Support vector machines were introduced by Vladimir Vapnik and Corinna Cortes (see
Cortes and Vapnik 1995; Vapnik 1999, 2000). Suppose the training data are of the form

(X, Y1) (X)) xe R, ye {+1,-1}

and the two classes corresponding to y = +1 and y = -1 can be separated by an
(affine) hyperplane, called an “optimal separating hyperplane” or a “maximal margin
hyperplane”:

(w-x)—-b=0,
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where w is the vector orthogonal to the optimal hyperplane and b is a scalar.
Vapnik (1999) describes the optimal hyperplane using the following inequalities:

(w-x,)-b=1ify, =1.
(w-x,)-b<-1ify, =-1.
These inequalities can be expressed compactly as follows:
y,[w-x)-b]21i=1.1I

The maximal margin hyperplane is obtained by solving the following optimization
problem:

min(w,w)
w,

subject to y,[(w~xi)—b]21, i=1...1

Following Vapnik (1999), this optimization problem can be set up with Lagrange
multipliers o;:

/ I
. 1
min E o, —5 E oouy,y, (X X))
i=1 ij

|
subject toZoaiy,. =0andO<o,,i=1,..., .

i=1

The optimal solution vector w; is a linear combination of the vectors in the training set:
/
w, =Zyioc?x,., 0?20,i=1...,1
i=1

Moreover, Vapnik shows that only some training vectors x;, called the support vectors,
have nonzero coefficients in the expansion of w,. In other words, we have

— 0 0
w, = Z y;o0x;, o 20.

suoo rtvectors
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Figure 2. Generalization for Linearly
Nonseparable Data

Dealing with the case when the data are linearly nonseparable, following Vapnik (1999),
we set

i

n;v1’in(w,w) + CZ&I.

i=1
subjecttoy,[(w-x,)-b]21-E,i=1,...,1.

The idea is to allow some points to be on the “wrong” side of the optimally separating
hyperplane. The optimization problem can be formulated as follows:
| —I |
min » o, —EZociocjyiyj(xi ‘X;)
I

i=1
|

subject to z(xiyi =0andO0<o, <C,i=1,...,1.
i=1

More generally, we can map the input vectors x € R” into a very higher-dimensional
feature space through some nonlinear mapping chosen a priori and construct an opti-
mal separating hyperplane in this high-dimensional feature space. It turns out we do
not need to know the explicit form of this nonlinear map; all we need is the inner prod-
uct in the higher-dimensional space, represented by a two-variable function K(x; x;) for
X, X; € Rn, called the kernel.

Then, the most general optimization problem can be formulated as follows:

/ /
mainZ(x,. —%ZociocjyiyjK(xi ~xj)
i=1 ]

/
subject to Zoc,.y,. =0and0<o, <C,i=1,...,1

i=1

One of the most important concepts in learning theory is the trade-off between the
quality of the model fit on the training data and the complexity of the model. In fact,
support vector machines were inspired by the so-called structural risk minimization

principle, arising in statistical learning theory to address this kind of trade-off.

Intuitively, one can achieve a great model fit in the training data, but the confidence
interval will be large, resulting in overfitting—fitting the spurious patterns in the training
data too well, at the expense of poor performance on the data the model has not seen
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in training. Vapnik (1999) points out that SVMs allow the control of both model fit and
the confidence interval. In the most general case, the unique optimization solution is
obtained when one chooses the value of the trade-off parameter, C.

Simple Example: Classifying Stocks vs. Bonds

In this section, lillustrate the support vector machine concepts via a simple example. For a set
of equity and bond indexes, we want to separate the set in a two-dimensional feature space: the
correlation between an index return and inflation (Consumer Price Index, or CPI, change) and the
correlation between the index return and real GDP growth. We calculate quarterly correlations
using year-over-year inflation, year-over-year GDP growth rates, and (the prior quarter's) equity
and bond index year-over-year (YoY) returns. We use quarterly data between 1998 and 2025.

For example, for US large caps (represented by the MSCI USA Gross Total Return USD Index),
the correlation with year-over-year inflation is 20% and the correlation with GDP growth is 60%.
Thus, US large caps are represented in our two-dimensional feature space by a vector:

x=(0.20,0.60)c 2.

Similarly, US Treasuries (represented by the Bloomberg US Treasury Total Return Index),

are —39% correlated with the subsequent quarter’s inflation and —42% correlated with the
subsequent quarter's GDP growth. Thus, US large caps are represented in our two-dimensional
feature space by a vector:

x=(-0.39, —0.42)c 2.

We train the model on three equity indexes (the MSCI USA Gross Total Return USD Index, MSCI
USA Small Cap Gross Total Return USD Index, and MSCI USA IMI High Dividend Yield Gross Total
Return USD Index), setting y = +1, and three bond indexes (the Bloomberg US Treasury Total
Return Index, Bloomberg US Corporate Investment Grade Total Return Index, and Bloomberg
US Treasury Inflation-Linked Total Return Index), setting y = -1. Not surprisingly, all equity
indexes are quite significantly positively correlated with real GDP growth, and US Treasuries

are negatively correlated with real GDP growth. See Exhibit 2 for more data details.

According to Vapnik (1999), optimizing the SVM's Lagrangian on our six training data points
reduces to the following problem:

6 6
mainZoci —%Zociocjy,.yj(x,. "X;)
i=1 ij

6
subject to Zoc,.y,. =0andO0<o,i=1,...6,

i=1

where o, are Lagrange multipliers. Refer back to Figure 1 for the general optimization setup.
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Exhibit 2. Optimal Hyperplane Separating Stock and Bond Indexes
in a Two-Dimensional Feature Space of Correlations with Real GDP
and CPI Year over Year, 1998-2025

Training Data Unseen Data

Correlations USLargeCap USSmallCap USHighDiv US Treasuries USInvGrade USTIPS FEER TR
Features CPIYoY 0.20 0.18 0.19 -0.39 -0.28 0.04 0.00
Real GDP YoY 0.60 0.67 0.59 -0.42 0.08 0.02 0.41
y: stock (+1) or bond (-1) 1 1 1 -1 -1 -1
o Lagrange multipliers 0 0 5.7639 0 0 5.7639
(w-x)-b 1.045 1.253 1.000 -2.784 -1.048 -1.000 0.267
0.7

US Small Cap g ]
0.6

US Large Cap

US High Div

US High Yield

0.5

0.4 optimal
separating
hyperplane

0.3

0.2

0.1 US Inv Grade @

0.0 US TIPS

-0.1

-0.2

Correlation with Real GDP YoY

-0.3
-0.4 @® US Treasuries
-0.5

-0.6

-0.7
-07 -06 -05 -04 -03 -02 -01 O 01 02 03 04 05 06 07

Correlation with CPI YoY

| = Hyperplane Support Vector @ Equities ® Bonds @ Unseen Data

Notes: Quarterly correlations of CPI year-over-year change and real GDP year-over-year growth with the prior quarter's year-
over-year return of equity and bond indexes. Author's calculations for illustration and educational purposes only.

Sources: Data are from Bloomberg (US Large Cap: MSCI USA Gross Total Return USD Index; US Small Cap: MSCI USA Small Cap
Gross Total Return USD Index; US High Div: MSCI USA IMI High Dividend Yield Gross Total Return USD Index; US Treasuries:
Bloomberg US Treasury Total Return Index; US Inv Grade: Bloomberg US Corp Investment Grade Total Return Index; US TIPS:
Bloomberg US Treasury Inflation-Linked Total Return Index; US High Yield: Bloomberg US Corp High Yield Total Return Index).
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After solving this problem, we can see that the optimal separating hyperplane is defined by
two support vectors: the US high-dividend index and the US Treasury Inflation-Protected
Security index. We have the optimized solution vector:

_ 0
(+1) USHI hDIvXUSHI hDiv +( 1)(XUSTIPSXUSTIPS’

where the (optimized) Largange multipliers, o =ol....=5.7639, are corresponding to

USHi hDiv USTIPS
the support vectors, Xysuign piv and Xys 7ps, and the Lagrange multipliers corresponding to the
four nonsupport vectors are zero.

Further, we have

b :_(Wo “Xushi noiv T Wo 'XUSTIPS)’

so that

(WO USHi thv) b=Tand ( USTIPS) b=-1.

Also note that the US large-cap index is fairly close to being a support vector:

(WO ’ XUSLargeCap) - b =1 '045'
We can now use our SVM model to classify a data point the model has never seen: US high-
yield bonds. The correlations of the Bloomberg US Corporate High Yield Total Return Index
with CPI year-over-year change and real GDP year-over-year growth (features x € R?) put the
US high-yield index on the side of equities, albeit close to the optimal separating hyperplane:

(w, - x -b=0.267.

0 USHi hYi Id)

In this sense, the SVM model classifies the US high-yield index as equities rather than bonds.

For Exhibit 3, arising from the asset allocation research conducted in collaboration with Jiahui
“Joy” Yu, PhD, we trained the data on the correlations of real GDP and CPI YoY with the prior
quarter's year-over-year returns of 32 equity indexes and 15 bond indexes. In this case, stocks
and bonds are not linearly separable and the trade-off parameter is set as C = 1, as described
in Figure 2.

The support vectors in this case are six equity indexes (NYSE Arca Gold Miners Index, MSCI
China Gross Total Return Local USD Index, Nasdag-100 Total Return Index, MSCI Emerging Korea
Gross Total Return Local Index, MSCI Emerging Turkey Gross Total Return Local Index, and MSCI
EM BRIC Gross Total Return Local Index) and three bond indexes (Bloomberg US Treasury
Inflation-Linked Total Return Index, Bloomberg US Corporate High Yield Total Return Index,

and Bloomberg US Treasury Bill Index).

The trained model is then used to classify 21 other assets. Note that gold miners (NYSE Arca
Gold Miners Index), gold, Japanese yen, the US Dollar Index, and CTA strategies (DB Cross
Asset CTA Trend Index and SG Trend Index) are classified as bond-like assets, albeit "within
the margin.” US high-yield bonds (Bloomberg US Corporate High Yield Total Return Index) are
classified as equity-like, similarly to the model in Exhibit 2, albeit “within the margin” in this
model with regularization penalty.
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Exhibit 3. Classifying Assets as Stock- or Bond-Like Using a Support

Vector Machine with Reqularization Penalty, 1999-2025
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Notes: Quarterly correlations of CPI YoY change and real GDP YoY growth with the prior quarter's YoY return assets. The SVM
model with trade-off parameter C = 1 is trained on 32 equity indexes and 15 bond indexes and is used to classify 21 other
assets (4 metals, 1 commodity index, 11 currencies, and 5 strategy indexes) as equity-like and bond-like.

Labeled points: US Large Cap: MSCI USA Gross Total Return USD Index; US Small Cap: MSCI USA Small Cap Gross Total Return
USD Index; US High Div: MSCI USA IMI High Dividend Yield Gross Total Return USD Index; US Treasuries: Bloomberg US
Treasury Total Return Index; US Inv Grade: Bloomberg US Corporate Investment Grade Total Return Index; US TIPS: Bloomberg
US Treasury Inflation-Linked Total Return Index; US High Yield: Bloomberg US Corporate High Yield Total Return Index; Gold:
XAUUSD Spot Exchange Rate - Price of 1 XAU in USD (US dollars per troy ounce); Silver: XAGUSD Spot Exchange Rate - Price
of 1 XAG in USD (US dollars per troy ounce); Platinum: XPTUSD Spot Exchange Rate - Price of 1 XPT in USD (US dollars per troy
ounce); Palladium: XPDUSD Spot Exchange Rate - Price of 1 XPD in USD (US dollars per troy ounce); Commodities: Bloomberg
Commodity Index Total Return; Gold Miners: NYSE Arca Gold Miners Index; China Equities: MSCI China Gross Total Return
Local USD Index; Nasdaq: Nasdag-100 Total Return Index; Korea Equities: MSCl Emerging Korea Gross Total Return Local Index;
Turkey Equities: MSCI Emerging Turkey Gross Total Return Local Index; US T-bills: Bloomberg US Treasury Bill Index; Commodity
Producers: MSCl World Commodity Producers Gross Total Return USD Index; ZAR: ZARUSD Total Return Long - Long ZAR,
Short USD; NZD: NZDUSD Total Return Long - Long NZD, Short USD; AUD: AUDUSD Total Return Long - Long AUD, Short
USD; NOK: NOKUSD Total Return Long - Long NOK, Short USD; GBP: GBPUSD Total Return Long - Long GBP, Short USD; TRY:
TRYUSD Total Return Long - Long TRY, Short USD; CNY: CNYUSD Total Return Long - Long CNY, Short USD; EUR: EURUSD
Total Return Long - Long EUR, Short USD; CHF: CHFUSD Total Return Long - Long CHF, Short USD; JPY: JPYUSD Total Return
Long - Long JPY, Short USD; US Dollar: US Dollar Index; SG CTA: SG CTA Index; SG Trend: SG Trend Index; FX Carry: Bloomberg
GSAM FXCarry Index; DB Vol Carry: Deutsche Bank Volatility Carry (US Large Cap); DB CTA: DB Cross Asset CTA Trend Index.
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Sources: Author's calculations for illustration and educational purposes only. Data are from Bloomberg [Bloomberg US Agg
Total Return Index; Bloomberg US Corporate High Yield Total Return Index; Bloomberg 1-3 Yr Gov/Credit Total Return Index;
Bloomberg US Treasury Total Return Index; Bloomberg 10+ Yr Gov/Credit Total Return Index; Bloomberg US Treasury Inflation-
Linked Total Return Index; Bloomberg US Treasury Bill Index; Bloomberg US Mortgage Backed Securities Index; Bloomberg
US Corporate Investment Grade Total Return Index; Bloomberg Long US Treasury with 10+Y Total Return Index; Bloomberg
US Treasury Inflation Notes 10+Y Total Return Index; Bloomberg Global Agg - Australia Total Return Index Unhedged AUD;
Bloomberg Global Agg - Canadian Total Return Index Unhedged CAD; Bloomberg Global Agg - Japanese Total Return Index
Unhedged JPY; Bloomberg EuroAgg Index; MSCI USA Value Gross Total Return USD Index; MSCl USA Growth Gross Total
Return USD Index; MSCI USA Gross Total Return USD Index; MSCI USA Quality Gross Total Return USD Index; Nasdag-100
Total Return Index; MSCI USA Minimum Volatility Gross Total Return USD Index; S&P 500 Total Return Index; MSCI USA Small
Cap Gross Total Return USD Index; MSCI USA IMI High Dividend Yield Gross Total Return USD Index; MSCI Australia Gross
Total Return Local Index; MSCI Canada Gross Total Return Local Index; MSCl UK Gross Total Return Local Index; MSCI EU
Gross Total Return Local Index; MSCl Japan Gross Total Return Local Index; MSCI EM Gross Total Return Local Index; MSCI
Brazil Gross Total Return Local Index; MSCI EM BRIC Gross Total Return Local Index; MSCI China Gross Total Return Local

USD Index; MSClI India Gross Total Return Local Index; MSCI Hong Kong Gross Total Return Local Index; MSCI Emerging Korea
Gross Total Return Local Index; MSCI Emerging South Africa Gross Total Return Local Index; MSCI Emerging Turkey Gross
Total Return Local Index; MSCI Emerging Taiwan Gross Total Return Local Index; S&P Global Natural Resources Total Return
Index; MSCI World Energy Gross Total Return USD Index; MSCl World Commodity Producers Gross Total Return USD Index;
MSCI World Commodity Producer Sector Capped Gross Total Return USD Index; NYSE Arca Gold Miners Index; Dow Jones
Equity REIT Total Return Index; MSCI US REIT Gross Total Return Index; S&P Global Infrastructure Total Return Index; XAUUSD
Spot Exchange Rate - Price of 1 XAU in USD (US Dollars per Troy Ounce); XAGUSD Spot Exchange Rate - Price of 1 XAG in USD
(US Dollars per Troy Ounce); XPTUSD Spot Exchange Rate - Price of 1 XPT in USD (US Dollars per Troy Ounce); XPDUSD Spot
Exchange Rate - Price of 1 XPD in USD (US Dollars per Troy Ounce); Bloomberg Commodity Index Total Return; ZARUSD Total
Return Long - Long ZAR, Short USD; NZDUSD Total Return Long - Long NZD, Short USD; AUDUSD Total Return Long - Long
AUD, Short USD; NOKUSD Total Return Long - Long NOK, Short USD; GBPUSD Total Return Long - Long GBP, Short USD;
TRYUSD Total Return Long - Long TRY, Short USD; CNYUSD Total Return Long - Long CNY, Short USD; EURUSD Total Return
Long - Long EUR, Short USD; CHFUSD Total Return Long - Long CHF, Short USD; JPYUSD Total Return Long - Long JPY, Short
USD; US Dollar Index; SG CTA Index; SG Trend Index; Bloomberg GSAM FXCarry Index; Deutsche Bank Volatility Carry (US
Large Cap); DB Cross Asset CTA Trend Index].

Support Vector Machine Applications in Investments

Support vector machines can be used for descriptive classification, prediction, and optimization.
| showed a classification example of stocks versus bonds in the previous section.

Nazareth and Reddy (2023) conducted a large-scale review of literature on financial applications
of machine learning. They found that SVM models are the most frequently studied, especially
in insolvency and bankruptcy prediction, mainly because of their effectiveness in dealing with
two-group classification problems. There are also many applications of SVMs in stock market
and cryptocurrency studies.

Ryll and Seidens (2019) conducted a systematic meta-analysis of existing works on ML-based
trading algorithms and found that SVMs significantly “outscore” some neural networks that have
similar objectives in classification.

As with any artificial intelligence (Al) or machine learning (ML) applications in investing, a major
risk is overfitting the SVM to the training data; see Simonian (2024) for a comprehensive model
validation review.

Prediction

In this section, | discuss the application of SVM to predicting future asset returns and credit
ratings. For example, an investor may want to use SVMs with the following objectives:
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e Given an asset universe, select assets more likely to have higher expected returns or
outperform a benchmark over a subsequent time period.

e Reconstruct corporate credit ratings with fundamental accounting variables.

Given an asset universe, SVMs can be used for separating assets into two groups: those likely to
have higher expected returns and those likely to have lower expected returns. Portfolios can then
be formed by going long assets likely to outperform and/or short assets likely to underperform.

Fan and Palaniswami (2001) used SVMs to predict which stocks trading on the Australian Stock
Exchange would be likely to outperform the market. They considered 37 firm accounting indi-
cators, grouped them into eight groups (return on capital, profitability, leverage, investment,
growth, short-term liquidity, return on investment, and risk), and used principal component
analysis for dimension reduction, obtaining eight-element input (feature) vectors prior to
training, with each element representing a single extracted principal component from each
group. Then, they applied SVM techniques to this eight-dimensional feature space in order to
select the top-returning 25% of the stock returns every year, labeled as exceptional high-return
stock (Class +1), while the others were labeled as unexceptional return (Class —1). The equally
weighted portfolio of exceptional high-return stock formed by SVM had a total return of 207%
over a five-year out-of-sample period, 1995-99, outperforming the benchmark return of 71%.

Kim (2003) used SVMs to predict the direction of change in the daily KOSPI, the South Korean
composite stock price index, using 12 technical indicators (including momentum, price oscillator,
and relative strength index) as features. The KOSPI data sample has 2,928 trading days, from
January 1989 to December 1998. About 20% of the data were used for holdout and 80% for
training. The study used both the polynomial kernel and the Gaussian radial basis kernel for SVM.
Empirically, SVM outperformed the back-propagation neural network and case-based reasoning
by 3.10% and 5.85%, respectively, for the out-of-sample (“holdout”) data. Kim (2003, p. 318)
concluded that “SVM provides a promising alternative for financial time-series forecasting.”

Huerta, Corbacho, and Elkan (2013) used SVM to identify stocks whose volatility-adjusted price
change falls within the highest or lowest quantile (e.g., the highest or lowest 25%). The highest-
ranked stocks were used for long positions, and the lowest-ranked stocks were used for short
sales. The data sample is the US equity universe available from the merged CRSP/Compustat
database between 1981 and 2010. The study examined 44 fundamental and 7 technical fea-
tures. Empirically, the constructed portfolios achieved annual returns of 15% (not counting
transaction costs), with volatilities under 8%. The authors also discussed the process of
choosing SVM meta-parameters to mitigate overfitting.

An interesting application to credit ratings is studied in Huang, Chen, Hsu, Chen, and Wu
(2004). They examined two datasets: a Taiwanese dataset of 74 cases of bank credit ratings
and 21 financial variables, which covered 25 financial institutions from 1998 to 2002, and a

US dataset with 265 cases of bank credit ratings for 36 commercial banks from 1991 to 2000.
Five rating categories appeared in the US dataset: AA, A, BBB, BB, and B. The authors devel-
oped several SVM-based models for credit ratings with accounting ratios' feature spaces of
dimensions ranging from 7 to 21. SVMs achieved the best performance (compared with bench-
mark neural networks) in three of the four models tested, and SVM and neural network models
outperformed the logistic regression model consistently.
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Portfolio Construction and Optimization
In this section, | discuss applications of SVMs to portfolio optimization, such as

e using SVMs to preselect assets before portfolio construction,
e integrating SVMs with portfolio construction and optimization, and

e using SVMs for feature selection in portfolio construction.

Gupta, Mehlawat, and Mittal (2012) used SVMs for classifying financial assets in three
predefined classes and then solving a portfolio selection problem incorporating investor
preferences.

Silva, Felipe, de Andrade, da Silva, de Melo, and Tonelli (2024) found that preselecting Brazilian
stocks using the SVM model and subsequently optimizing them by maximizing the Sharpe ratio
resulted in a superior return and faster recovery after drawdown periods compared with the
benchmark.

Islip, Kwon, and Kim (2025) proposed integrating SVMs and cardinality-constrained mean-
variance optimization into one procedure (rather than preselecting assets before portfolio
optimization), called SVM-MVO. Their joint selection of a portfolio and a separating
asset-screening hyperplane optimized the trade-off between risk-adjusted returns, hyperplane
margin, and classification errors that were made by the hyperplane. The authors observed that
“SVM-MVO models are equivalent to regularization that penalizes portfolios with eligibility
decisions that cannot be well explained by a low-dimensional hyperplane” (Islip et al. 2025,

p. 1056). The study “"demonstrates the effectiveness of the SVM-MVO models in constructing
portfolios with lower risk, higher returns, and higher Sharpe ratios” (Islip et al. 2025, p. 1057).
In particular, they outperformed their cardinality-constrained MVO counterpart during major
financial events.

Integration of various ML techniques into the framework of Markowitz's portfolio selection is
discussed in Lopez de Prado, Simonian, Fabozzi, and Fabozzi (2025). In particular, the study
found that SVMs can be helpful in feature selection by pinpointing variables most relevant to
asset price movements.

The next chapter examines another widely used group of supervised learning tools known as
supervised ensemble methods.
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Introduction

The use of quantitative methods in finance and investment applications is not a new
phenomenon, particularly among more sophisticated practitioners. This usage spans a wide
range of methods, including but not limited to probabilistic, statistical, and stochastic models;
univariate and multivariate time-series techniques; discrete and continuous simulations;

linear and nonlinear programming; dynamic programming; and mathematical optimization.
Notwithstanding the great success of many such quantitative methods, they have known lim-
itations, including the parametric or prespecified functional forms that may lack flexibility, theo-
retical data distribution assumptions that are regularly violated, and computational challenges
associated with the so-called curse of dimensionality. An ever-growing list of federated datasets,
alongside the development of tools that transform such data into useful variables for explana-
tory and predictive tasks, calls for a paradigm shift in how financial data are used and processed.

In recent years, financial data science and machine learning (ML) methods have been widely
adopted as prediction and decision-support means in various investment applications.
The following are some of the contributing factors to such widespread adoption:

e Numerical power and flexibility of ML in dealing with unstructured, private, and microlevel
data beyond the traditional econometric methods (Lépez de Prado 2019)

e Scalability of ML in distilling large datasets consisting of many variables (factor zoo)
into subsets that reliably predict cross-sectional variations in stock returns (Gu, Kelly,
and Xiu 2020)

e The efficacy of the ML models in predicting cross-section of stock returns, compared with
ordinary least-squares (OLS) regression, attributable to their ability to uncover nonlinear
patterns and robustness to multicollinear predictors (Gu et al. 2020)

e The possibility of demystifying (i.e., breaking down and explaining) ML predictions into
linear, nonlinear, and interactive components (Li, Turkington, and Yazdani 2020)

Simonian and Fabozzi (2019) argued that financial data science is to be regarded as a discipline
in its own right and not a mere application of data science methods to finance or a branch of
classical econometrics.

One major branch of machine learning is supervised learning, where available data are used to
train a model that is to establish a mapping between input variables (also known as features
or predictors) and output variables (also known as the labels, the response, or the dependent
variable). If the response variable is continuous numeric, the model is called a regression, and
if the response is categorical, the model is called a classification. This mapping is then used for
inference and scoring, to explain the relationship between the input and response, or ideally to
make predictions about the new values of the response variable given the new input.
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Among the widely used supervised learning models are ensembles, which are based on the pre-
sumption of the wisdom of crowds. In this view, combining diverse opinions from a committee
of several individuals can lead to greater wisdom. In other words, combining multiple predictions
obtained from numerous somewhat independent methods often leads to better predictions than
identifying a single best prediction. In a regression, this combining can be simple averaging or
other sophisticated weighting mechanisms, whereas in a classification, majority voting or other
weighting mechanisms may be used. Technically, the question is how effectively an ensemble
model can decompose bias and variance terms, to be able to more generally work well on pre-
viously unseen test data not used for model training. Recall that the expected model prediction
error for a regression model, as measured by the mean squared error (MSE), is formulated as

MSE =E[(y —y)’1=El(y —E[y])’1-(E[y]-y)*.
This relationship can be interpreted as:
MSE = Variance +Bias?.

Here, bias refers to the error committed by the learning algorithm, where higher values may indi-
cate underfitting as a result of the model failing to adequately establish the relationships between
features and output. Variance refers to the error from the sensitivity of the model to another subset
of training data, where higher values indicate overfitting. Generally, the more complex the model,
the lower the bias and the higher the variance will be. Instances of model complexity include

using many features, a greater number of parameters, and complex model design or architecture.
The bias-variance trade-off concerns minimizing test error by finding the right model complexity.

Before delving into the various categories and the qualities of ensemble models, it is worth
mentioning that the idea of combining predictions is not an entirely new one, and it has
previously been studied by statisticians and econometricians, particularly in the context of
time-series forecasting. In a seminal work, Bates and Granger (1969, pp. 451-68) observed

that “combined forecasts yield lower mean-square error than either of the original forecasts.”
Over time, several combination methods have been developed, including simple averaging,
time-weighted and performance-weighted estimations, nonlinear combination, and combining
by learning (Wang, Hyndman, Li, and Kang 2023). Combining is directly related to a special case
of ensemble learning known as stacking, which | will discuss later. By aggregating predictions,
ensemble models reduce the impact of errors and noise that may exist in individual predictions,
enabling them to achieve greater overall accuracy, reliability, and stability.

Ensemble Methods

In principle, ensemble methods share two main components: a diverse set of predictive “base
learner” models trained on sampled subsets of training data and a combination mechanism,
such as averaging or voting, used to aggregate the predictions from these base learners
(Flach 2012). Broadly speaking, ensemble methods fall into one of three categories: bagging,
boosting, and meta-learning. In this section, we review these categories, as well as some
properties and possible drawbacks of ensemble learning methods.

Bagging

Short for "bootstrapped aggregating,” bagging is an instance of ensemble averaging where
a diverse group of base models is developed and combined with the end goal of improving
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the stability and accuracy of classification and regression algorithms. These base models are
built independently through repeatedly bootstrapping (i.e., random sampling with replace-
ment) from the training data (see Exhibit 1). Bagging is particularly effective because of the
possibility of the calculation of so-called out-of-bag error: the average of the errors from
each independently developed model evaluated on the unselected subset of training data
during the bootstrapping. Out-of-bag error estimation is an effective mechanism similar to
cross-validation, leading to better model calibration and overall improvement of predictions.

Perhaps the best-known example of bagging in machine learning is the random forests
algorithm (Breiman 2001). Random forests are generated by building a large collection of
de-correlated and possibly deep decision trees and then combining them through averaging
in regression or majority voting in classification (see Exhibit 2). Decision trees learn by recur-
sive partitioning of the feature space and classifying members of a population by separating

Exhibit 1. A Bootstrapped Aggregatlon Ensemble
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it into subpopulations based on various dichotomous independent variables. Decision trees
have desirable properties, including automatic variable selection, handling mixed features and
missing values, and scalability. The depth and breadth of decision trees enables them to cap-
ture local patterns in training data and reduce bias. Because these trees are identically distrib-
uted, an ensemble consisting of the average of those trees has the same bias as the individual
trees. If these trees are grown on the random subsets of data and input variables, their pairwise
correlation is reduced to the extent that the bagged ensemble consisting of a sufficiently large
number of trees can achieve an overall lower variance (Hastie, Tibshirani, and Friedman 2017).

Technically, for m independently and identically distributed decision tree predictions with
2
variance ¢?, their average has a variance of %. When predictions are not independent yet their

maximum pairwise correlation is bounded by p, the variance of their average is bounded by
(1-p)o?
m

pairwise correlation, p (hence reducing the first term), and an increase in the number of decision
trees, m, will reduce the second term, resulting in overall reduction of the variance. For an ele-
gant exposition and technical discussion on several properties of random forests, see Breiman
(2001). The implementation of ensemble-based methods for classification, regression, and
anomaly detection is straightforward in practice. For example, in Python, many such models can
be created using, among others, the scikit-learn library. The following is an example code for
creating the random forest classification model in Python:

po? + . In other words, a random selection of input variables will reduce the maximum

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
#create a synthetic dataset

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_features=10, n_informative=6,
random_state=123)

#Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
#train a Random Forest model and predict

model = RandomForestClassifier(random_state=123)

model.fit(X_train, y_train)

model.predict(X_test)

#mean accuracy

model.score(X_test,y_test)
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Boosting

Boosting is similar to bagging in that it benefits from data sampling and variable sampling, as well
as in the property of combining several base learners. In boosting, however, unlike bagging, the
basic mechanism is bias reduction, particularly using shallow trees. In addition, base learners are
trained sequentially to correct the errors of the previous learners. The original boosting classifier,
AdaBoost, proposed by Freund and Schapire (1996), works by sequentially training weak classifi-
ers that focus on the mistakes of the previous ones by assigning higher weights to misclassified
samples. The final prediction is a weighted sum of the individual learners’ outputs (see Exhibit 3).
Notwithstanding its superior predictive accuracy, the AdaBoost method is less readily interpreta-
ble than decision trees and requires a longer training time.

The gradient boosted model (GBM) proposed by Friedman (2001) has proved to be a popular
alternative boosting method because it mitigates some of AdaBoost's problems. The GBM
works by sequentially adding new tree predictors and trying to fit the new predictor to the resid-
ual errors by the previous tree, which gradually improves predictions as new trees are added
(Géron 2019). Notably, recent advancements in boosting algorithms—for example, XGBoost
(Chen and Guestrin 2016) and LightGBM (Ke, Meng, Finely, Wang, Chen, Ma, Ye, and Liu 2017)—
focus on regularization, adaptability, efficiency, and scalability, while maintaining high accuracy.
The following is an example code for creating the gradient boosted regression model in Python:

from sklearn.datasets import make_regression

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
#create a synthetic dataset

X, y = make_regression(n_samples=1000, n_features=10, n_informative=6,
random_state=123)

#Split the dataset into 80% training and 20% testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
#train a model, predict and score

model = GradientBoostingRegressor(random_state=123)

model.fit(X_train, y_train)

model.predict(X_test)

#the coefficient of determination R-squared

model.score(X_test, y_test)
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Exhibit 3. Example Boosting Mechanism Consisting of Decision
Tree Base Learners
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Meta-Learning

Meta-learning involves training a set of base models and also training a meta-model to combine
them in order to achieve the greatest bias-variance trade-offs. For example, using as new input
features the predictions from several diverse base learners (e.g., consisting of a linear model,
multiple trees, and a neural network), a linear meta-model can be used to learn the weights to
best combine these predictions (Flach 2012).

Alternatively, a logistic regression, a decision tree, or an even more complex model can be
used as a meta-model by following the same idea that predictions from base learners are input
features to the meta-model (as shown in Exhibit 3). This approach is also known as stacked
generalization (Wolpert 1992) or simply model stacking, as shown in Exhibit 4. Stacking usually
involves estimating weights for each base learner using the least squares method. These
weights can be restricted to values greater than zero and with a total sum of one that solve the
associated quadratic programming. This approach has the advantage that estimated weights
can be interpreted as probability values and also avoids giving too much weight to base models
with high complexity. One key consideration while training meta-models is to use a validation
sample that is different from the data used in training base learners, so as to avoid propagating
any biases in the base learners.

The following is an example Python code for creating a stacked classifier by using a random
forest and a support vector classifier as the base models and logistic regression as the
meta-learner:
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from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC

from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline

from sklearn.ensemble import StackingClassifier
#create a synthetic dataset

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_features=15, n_informative=6,
random_state=123)

#Split the dataset into 80% training and 20% testing sets

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)
#train a meta-model and predict

estimators = [('rf’, RandomForestClassifier(n_estimators=100, random_state=123)),
(‘svr’, make_pipeline(StandardScaler(),

LinearSVC(random_state=123)))]

clf = StackingClassifier(estimators=estimators, final_estimator=LogisticRegression())
clf.fit(X_train, y_train)

score(X_test, y_test)

Properties of Ensemble Learning Methods

Before listing major instances of the financial applications of ensemble models, | want to high-
light important features and mechanisms associated with such models that are key to their
widespread adoption:

The bootstrapped aggregation or iterative correction mechanisms described previously
imply that ensemble models may achieve optimal bias-variance trade-offs, reduced risk of
overfitting, and improved robustness to noise and outliers. These features make ensembles
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Exhibit 4. Example Model Stacking, Where Base Learners'’
Predictions Are Passed Through a Meta-Learner
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a powerful choice for predictive tasks that require good out-of-sample generalizations
on high-variance, low-signal-to-noise financial datasets.

e Ensemble models scale well with large datasets, making them suitable for big data in
finance. In particular, they can handle various independent or interdependent variables,
including firm fundamentals, macroeconomic factors, and market sentiments, and focus
on the most relevant variables that generate the strongest signals.

e Financial systems are complex, nonlinear, and ruled by different market regimes and
economic cycles. They consist of numerous variables that may behave and interact
unexpectedly under volatile and abnormal circumstances. Heterogeneous ensemble
methods, particularly regression trees, combine models of different types to capture multi-
way predictor interactions, allowing flexibility in capturing various patterns in financial data
and subsequently adapting to nonlinear and short-lived dynamics.

e Ensemble models can easily accommodate many data preprocessing and adjustment
strategies (such as balanced bagging or weighted boosting) to handle rare and imbalanced
data, often encountered in fraud detection, credit default prediction, economic recession,
and extreme risk events.

o Explainability techniques for tree-based ensembles may be used to make these models
more transparent by explaining their predictions. For example, feature importance scores
identify influential predictors, and Shapley values (Shapley 1953) provide local attribution
analysis of the predictions. These techniques greatly aid in understanding the decision-
making processes.

Ensemble Learning Challenges

Despite strong predictive performance, using ensemble learning may come with certain chal-
lenges, although arguably not as much as with some other machine learning and deep learning
techniques. First, ensemble models may be considered black boxes without using interpret-
ability tools, making it a challenge to explain predictions to nontechnical stakeholders and
reducing trust in critical applications. In addition, training and predicting with ensemble models
often require significant computational resources, particularly for large datasets or complex
models. As such, compared with simpler models, deploying ensemble models in production
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environments can be more challenging because of their larger size, more complex pipelines, and
extra computational demands.

In particular, gradient boosting algorithms can be slow to train because of their sequential
tree-building process and the complexity of the hyperparameter tuning process. Without ade-
quate calibration, either overfitting or underfitting is possible. Finally, following the “no free
lunch” theorem (Wolpert 1996), which states that there is no best single machine learning
algorithm for all possible prediction problems, one could argue that there are numerous real-
world datasets and prediction problems for which ensemble models will not be the top per-
formers. In such circumstances, other models and algorithms are required, depending on the
"speed-accuracy-complexity trade-offs” (Wolpert 2002).

Applications of Ensemble Learning in Finance

A quick survey of the literature published in the last few years points to several financial appli-
cations of ensemble learning, usually with a considerable level of success compared with
classical methods. It is not possible to review or validate all the instances listed in the literature,
but | will highlight a small subset of such applications from different categories, which should
provide a good perspective on the variety and comparative performance of ensemble models.
These highlighted examples can be grouped into the following (loosely defined, somewhat
overlapping) three categories: portfolio management, volatility forecasting and option pricing,
and miscellaneous applications.

Portfolio Management

Portfolio management encompasses various activities related to investment selection, portfolio
construction, and asset allocation optimization in order to meet the short- and long-term
financial objectives and risk tolerance of an investor or an institution. This data-intensive pro-
cess typically involves analyzing factors and historical returns, estimating model parameters,
forecasting risk premium or conditional expected stock returns in excess of the risk-free rate,
and occasionally estimating portfolio weights.

Cross-Section of Stock Returns

Asset return prediction and the identification of predictors of returns are among the
fundamental topics in asset pricing research. Although traditional factor models—such as the
CAPM and its extensions, including the three-factor and five-factor Fama-French models—
are widely used to explain historical returns of diversified portfolios, practitioners consider
them empirically inadequate to predict returns under various market regimes. Subsequently,
a plethora of factors (the “factor zoo") have been proposed as candidate predictors of
cross-sectional variations in expected returns.

Among the various groups of such factors are financial, macro, microstructure, behavioral,

and accounting factors, many of which may be viewed as belonging to the broader categories
of common sources of risk or idiosyncratic characteristics that pertain to an individual firm

or portfolio (Harvey, Liu, and Zhu 2016). Naturally, one may ask which one of these factors
provides effective and independent information about the cross-section of returns. Here, the
emphasis is placed on efficacy and independence within the context of the inadequacy of
simple linear models in out-of-sample predictions in the presence of multicollinearity and noise.
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Literature reviews point to the growing adoption of machine learning methods in empirical
asset pricing to address the problem of the factor zoo (Bagnara 2024). These methods primarily
include regularization and dimension reduction as processing steps, followed by the use of
random forests, neural networks, and comparative analyses that typically involve ensemble
methods. Among the important rationales stated for using machine learning in asset pricing are
“return prediction is economically meaningful” and “relative to traditional empirical methods in
asset pricing, machine learning accommodates a far more expansive list of potential predictor
variables and richer specifications of functional form” (Gu et al. 2020, p. 2224).

Ensemble methods, in particular, have been found to provide superior results over traditional
linear factor models in reducing the risk of overfitting, thanks to the forecast combination
mechanism. Among the various instances of forecast combination mechanisms are com-
bining forecasts from different classes of algorithms, combining forecasts based on differ-
ent training windows, combining forecasts that use different factor libraries, and combining
forecasts for different horizons to increase forecast diversity and reduce the risk of overfitting
(Rasekhschaffe and Jones 2019).

It is important to point out that the superiority of a method is evaluated by quantifying its per-
formance over a “testing” subsample that has been held out of the training sample (used for
estimation) and the validation sample (used for model tuning). These testing data are truly out
of sample and may reflect a method'’s predictive performance more realistically. The metrics
used for quantifying model performance include the following:

e Standard algorithm performance evaluation metrics, such as the coefficient of determination,
R?; root mean square error; and mean absolute percentage error

e Aggregate portfolio performance metrics, such as mean and standard deviation of returns,
cumulative return, maximum drawdown, and information ratio for the risk-adjusted return
related to a benchmark

The algorithm performance evaluation metrics are estimated on the basis of a direct
comparison of the realized versus predicted returns of the testing period. In contrast,
aggregate portfolio performance metrics may be estimated on the basis of out-of-sample

(e.g., one-month-ahead) stock return predictions of machine learning, going long on the top
decile of stocks with the highest predicted return stocks, going short on the bottom decile, and
calculating the backtest returns. Following Gu et al. (2020), the next-period expected returnr,
of stock i can be modeled as

1

ri,t+‘| =

s.t. Et(r,,m):L(Xi,t;E)'

Et(ri,t+‘| ) + 8[, +1

where L is a (machine) learning algorithm acting on the p-dimensional vector, X, , represents
current-period features (factors), and h is the algorithm's tunable hyperparameters—for example,
the number of trees or the maximum tree depth in a random forest. The OLS regression is a
special case of this equality when L is a linear unbiased estimator for which the error terms, ¢, .,
have zero mean and constant variance and are uncorrelated.

The OLS estimator is an optimal model among linear unbiased estimators because of its lowest
variance and is traditionally a popular choice. With a large set of candidate predictors, how-
ever, estimating an OLS regression may pose computational challenges and yield unreliable
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predictions. First, a linear model is restricted in its functional form and may not detect inter-
actions among features and their nonlinear dynamics. Second, when the number of features
increases, there is an elevated risk of in-sample spurious correlation and overfitting. In addition,
multicollinearity may be strong in the presence of many features, resulting in unreliable parame-
ter estimates, because of high correlation or linear dependence among regressors.

Machine learning models are desirable when traditional linear models are not feasible, because

they can be used for high-dimensional feature sets containing both cross-sectional firm charac-
teristics and macroeconomic factors. Additionally, they can be regularized to reduce overfitting,
and they efficiently search and select among many model specifications.

This notion has been demonstrated by Gu et al. (2020). The authors carried out a large-scale
study on monthly total individual equity return data spanning 60 years, 1957-2016 (with the latest
30 years as out-of-sample testing). The studied data contain more than 30,000 stocks (6,000+
per month) for firms listed on the NYSE, AMEX, and NASDAQ. The Treasury bill rate was used for
the risk-free rate to calculate individual excess returns, and for stock-level predictors, the authors
used more than 90 characteristics based on the cross-section of stock returns, as well as industry
dummies for Standard Industrial Classification codes and several macroeconomic predictors.

Gu et al. (2020) found that shallow neural networks and ensembles of regression trees are
the best-performing methods across a variety of portfolio constructions (see Exhibit 5 and
Exhibit 6). They attributed this performance to the detection of nonlinear interactions missed
by other methods and effective “shallow” learning (compared with “deep” learning) resulting
from the scarcity of data and the low signal-to-noise ratio in asset pricing. The authors also
reported greater success from ML in forecasting larger and more liquid stock returns and
portfolios and observed agreement among ML models on a small set of dominant predictive
signals, including price trends (return reversal and momentum), measures of stock liquidity,
stock volatility, and valuation ratios.

Risk Factor Analysis

Machine learning can enrich risk analysis by providing insight into relationships between
variables that are unaccounted for in more-traditional factor models. Several categories of
“factor model” exist, including macroeconomic, statistical, and fundamental models (Connor
1995). In such models, the security return is the dependent variable, and the risk factors,

Exhibit 5. Performance of ML Portfolios

OLS Elastic Net RF GBRT NN4
Mean return 1.34 2.11 2.38 2.14 3.33
Maximum drawdown percentage 84.74 33.70 46.42 37.19 14.72
Information ratio 1.30 0.93 1.30 1.60 2.40

Note: RF stands for random forest, GBRT stands for gradient boosted regression tree, and NN4 stands for four-hidden-layer
neural network.

Source: Excerpts from Table 8 of Gu et al. (2020), used with permission.
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Exhibit 6. Cumulative Log Returns of ML Portfolios Sorted
on Out-of-Sample Forecasts (National Bureau of Economic
Research recessions are shaded)
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including macroeconomic variables and security characteristics, are the independent variables.
Traditionally, estimation methods are based on time-series and/or cross-sectional regression,
with OLS regression being the prevalent approach. The main assumptions of these models are
that the selected group of independent variables adequately explains portfolio behavior and the
factors have a low correlation for the model to be stable and statistically valid.

These assumptions may be easily violated under different market regimes, however, posing
challenges to the estimation of the model parameters and explanation of the results.

For example, as the dimensionality of the list of candidate factors grows to account for
additional exposure, exacerbated by dramatic changes in factor relationships during major
market events, both linear and parametric nonlinear models, which often heavily depend on
sample data, become hard to estimate and are rendered inadequate and unstable.

As a remedy to these drawbacks, Simonian, Wu, Itano, and Narayanam (2019) developed a
machine learning framework to uncover nonlinear relationships, discontinuities (e.g., thresh-
old correlations), and interaction effects between factors in the well-known Fama-French-
Carhart (FFC) equity factor model. These authors showed how the RF model provides a higher
level of explanatory power relative to more commonly used frameworks, such as CAPM and
FFC. They also provided useful information regarding the sensitivity of assets to factors by
leveraging the importance of features to derive pseudo-betas. Additionally, the authors com-
bined this approach with association rule learning to build a sector-rotation trading strategy.
They showed that their strategy, using the RF-predicted return of a sector and the ratio of
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short-term to long-term realized volatility as trading signals, outperforms the “no informa-
tion” equal-weight portfolio, as measured by various out-of-sample performance metrics.
The authors argue that this approach provides an effective way to inform both risk analysis
and portfolio management.

Volatility Forecasting and Option Pricing

Quantitative finance, also known as financial mathematics, refers to the advanced mathematical
models used for the pricing of derivative securities and portfolio risk management. A subcate-
gory of quantitative finance is financial engineering, which uses computational simulations for
pricing, trading, hedging, and other activities. This is a data-intensive process in which machine
learning can be readily used.

Volatility Forecasting

An accurate measurement of volatility is of paramount importance in financial risk
management, asset pricing, derivative pricing, and estimating expected returns of portfolios.
Traditionally, volatility estimation models have relied on a handful of statistical inference meth-
ods and a limited group of predictors. In light of the availability of high-frequency price data,
growing sets of candidate variables, and scalable computing power, machine learning methods
enable researchers and practitioners to move beyond single-threaded forecasting methods
typically dominated by a small set of particular features or algorithms and to develop scalable
systems of volatility prediction.

Such systems can offer reduced human intervention during the selection of features and
models, accommodating an expanded set of features and controlling overfitting through
automated calibration. Notably, Li and Tang (2024) recently proposed an automated volatility
forecasting system for the S&P 100 universe that leverages more than 100 features and five
ML algorithms to predict the response variable of the realized variance (RV), an estimator of
the quadratic variation of the log price process over a given period, using a set of features
that include multiple realized features based on RV-based models, such as heterogeneous
autoregressive (HAR), semivariance HAR (SHAR), and mixed data sampling (MIDAS).

In particular, after evaluating the out-of-sample performance of five learning algorithms—LASSO
(least absolute shrinkage and selection operator), principal component regression (PCR),
random forest (RF), gradient boosted regression trees (GBRT), and two-hidden-layer neural net-
work (NN2)—the authors also constructed a simple average ensemble to combine all machine
learning algorithms. The reported ensemble delivered superior performance across various
forecast horizons; the automated volatility forecasting system acts dynamically and becomes
increasingly powerful over time (Exhibit 7). For example, “in terms of utility gains, the ensemble
model delivers 44 more bps per year to the mean-variance investor relative to using OLS for
this large stock universe” (Li and Tang 2024, pp. 82-83).

Option Pricing

The motivation to apply machine learning methods for pricing options and derivatives is
driven by the computational estimation challenges and limitations of classical parametric
models. By considering options as functional mappings between the contracted terms' inputs
(e.g., underlying asset and time to maturity) and the premium output (e.g., a fixed deviation
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Exhibit 7. Out-of-Sample R? Relative to the Historical Mean
of Realized Volatilities for OLS-Based Models

Out-of-Sample R? Relative to Long-Run Mean

Monthly Quarterly
HAR 0.58 0.69 0.70 0.64
MIDAS 0.58 0.71 0.71 0.64
SHAR 0.58 0.70 0.70 0.64
OoLS 0.61 0.73 0.72 0.63
LASSO 0.61 0.73 0.73 0.65
PCR 0.60 0.71 0.72 0.67
RF 0.59 0.71 0.73 0.66
GBRT 0.60 0.73 0.73 0.66
NN2 0.62 0.75 0.74 0.65
Ensemble 0.62 0.74 0.75 0.67

Source: Excerpts from Tables A.3 and A.4 of Li and Tang (2024), used with permission.

from a target price), data-driven and machine learning methods can be applied (Hutchinson, Lo,
and Poggio 1994). In a study of European call options with West Texas intermediate (WTI) crude
oil futures contracts as an underlying asset (lvascu 2021), machine learning algorithms, particu-
larly ensemble methods, such as XGBoost and LightGBM, largely outperformed classic methods,
such as Black-Scholes and Corrado-Su, with both historical and implied volatility parameters.

Bid-Ask Spread

The foreign exchange (FX) market is both the largest and the most liquid financial market in the

world. In particular, because of the uneven spread of liquidity across different currencies and dif-
ferent market times and conditions, predicting the likely cost of trading currencies as measured

by bid-ask spreads is crucial for profitable trading. As such, the FX market is a fertile playground
for data-driven and ML methods seeking to identify and benefit from market microstructures.

Recently, Kirkby and Andrean (2024) identified various predictors of daily bid-ask spreads,
including temporal features, such as the day of the week and the hour of day and their inter-
actions; various spreads, lags, and moving averages; and rate volatility, capturing the interplay
between market volatility and bid-ask spreads and the spillover of volatility between related
markets. They observed that from among supervised machine learning algorithms, subject to
a modest level of hyperparameter tuning, the random forest model had the best out-of-sample
performance, with an economically meaningful ability to forecast the next day's spread with a
relative error of less than 20% on average.
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Miscellaneous Applications

In addition to the previous examples, other applications of ensemble learning published in the
financial data science literature include the following:

Default prediction of commercial real estate properties and identification of the ratio of the
capitalization rate spread to the average capitalization rate spread of property type as a top
driver of defaults (Cowden, Fabozzi, and Nazemi 2019)

Predictability of stock market bubbles and large near-term drawdowns based on patterns
in stock price behavior (Simonian 2022)

Prediction and estimation of the likelihood of recession in a given month using historical
macroeconomic factor time series (Yazdani 2020)

Comparing long short-term memory and gradient boosting algorithms in predicting the
returns of S&P 500 constituents using technical indicators and principal component analysis
(Cvetkovic 2024)

This list provides only a sample of the published literature on ensemble modeling, and many
more may be identified and explored.

Explainability of Ensemble Methods

Broadly speaking, explainability, also known as interpretability, refers to processes used to
understand how a machine learning model makes decisions and what its output means.
Explainability is a way to increase reliability in the presence of uncertainty and reduce the risk of
overfitting and irrelevant and unfair decision making. For a comprehensive study of explainabil-
ity methods, see Molnar (2019). The following are some common explainability techniques:

“Partial dependency plots show the marginal effect of an input feature on the
predicted outcome."

The SHAP (SHapley Additive exPlanations) technique enables estimation and visualization of
each input feature's contribution to the output (based on “Shapley values [that] measure the
average marginal contribution of a feature across all possible combinations of features)."2

Feature importance can be used to estimate the importance of a feature for the model,
based on measuring the performance decrease when randomly shuffling the feature value
across all samples.

The LIME (local interpretable model-agnostic explanations) technique can be used to locally
approximate a model's outputs with a simpler, interpretable model.

Counterfactual explanations describe the smallest change to the feature values that change
the prediction to a predefined outcome.

Other methods—such as conformal prediction intervals (Vovk, Gammerman, and Shafer
2022)—that provide reliable estimates, even in highly unpredictable markets, are crucial for
risk management and decision making under uncertainty.

Thttps://en.wikipedia.org/wiki?curid=54575571.
2https://en.wikipedia.org/wiki?curid=54575571.
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In line with applications of ensemble models for financial forecasting and predictive modeling,
explainability is used increasingly to demystify the prediction by such models. For example,

Li et al. (2020) used ML to predict one-month spot returns of a portfolio of major currencies and
subsequently developed a framework for demystifying ML model predictions called the “model
fingerprints.” This approach draws on partial dependence to identify feature interactions and
estimate the average marginal effect when features have low correlations.

In particular, the model fingerprint decomposes predictions into the contributions from the fol-
lowing four sources: linear effect (L) for the time series returns of portfolios formed from linear
predictions in isolation; pairwise interactions (P) for returns of portfolios formed from the com-
bined linear and pairwise interaction predictions minus the returns from linear effect; nonlinear
effect (N) for returns of portfolios from the combined linear, nonlinear, and pairwise interaction
predictions minus the returns from linear and pairwise effects; and higher-order effects (H).
Mathematically, for a model prediction function y =f(x,,..., x ) dependent on m input variables,
this decomposition can be written as

m

Y= L(x)+ 3 N(x.)+ i}b(x,,xj)Jr iH(x,.).

i i#j

An example of such decomposition for the gradient boosting model prediction is shown in
Exhibit 8. The model fingerprint method, when accompanied by other local and global model
interpretability tools such as feature importance and SHAP force plots for attribution analysis,
yields explanations for the model outcome, which is useful for comparing and interpreting
various investment strategies.

Among other notable examples of ML model explainability is the framework developed by
Davis, Lo, Mishra, Nourian, Singh, Wu, and Zhang (2023) in which the authors used ML models

Exhibit 8. Decomposition of Gradient Boosting Model Predictions
Using the Fingerprint Method
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Source: Middle panel in Exhibit 3 of Li et al. (2020), used with permission.
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to forecast individuals' home equity credit risk using a real-world dataset. The authors demon-
strated methods to explain these ML models’ output and to make them more accessible to
end users. Notably, the authors developed different means of explainability to accommodate
different requirements of the various stakeholders, including explanations for predictions

of creditworthiness for loan companies (see Exhibit 9), stress tests for regulators, guiding
counterfactuals for loan applicants, and explanatory rules for data scientists.

Summary and Future Directions

With the rapid development of artificial intelligence, which has led to the empowerment and
automation of machine learning processes, one can expect further growth and adoption of
data-driven methods in financial and investment decision-making processes. In particular, the

Exhibit 9. SHAP Feature Importance for the Probability of Default
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Source: Figure 3(a) of Davis et al. (2023), used with permission.
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emergence of large language models (LLMs) and generative Al, capable of generating a reason-
able first-pass analysis of financial data and accompanying computer codes, is anticipated to
further increase the adoption of data-driven methods. In addition, researchers are investigating
methods to combine multiple LLMs (LLM ensembles) to enhance overall performance. Despite
all of these attempts and because of the black-box perception associated with many ML and

Al methods, key considerations remain in some critical applications of such methods—in partic-
ular, those involving high-risk decisions, fairness, and transparency. Frameworks that carefully
blend both traditional and modern frameworks—including explanatory, explainability, and pre-
dictive—while drawing on the domain knowledge, may have a greater chance of success and
survival in an environment typically characterized by the existence of competing agents, high
noise-to-signal ratios, and rare arbitrage opportunities.
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Introduction

Deep learning refers to a type of machine learning algorithm that uses multiple layers to
progressively extract higher-level features from input data. For example, in image process-

ing, lower layers may identify edges, while higher layers may identify more sophisticated
concepts, such as digits, letters, or faces. The first major business application of deep learning
was to check processing in the early 2000s. The modern deep learning revolution builds on
connectionism—an approach in cognitive science that seeks to explain mental phenomena
using artificial neural networks. Connectionism took its rise from the work of Warren McCulloch,
Walter Pitts, Donald Olding Hebb, and Karl Lashley. Modern neural networks can be thought of
as generalizations of the “perceptron” introduced by Frank Rosenblatt in 1957. In this chapter,
we explore the foundations of deep learning and its applications to finance and investing.

Background: Deciphering the Human Brain

Neuron architecture, in various degrees, forms the basis of deep learning algorithms.

The detailed study of neurons commenced in the early 1900s, when anatomists began using
microscopes and new staining methods to study the microscopic parts of the brain. It was
around this time that neuroanatomists Santiago Ramén y Cajal and Camillo Golgi discovered
“that nerve cells (neurons) are the building blocks of the brain and showing there are many
different types” of neurons (Jones 1999).

Neuroscience progressed significantly through discoveries about how neurons interact.
Researchers eventually identified the synapse as the point of connection where nerve cells
communicate, leading to major insights into the workings of the central nervous system.
Later work revealed that neurons transmit signals through both electrical impulses and
chemical processes. The understanding of how neural activity strengthens connections
between cells introduced the concept often summarized as “neurons that fire together
become more strongly linked,” forming the basis for associative or Hebbian learning,
where repeated activation strengthens connections between neurons involved in the
same process.

Around the same period, Alan Turing developed the idea of a mechanical model of computation,
now known as the Turing machine. His work provided a mathematical framework for defining
what it means for a task or function to be computationally solvable. This led to the principle
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that any process considered effectively computable can be represented by a Turing machine,
forming a cornerstone of modern computer science. In 1943, McCulloch and Pitts published

"A Logical Calculus of the Ideas Immanent to Nervous Activity,” which described a mathematical
model of the nervous system as a network of simple logical elements, known as artificial
neurons, or later as McCulloch-Pitts neurons. These neurons take inputs, calculate a weighted
sum, and produce an output signal based on a threshold function.

In 1957, Frank Rosenblatt at the Cornell Aeronautical Laboratory simulated a simple artificial
neuron called a perceptron on an IBM 704, Later, he obtained funding from the Information
Systems Branch of the United States Office of Naval Research and the Rome Air Development
Center to build a custom-made computer, the Mark | Perceptron. It was first publicly demon-
strated on 23 June 1960. The machine was part of a previously secret four-year NPIC

(US National Photographic Interpretation Center) project that ran from 1963 through 1966, with
the goal of developing the Mark | into a useful tool for photo-interpreters. Indeed, the Mark |
was a fairly powerful pattern learning and recognition device for its time and was able to reliably
learn to classify visual patterns into groups on the basis of certain geometric similarities and
differences, utilizing properties such as position in the retinal field of view, geometric form,
occurrence frequency, and size.

Perceptrons and feed forward neural networks (FFNNs) feed information from the front to

the back (respectively, input and output). A common characteristic of FFNNs is that in them,
two adjacent layers are “fully connected,” which means that every neuron from one layer is
connected to every neuron from another layer. FFNNs are typically trained through backpropa-
gation, giving the network paired datasets of "what goes in" and “what we want to have coming
out.” This is called supervised learning, as opposed to unsupervised learning, where we only
give it input and let the network fill in the blanks. The error being backpropagated is often some
variation of the difference between the input and the output (such as mean squared error,

or MSE) or just the linear difference. Given that the network has enough hidden neurons, it can
theoretically always model the relationship between the input and output. Practically, their

use is a lot more limited, but they are popularly combined with other networks to form new
networks. In Exhibit 1, we show a perceptron, and in Exhibit 2, we show an FFFN. (Note that

all exhibits in this chapter were created by the authors).

Extreme learning machines (ELMs) (Huang 2015) are similar to FFNNs but have random
connections. They have many similarities to liquid state machines and echo state networks

but are neither recurrent nor spiking and do not use backpropagation. Instead of backpropa-
gation, ELMs start with random weights and train the weights in a single step according to the
least-squares fit (lowest error across all functions). This results in a considerably less expressive
network but one that is also significantly faster than backpropagation.

Deep residual networks (DRNs) (He, Zhang, Ren, and Sun 2016) are very deep FFNNs with
additional connections passing input from one layer to one or more further layers.
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Exhibit 1. Perceptron Architecture
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Exhibit 2. Feed Forward Neural Network Architecture

Financial Example: Credit Risk Assessment
Input: Income, Credit Score, Debt — Risk Patterns — Default Probability

Hidden Hidden
Layer 1 Layer 2
Input M) SR
Output
Layer

Processes . Combines . Decides /.

() —> —>
—@ @ = )

O L

\. ./ Final

Decision
Raw Data
— ————
Finds Builds
Patterns Features

Information flows forward through layers:
Input — Simple patterns— Complex features — Final answer
Like building understanding step by step

Information Flow— >

74 e« CFA Institute Research Foundation



Deep Learning

Now, let us implement a perceptron in Python. Going through the steps manually will give us a
good idea about how neural networks solve problems. First, we generate some data:

X=]
for x1in [0., 1.]:
forx2in[0., 1.]:

X. append ([ x1,x21])
y=1

forxin X:

y. append ( x[0] and x [1])

It is more convenient to work with NumPy arrays than native Python lists, so we convert
accordingly:

X=np. array ( X) y =np. array (y)

We initialize the weights and bias to (pseudo)random values sampled from the standard normal
distribution:

weights = np. random . normal( size =(2 , 1)) bias = np. random . normal ()
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The function “predict” will predict y given X as well as fixed weights and bias:

def predict(X, weights, bias):
y_pred =]
forxin X:
x = x.reshape(-1, 1)
v = weights.T @ x + bias
y_pred.append(0. if v < 0. else 1.)

return np.array(y_pred)

The function fit updates the weights and bias using gradient descent with yset to the
learning_rate:

def fit(X, y, weights, bias, learning_rate=.01, epochs=1):
foriin range(epochs):
for x, target in zip(X, y):

x = x.reshape(-1, 1)

v = weights.T @ x + bias

y_pred=0.ifv<0.else 1.

if target !=y_pred:
bias -= learning_rate * (y_pred - target)
weights -= learning_rate * (y_pred - target) * x

return weights, bias
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The epoch parameter represents the number of complete cycles (epochs) through the entire
training dataset and indicates the number of passes that the machine learning algorithm must
complete during that training. We proceed as follows:

weights, bias = fit(X, y, weights, bias, epochs=100)
y_pred = predict(X, weights, bias)

y_pred

# array([0., 0., 0., 1.])

4
# array([0., 0., 0., 1.])

weights, bias
# (array([[0.12671415],
# [0.0117357]]),

#-0.13231146189930793)

These weights and bias have been found by the gradient descent algorithm. Our procedural
code is a bit haphazard. It would be cleaner to use the object-oriented approach and encapsu-
late the notion of a perceptron in a dedicated class:

class Perceptron(object):
def __init_ (self, dim):
self.dim = dim
self.weights = np.random.normal(size=(self.dim, 1))

self.bias = np.random.normal()
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def fit(self, X, y, learning_rate=.01, epochs=1):
foriin range(epochs):
for x, target in zip(X, y):

x = x.reshape(-1, 1)

v = self.weights.T @ x + self.bias
y_pred=0.ifv<0.else 1.

if target !=y_pred:

self.bias -= learning_rate * (y_pred - target)

self.weights -= learning_rate * (y_pred - target) * x

def predict(self, X):

y_pred =[]

for x in X:
x = x.reshape(-1, 1)
v = self.weights.T @ x + self.bias
y_pred.append(0. if v < 0. else 1.)

return np.array(y_pred)

The code we have provided is for pedagogical purposes; as such, a class already exists in
scikit-learn, the popular free software machine learning library for Python. Scikit-learn grew out
of a June 2007 Google Summer of Code project by David Cournapeau and now features various
classification, regression, and clustering algorithms, including support vector machines, random
forests, gradient boosting, k-means, and DB-SCAN. Scikit-learn is designed to interoperate with
the Python numerical and scientific libraries NumPy and SciPy.

Although individual perceptrons turned out to be of limited practical use, networks of percep-
trons (or feed forward neural networks, FFNNs) were soon recognized as powerful universal
function approximators. Their calibration in practice was impeded by computational restric-
tions, which were overcome algorithmically using the backpropagation algorithm (Rumelhart,
Hinton, and Williams 1986), a major computational advance, and improvements in hardware,
such as the emergence of GPUs. The progress was not uniform, and this academic area
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went through several periods of funding cuts, which are sometimes referred to as Al winters
(Harguess and Ward 2022).

More Sophisticated Deep Learning Frameworks

In this section, we describe more sophisticated deep learning frameworks, several of which
have become popular in finance. We begin with recurrent neural networks (RNNs) (Rumelhart
et al. 1986), which are FFNNs that are not stateless—rather, they have connections between
passes, connections through time. They are popular in financial applications. Neurons take
input information not only from previous layers but also from themselves on previous passes.
Thus, the order in which the input is fed into and trained in the network matters. One major
challenge with RNNs is the vanishing gradient problem, where, depending on the activation
functions used, information rapidly gets lost over time. This is similar to how some FFNNs lose
information in depth. Nevertheless, RNNs are a good choice for many time series applications.
We show an RNN in Exhibit 3.

Echo state networks (Jaeger and Haas 2004) are another type of (recurrent) network. They set
themselves apart by having random connections between neurons (i.e., they are not organized
into neat sets of layers). Instead of feeding input and backpropagating the error, they feed

the input, update the neurons, and observe the output over time. The input and output layers
have a somewhat unconventional role as the input layer is used to prepare the network and the
output layer acts as an observer of the activation patterns that develop over time. During the
training period, only the connections between the observer and the hidden units are changed.

Exhibit 3. Recurrent Neural Network Architecture Through Time

Output:
Predictions

Generates Generates Generates Generates
Output Output Output Output

Memory
Flow
Hidden:
Memory
Cells
Processes Processes Processes Processes
Input Input Input Input
Input:
Sequential
Data
Time 0 Time 1 Time 2 Time 3

Key Concept: Memory cells remember information from previous time steps
This allows the network to understand sequences and context
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Long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997) networks try to combat
the vanishing/exploding gradient problem by introducing gates and an explicitly defined
memory cell. These are inspired mostly by circuitry, not so much biology. Each neuron has a
memory cell and three gates: input, output, and forget. The function of these gates is to safe-
guard the information by stopping or allowing the flow of it. The input gate determines how
much of the information from the previous layer is stored in the cell. The output layer takes the
job on the other end and determines how much of the next layer gets to know about the state
of this cell. The forget gate, as the name suggests, enables the network to forget. LSTMs have
been shown to be able to learn complex sequences, such as writing prose or composing music.
We show an LSTM in Exhibit 4.

Neural Turing machines (NTMs) (Graves, Wayne, and Danihelka 2014) can be understood

as an abstraction of LSTMs and an attempt to undo the black-box nature of neural networks
(and provide insight into what is going on in there). NTMs augment the traditional neural
network architecture with an external memory bank, allowing it to perform tasks that require
both computation and flexible memory manipulation, such as copying, sorting, and associative
recall. The architecture consists of three main components: a controller, which processes inputs
and determines how to interact with memory; a memory matrix, which serves as the external
storage for information; and read/write heads, which focus attention on specific memory
locations for reading or writing data.

Exhibit 4. LSTM Architecture

Like a smart notebook that:
e Erases outdated information
e Writes down important new facts
e Remembers context over long periods

LSTM Memory Cell
Long-Term Memory Flow

Forget
Gate

Candidate Output
Values Gate

What to What to New info What to
forget? remember? to store share?

LSTM Process:
1. Decides what old information to throw away (Forget Gate)
2. Decides what new information to store (Input Gate)
3. Creates candidate values for new information
4. Updates memory with selected information
5. Decides what parts of memory to output (Output Gate)

80 e« CFA Institute Research Foundation



Deep Learning

The controller, often implemented as a recurrent neural network, receives both the current
input and the previous memory readout, enabling it to make informed decisions about memory
access. The read and write heads use attention mechanisms to determine how much focus

to place on each memory location, allowing the NTM to interact with memory in a smooth,
differentiable way. This differentiability means the entire system can be trained end to end
using gradient descent, just like standard neural networks. The result is a model that combines
the pattern recognition strengths of neural networks with the algorithmic flexibility of a Turing
machine, making NTMs particularly suited for tasks that require reasoning over sequences and
manipulating stored data in complex ways. Differentiable neural computers (Graves, Wayne,
Reynolds, Harley, Danihelka, Grabska-Barwinska, Colmenarejo, Grefenstette, and Ramalho
2016) are enhanced neural Turing machines with scalable memory, inspired by how memories
are stored by the human hippocampus. We show the architecture of an NTM in Exhibit 5.

Gated recurrent units (GRUs) (Cho, van Merrienboer, Bahdanau, and Bengio 2014) are a varia-
tion on LSTMs. They contain one less gate and are wired slightly differently: instead of an input,
output, and forget gate, they have an update gate. The update gate determines both how much
information to keep from the last state and how much information to let in from the previous
layer. The reset gate functions much like the forget gate of an LSTM but is located at different
points in the decision-making process. In most cases, they function similarly to LSTMs but are
slightly faster and easier to run (albeit also slightly less expressive).

Exhibit 5. Neural Turing Machine Architecture

Financial Example: Algorithmic Trading System
Remembers past market patterns to make better predictions
Like a trader with perfect memory of all market history

Read Head
“Information Finder” ( U )
Searches for relevant [ ~< . Attention
historical data ~ ~ Retrieves
R External Memory
T~ “Smart Database” @
- |
SEARCHES Q1Data Q2Data Rules
Receives q
"(':I'T\:t;::ier:’ Patterns History | Trends J;:?s'i':,gn
Processes information UPDATES
Market and makes decisions DECIDES Buy/Sell/
Signals Hold
Stores historical patterns
Write Head Stores and trading rules
“Information Updater” - 7
Stores new market
insights

How it works:
1. Receives market data and analyzes current conditions
2. Searches memory for similar historical patterns
3. Updates memory with new market insights
4. Makes informed trading decisions based on history + current data

CFA Institute Research Foundation ¢ 81



Al in Asset Management: Tools, Applications, and Frontiers

Bidirectional recurrent neural networks and bidirectional long short-term memory networks
(BNs) (Schuster and Paliwal 1997) look identical to their unidirectional counterparts. The main
difference between them is that BNs are not just connected to the past but also connected to
the future. This means that during training, the network fills in gaps instead of simply advancing
information. For example, instead of advancing an image on the edge, it could fill a hole in the
middle of an image.

Autoencoders (AEs) represent a different use of FFNNs rather than a fundamentally differ-

ent architecture. In autoencoders, we compress information. In AEs, the entire network
resembles an hourglass, having smaller hidden layers relative to the input and output layers.
AEs can be trained using backpropagation by feeding input and setting the error to be the
difference between the input and what came out (Hinton and Salakhutdinov 2006). Variational
autoencoders (VAEs) have the same architecture as AEs but are “taught” an approximated
probability distribution of the input samples data (Kingma and Welling 2014). Denoising
autoencoders are AEs where we feed in the input data with noise. The output of the network
is compared with the original input without the noise, which encourages the network to learn
broader features instead of details (Vincent, Larochelle, Bengio, and Manzagol 2008).

With sparse autoencoders (SAEs) (Makhzani and Frey 2013) we encode information in more
space. So instead of the network converging in the middle and then expanding back to the input
size, the middle of the network is the zone of expansion. SAEs are useful in extracting small
features from a dataset. Instead of simply feeding back the input as in some other networks,
we feed back the input with the addition of a sparsity driver. This sparsity driver is often a
“threshold filter,” where only a certain error is passed back and trained; other errors will be
“irrelevant” for that pass and set to zero. This is somewhat similar to spiking neural networks,
where not all neurons fire all the time. Among the various types of encoders, VAEs in particular
have become popular in finance because of their utility in anomaly detection and generating
synthetic data. We show VAE architecture in Exhibit 6.

Generative adversarial networks (GANs) (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley,
Ozair, Courville, and Bengio 2014) are a class of generative models that use a game-theoretic
framework to learn and generate new data that mimics the distribution of a given dataset.
GANSs consist of two neural network twins: the generator and the discriminator. The genera-
tor creates synthetic data from random noise, attempting to mimic the real data distribution.
The discriminator distinguishes between real data (from the dataset) and fake data (produced
by the generator). The discriminator receives either training data or generated content from
the generator. Information regarding how well the discriminator is able to correctly predict the
data source is then used as part of the error for the generating network. This process in essence
creates a competitive game in which the discriminator gets better at distinguishing real data
from generated data and the generator learns to become less predictable to the discriminator.
GANSs have become popular in finance as a means to generate synthetic data. We show the
GAN architecture in Exhibit 7.

Liquid state machines (Maass, Natschldger, and Markram 2002) are a type of spiking neural net-
work that replace the usual sigmoid activation functions with discrete threshold mechanisms,
where each neuron also maintains an internal state or accumulated potential. Instead of
overwriting the neuron's current value with the weighted sum of its neighbors, the input

is incrementally added to the neuron's stored energy. When this accumulated value sur-

passes a defined threshold, the neuron emits a spike, transferring energy to connected units.
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Exhibit 6. Variational Autoencoder Architecture

The VAE Process:

1. Takes complex market data and finds the core patterns
2. Creates a “fingerprint” of market behavior in latent space
3. Can generate new, realistic market scenarios
4. Helps identify when markets behave unusually

Input Data
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Stock Price: $150

Volume: 2.5M
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Financial Application: Market Anomaly Detection and Portfolio Optimization

o Learns normal market behavior patterns from historical data
e Detects unusual market conditions and potential opportunities
* Generates synthetic market scenarios for risk assessment
o Creates more robust trading strategies by understanding market “DNA"

Exhibit 7. GAN Architecture

Financial Example: Creating synthetic trading data
that mimics real market patterns for testing strategies

Like rolling dice

Generator
“The Forger”

Creates fake data
that looks real
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Real

Data
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Creates | Fake /

Data

Synthetic Creation

Deep Learning

Output Data
“Reconstructed”
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J
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The Competition:

1. Generator tries to fool the Discriminator
2. Discriminator tries to catch the Generator
3. They compete and both get better
4. Eventually Generator creates perfect fakes
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This produces a characteristic firing pattern with long periods of inactivity punctuated by
sudden bursts of activity, behavior that is typical of spiking behaviors. A Hopfield network (HN)
is a network in which each neuron is connected to every other neuron. Every node is input
before training, hidden during training, and output afterward. These networks are trained by
setting the neurons’ value to the desired pattern; then, the weights can be computed. These
networks are often called associative memory because they converge to the most similar
state as the input. Boltzmann machines (BMs) are similar to HNs, except that some neurons
are marked as input neurons and others remain “hidden.” The algorithm begins by assigning
weights randomly and learns through backpropagation, or contrastive divergence, where a
Markov chain is used to determine the gradients between two informational gains. At the end
of a full network update, the input neurons become output neurons. In contrast to HNs, in BMs,
the neurons mostly have binary activation patterns.

Convolutional neural networks (CNNs) (LeCun, Bottou, Bengio, and Haffner 1998) or deep con-
volutional neural networks (DCNNs) are different from most other deep learning algorithms.
They are primarily used for image processing but can also be applied to other types of data such
as audio. A typical use case for CNNs is where you input network images and the network clas-
sifies the data—for example, “cat” versus “"dog.” CNNs tend to start with an input “scanner” that
is not intended to parse all training data at once. The input data are then processed through
convolutional layers, where not all nodes are connected to all nodes. Each node only concerns
itself with neighboring cells in close proximity (how close varies by application). Convolutional
layers also tend to shrink as they deepen.

Aside from these convolutional layers, CNNs also frequently feature pooling layers. Pooling is a
way to filter out details. One commonly used pooling technique is max pooling, where we take,
for example, three pixels and pass on the pixel with the most amount of red. Real-world imple-
mentations of CNNs often attach an FFNN to the end of the algorithm to further process the
data, a maneuver that allows for highly nonlinear abstractions.

Deconvolutional networks (DNs), also known as inverse graphics networks (IGNs), are reversed
convolutional neural networks. For example, consider the case where we feed a network the
word “dog” (or a binary classification input vector) and train it to produce dog-like pictures by
comparing what it generates to real pictures of dogs. DNNs can also be combined with FFNNs
just like regular CNNs can. When this is done, the pooling layers often found in CNNs are
frequently replaced with analogous inverse operations, primarily interpolation and extrapolation
with biased assumptions.

Finally, capsule networks (CapsNet) (Sabour, Frosst, and Hinton 2017) are biologically inspired
alternatives to pooling, where neurons are connected with a vector of weights instead of just
one weight (a scalar). Kohonen networks (Kohonen 1990), on the other hand, use competitive
learning to classify data without supervision. In the next section, we describe some specific
applications of deep learning to finance.

Applications in Finance

Derivatives pricing was one of the early targets of applied neural networks in finance.
Early adopters of neural networks in option pricing include Malliaris and Salchenberger
(1993); Hutchinson, Lo, and Poggio (1994); Yao, Li, and Tan (2000); Bennell and Sutcliffe
(2004); and Gradojevic, Gencay, and Kukolj (2009). With the advent of deep learning
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(Goodfellow 2016), neural networks started to become mainstream, and deep learning
reentered quants’ collective consciousness, particularly following publication of work on deep
learning volatility (Ferguson and Green 2018; Horvath, Muguruza, and Tomas 2021), which
soon became mainstream.

In these articles, the authors presented neural network-based calibration methods that perform
the calibration task within a few milliseconds for the full implied surface. These frameworks are
applicable across a range of volatility models—including second-generation stochastic volatility
models and the rough volatility family—and a range of derivative contracts. Neural networks are
being used in offline approximations of complex pricing functions, which are difficult to repre-
sent or time consuming to evaluate by other means.

In some instances, finance has generated algorithmic advances, such as differential deep learn-
ing (Huge and Savine 2020). It combines automatic adjoint differentiation (Capriotti and Giles
2024) with machine learning, where the models are trained on examples of not only inputs

and labels but also differentials of labels with regard to inputs, yielding highly effective pricing
and risk approximations. More recently, these approaches have been applied in a wider range
of settings, such as stochastic volatility (Sridi and Bilokon 2023), including exotic products

(Ma, Ventre, Tiranti, and Chen 2025).

Outside the context of derivatives pricing, deep methods have been applied for alpha gen-
eration. Kolm, Turiel, and Westray (2023) deployed deep learning to forecast high-frequency
returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at
the most granular level. State-of-the-art predictive accuracy was achieved by running “off-the-
shelf” artificial neural networks on stationary inputs derived from the order book. Using
cross-sectional regressions, the authors linked an LSTM network’s forecasting performance to
stock characteristics at the market microstructure level, suggesting “information-rich” equities
can be predicted more accurately. The effective horizon of stock-specific forecasts was found to
be approximately two average price changes.

Deep econometrics (Bilokon 2025) is a principled rethinking of the classical econometric

(Ruud 2000) and time-series (Tsay 2010) analyses using deep learning techniques (Goodfellow
2016; Dixon, Halperin, and Bilokon 2020). The focus of Bilokon (2025) is on the estimation of
parameters in various econometric settings. Some applications focus on the rethinking of the
Wiener-Kolmogorov filtering theory, the so-called deep stochastic filters (Horvath, Kratsios,
Limmer, and Yang 2023; Stok, Bilokon, and Simonian 2024).

Some interesting applications have arisen out of the combination of reinforcement deep learn-
ing and reinforcement learning, a framework where agents learn through a system of rewards
and punishments, based on their actions in specific states. Reinforcement learning (Sutton
2020) differs from supervised learning in that the ground truth may not necessarily be known.
Feedback is often evaluative rather than prescriptive, is often delayed, and may be sourced from
the environment. In recent years, this subfield of machine learning/artificial intelligence gained
public recognition when a reinforcement-learning-based system beat the human champion at
the game of Go (Silver, Huang, Maddison, Guez, Sifre, van den Driessche, Schrittwieser, et al.
2016). Soon after, reinforcement learning began to gain popularity in finance.

Early adopters started to use deep reinforcement learning for hedging derivative contracts,
giving rise to deep hedging (Halperin 2017; Buehler, Gonon, Teichmann, and Wood 2019;
Kolm and Ritter 2019a; Cao, Chen, Hull, and Poulos 2021). Reinforcement learning in this
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application was used to derive optimal hedging strategies for derivatives in cases where trans-
action costs and other frictions are present.

Far from being a novelty, many of these algorithms have been extensively studied and evaluated
(see, e.g., Stoiljkovic 2025). Financial applications have led to a cross-pollination of ideas, which
has contributed new and enhanced reinforcement learning techniques, such as enhancements
to inverse reinforcement learning (Halperin, Liu, and Zhang 2022) and distributional
reinforcement learning (Halperin 2024). Other researchers focused on applications of reinforce-
ment learning to wealth management (e.g., Dixon, Gvozdanovic, and O’'Kane 2023). This gave
rise to G-Learner (Dixon and Halperin 2020), a reinforcement learning algorithm that uses
explicitly defined one-step rewards, does not assume a data generation process, and is appro-
priate for use with noisy data. GIRL (Dixon and Halperin 2020) applies goal-based G-learning to
inverse reinforcement learning (IRL) (Dixon et al. 2020), where rewards collected by the agent
are not observed but inferred.

Others have combined ideas from the emerging subfields of reinforcement learning, such as
multiarmed bandits, to update the now classic Markowitz-Sharpe framework (Varlashova

and Bilokon 2025; Bilokon and Varlashova 2025). This framework arose from the rethinking of
some of the issues relevant to finance, such as nonstationarity, in novel and nontrivial ways.
Needless to say, the extensive work on the uses of machine learning for time-series forecasting
(Dixon, Klabjan, and Bang 2017; Stok et al. 2024) is the foundation of many trading applications.
Jaddu and Bilokon (2024) combined deep learning on the order books with reinforcement
learning and backtested the resulting strategies in the presence of frictions. Zejnullahu, Moser,
and Osterrieder (2022) explored in considerable detail the use of double deep Q-networks

for trading purposes. Pendharkar and Cusatis (2018) explored applications of reinforcement
learning agents to trading financial indexes. We point out that financial applications of rein-
forcement learning have been extensively reviewed by Kolm and Ritter (2019b); Charpentier,
Elie, and Remlinger (2023); and Hambly, Xu, and Yang (2023).

Other advances in machine learning have been applied to create synthetic financial data,
which are particularly useful in small data environments (Buehler, Horvath, Lyons, Arribas,

and Wood 2020; Buhler, Horvath, Lyons, Arribas, and Wood 2020). Some research has focused
on speeding up the calculations on a wider range of devices, such as field-programmable

gate arrays (Sobakinskikh and Bilokon 2025), rather than algorithmic advances. There has

also been cross-disciplinary work, which is difficult to classify, at the boundaries of finance,
machine learning, and physics (Halperin and Dixon 2020). Progress has occurred in one of the
most controversial areas of applications of machine learning and artificial intelligence to
finance—explainability (Bussmann, Giudici, Marinelli, and Papenbrock 2021). The rise of large
language models, such as ChatGPT (OpenAl, Achiam, Adler, Agarwal, Ahmad, Akkaya, Aleman,
et al. 2023) and Claude are likely to further revolutionize finance.

Concluding Thoughts

The application of deep learning to finance has evolved from early neural network experiments
in derivative pricing to sophisticated deep learning systems that now permeate virtually every
aspect of financial markets. Financial applications of deep learning have increasingly focused
on practical implementation challenges. Early research often ignored market microstructure
effects, transaction costs, and regulatory constraints. Contemporary work in deep hedging,
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order flow prediction, and portfolio optimization explicitly incorporates these real-world fric-
tions, making the resulting strategies more robust and implementable.

Several developments promise to further revolutionize finance. The emergence of large
language models creates opportunities for natural language processing of financial docu-
ments, automated report generation, and sophisticated conversational interfaces for financial
analysis. Quantum computing, although still in its infancy, may eventually enable the solution
of optimization problems that are currently intractable. Meanwhile, regulatory developments
around algorithmic transparency and explainable Al will likely shape how these technologies
are deployed in practice.

The cross-pollination between finance and deep learning has benefited both fields. Finance has
provided challenging real-world problems that have spurred methodological advances in such
areas as differential machine learning and distributional reinforcement learning. Conversely,
techniques developed in computer science have enabled financial practitioners to tackle
previously unsolvable problems in risk management, trading, and asset allocation.

As we stand at this inflection point, with deep learning capabilities advancing at an unprece-
dented pace, the integration of artificial intelligence into financial markets appears not merely
inevitable but already well underway. The question is no longer whether deep learning (and Al
as a whole) will transform finance but, rather, how quickly and in what specific directions this
transformation will proceed.

References

Bennell, Julia, and Charles Sutcliffe. 2004. “Black-Scholes versus Artificial Neural Networks in
Pricing FTSE 100 Options.” Intelligent Systems in Accounting, Finance & Management 12 (4):
243-60. doi:10.1002/isaf.254.

Bilokon, Paul. 2025. “Deep Econometrics.” Working paper (2 June). doi:10.2139/ssrn.5286898.

Bilokon, Paul, and Valeria Varlashova. 2025. “Tail-Aware Portfolio Optimization Using Hoeffding-
Informed Thresholds.” Working paper (22 May). doi:10.2139/ssrn.5265442,

Buehler, Hans, Lukas Gonon, Josef Teichmann, and Ben Wood. 2019. “Deep Hedging.”
Quantitative Finance 19 (8): 1271-91. doi:10.1080/14697688.2019.1571683.

Buehler, Hans, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben Wood. 2020.
“Generating Financial Markets with Signatures.” Working paper (21 July). doi:10.2139/
ssrn.3657366.

Buhler, Hans, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben Wood. 2020. “A Data-
Driven Market Simulator for Small Data Environments.” Working paper (21 June). doi:10.48550/
arXiv.2006.14498.

Bussmann, Niklas, Paolo Giudici, Dimitri Marinelli, and Jochen Papenbrock. 2021. “Explainable
Machine Learning in Credit Risk Management.” Computational Economics 57 (1): 203-16.
doi:10.1007/s10614-020-10042-0.

CFA Institute Research Foundation ¢ 87


https://doi.org/10.1002/isaf.254
http://dx.doi.org/10.2139/ssrn.5286898
http://dx.doi.org/10.2139/ssrn.5265442
https://doi.org/10.1080/14697688.2019.1571683
https://doi.org/10.2139/ssrn.3657366
https://doi.org/10.2139/ssrn.3657366
https://doi.org/10.48550/arXiv.2006.14498
https://doi.org/10.48550/arXiv.2006.14498
https://doi.org/10.1007/s10614-020-10042-0

Al in Asset Management: Tools, Applications, and Frontiers

Cao, Jay, Jacky Chen, John Hull, and Zissis Poulos. 2021. “Deep Hedging of Derivatives
Using Reinforcement Learning.” Journal of Financial Data Science 3 (1): 10-27. doi:10.3905/
jfds.2020.1.052.

Capriotti, Luca, and Mike Giles. 2024. “15 Years of Adjoint Algorithmic Differentiation (AAD)
in Finance." Quantitative Finance 24 (9): 1353-79. doi:10.1080/14697688.2024.2325158.

Charpentier, Arthur, Romuald Elie, and Carl Remlinger. 2023. “Reinforcement Learning
in Economics and Finance.” Computational Economics 62 (1): 425-62. doi:10.1007/
s10614-021-10119-4.

Cho, K., B. van Merrienboer, D. Bahdanau, and Y. Bengio. 2014. “On the Properties of Neural
Machine Translation: Encoder-Decoder Approaches.” Proceedings of SSST-8, Eighth Workshop
on Syntax, Semantics and Structure in Statistical Translation: 103-11.

Dixon, Matthew Francis, Ivan Gvozdanovic, and Dominic O'Kane. 2023. “Time Consistent
Reinforcement Learning for Optimal Consumption under Epstein-Zin Preferences.
Working paper (14 March). doi:10.2139/ssrn.4388762.

Dixon, Matthew, and Igor Halperin. 2020. "G-Learner and GIRL: Goal Based Wealth Management
with Reinforcement Learning.” Working paper (25 February). doi:10.48550/arXiv.2002.10990.

Dixon, Matthew F., Igor Halperin, and Paul Bilokon. 2020. Machine Learning in Finance:
From Theory to Practice. Cham, Switzerland: Springer.

Dixon, Matthew, Diego Klabjan, and Jin Hoon Bang. 2017. “Classification-Based Financial
Markets Prediction Using Deep Neural Networks." Algorithmic Finance 6 (3-4): 67-77.
doi:10.3233/AF-170176.

Ferguson, Ryan, and Andrew Green. 2018. “Deeply Learning Derivatives.”
Working paper (17 October). doi:10.48550/arXiv.1809.02233.

Goodfellow, lan J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. 2014. “Generative Adversarial Nets." Proceedings of the
27th International Conference on Neural Information Processing Systems 2: 2672-80.

Goodfellow, lan. 2016. Deep Learning: Adaptive Computation and Machine Learning.
Cambridge, MA: MIT Press.

Gradojevic, Nikola, Ramazan Gencay, and Dragan Kukolj. 2009. “Option Pricing with Modular
Neural Networks." IEEE Transactions on Neural Networks 20 (4): 626-37. doi:10.1109/
TNN.2008.2011130.

Graves, A., G. Wayne, and |. Danihelka. 2014. “Neural Turing Machines.” arXiv (10 December).
doi:10.48550/arXiv.1410.5401.

Graves, A., G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska,
S. G. Colmenarejo, E. Grefenstette, and T. Ramalho. 2016. “Hybrid Computing Using a Neural
Network with Dynamic External Memory.” Nature 538 (7626): 471-76.

Halperin, Igor. 2017. "QLBS: Q-Learner in the Black-Scholes (-Merton) Worlds."
Working paper (17 December). doi:10.48550/arXiv.1712.04609.

88 e« CFA Institute Research Foundation


https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.1080/14697688.2024.2325158
https://doi.org/10.1007/s10614-021-10119-4
https://doi.org/10.1007/s10614-021-10119-4
https://doi.org/10.2139/ssrn.4388762
https://doi.org/10.48550/arXiv.2002.10990
https://doi.org/10.3233/AF-170176
https://doi.org/10.48550/arXiv.1809.02233
https://doi.org/10.1109/TNN.2008.2011130
https://doi.org/10.1109/TNN.2008.2011130
https://doi.org/10.48550/arXiv.1410.5401
https://doi.org/10.48550/arXiv.1712.04609

Deep Learning

Halperin, Igor. 2024. “Distributional Offline Continuous-Time Reinforcement Learning with
Neural Physics-Informed PDEs (SciPhy RL for DOCTR-L).” Neural Computing & Applications
36 (9): 4643-59. doi:10.1007/s00521-023-09300-7.

Halperin, Igor, and Matthew Dixon. 2020. “‘Quantum Equilibrium-Disequilibrium':
Asset Price Dynamics, Symmetry Breaking, and Defaults as Dissipative Instantons.”
Physica A 537 (1 January). doi:10.1016/j.physa.2019.122187.

Halperin, Igor, Jiayu Liu, and Xiao Zhang. 2022. “"Combining Reinforcement Learning and Inverse
Reinforcement Learning for Asset Allocation Recommendations.” Working paper (6 January).
doi:10.48550/arXiv.2201.01874.

Hambly, Ben, Renyuan Xu, and Huining Yang. 2023. “Recent Advances in Reinforcement
Learning in Finance.” Mathematical Finance 33 (3): 437-503. doi:10.1111/mafi.12382.

Harguess, Josh, and Chris M. Ward. 2022. “Is the Next Winter Coming for Al? Elements of
Making Secure and Robust Al." In 2022 IEEE Applied Imagery Pattern Recognition Workshop
(AIPR), 1-7. doi:10.1109/AIPR57179.2022.10092230.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. "Deep Residual Learning for Image Recognition.”
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-78.

Hinton, Geoffrey E., and Ruslan Salakhutdinov. 2006. “Reducing the Dimensionality of Data
with Neural Networks.” Science 313 (5786): 504-07. doi:10.1126/science.1127647.

Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation
9 (8): 1735-80.

Horvath, Blanka, Anastasis Kratsios, Yannick Limmer, and Xuwei Yang. 2023. “Deep Kalman
Filters Can Filter." Working paper (27 October). doi:10.13140/RG.2.2.22953.57445.

Horvath, Blanka, Aitor Muguruza, and Mehdi Tomas. 2021. “Deep Learning Volatility:
A Deep Neural Network Perspective on Pricing and Calibration in (Rough) Volatility Models."
Quantitative Finance 21 (1): 11-27. doi:10.1080/14697688.2020.1817974.

Huang, Guang-Bin. 2015. “What are Extreme Learning Machines? Filling the Gap between Frank
Rosenblatt's Dream and John von Neumann's Puzzle." Cognitive Computation 7 (3): 263-78.

Huge, Brian, and Antoine Savine. 2020. “Differential Machine Learning.” Working paper
(30 September). doi:10.48550/arXiv.2005.02347.

Hutchinson, James M., Andrew W. Lo, and Tomaso Poggio. 1994. “A Nonparametric Approach
to Pricing and Hedging Derivative Securities via Learning Networks.” Journal of Finance 49 (3):
851-89. doi:10.1111/j.1540-6261.1994.tb00081 .x.

Jaddu, Koti S., and Paul A. Bilokon. 2024. "Deep Learning with Reinforcement Learning on Order
Books." Journal of Financial Data Science 6 (1): 61-84. doi:10.3905/jfds.2024.1.149.

Jaeger, H., and H. Haas. 2004. "Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication.” Science 304 (5667): 78-80.

Jones, Edward G. 1999. “Golgi, Cajal and the Neuron Doctrine." Journal of the History of the
Neurosciences 8 (2): 170-78. doi:10.1076/jhin.8.2.170.1838.

CFA Institute Research Foundation ¢ 89


https://doi.org/10.1007/s00521-023-09300-7
https://doi.org/10.1016/j.physa.2019.122187
https://doi.org/10.48550/arXiv.2201.01874
https://doi.org/10.1111/mafi.12382
https://doi.org/10.1109/AIPR57179.2022.10092230
https://doi.org/10.1126/science.1127647
http://dx.doi.org/10.13140/RG.2.2.22953.57445
https://doi.org/10.1080/14697688.2020.1817974
https://doi.org/10.48550/arXiv.2005.02347
https://doi.org/10.1111/j.1540-6261.1994.tb00081.x
https://doi.org/10.3905/jfds.2024.1.149
https://doi.org/10.1076/jhin.8.2.170.1838

Al in Asset Management: Tools, Applications, and Frontiers

Kingma, D. P., and M. Welling. 2014. "Auto-Encoding Variational Bayes.” arXiv (1 May).
doi:10.48550/arXiv.1312.6114.

Kohonen, T. 1990. “The Self-Organizing Map.” Proceedings of the IEEE 78 (9): 1464-80.

Kolm, Petter N., and Gordon Ritter. 2019a. “Dynamic Replication and Hedging: A Reinforcement
Learning Approach.” Journal of Financial Data Science 1 (1): 159-71. doi:10.3905/jfds.2019.1.1.159.

Kolm, Petter N., and Gordon Ritter. 2019b. “Modern Perspectives on Reinforcement Learning
in Finance." Working paper (6 September). doi:10.2139/ssrn.3449401.

Kolm, Petter N., Jeremy Turiel, and Nicholas Westray. 2023. “Deep Order Flow Imbalance:
Extracting Alpha at Multiple Horizons from the Limit Order Book."” Mathematical Finance
33 (4): 1044-81. doi:10.1111/mafi.12413.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-Based Learning Applied
to Document Recognition.” Proceedings of the IEEE 86 (11): 2278-324.

Ma, Yanqing, Carmine Ventre, Renzo Tiranti, and Aiming Chen. 2025. "Deep Generative
Calibration on Stochastic Volatility Models with Applications in FX Barrier Options.” In SAC '25:
Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing, 122-30.

Maass, W., T. Natschlager, and H. Markram. 2002. “Real-Time Computing without Stable States:
A New Framework for Neural Computation Based on Perturbations.” Neural Computation
14 (11): 2531-60.

Makhzani, A., and B. J. Frey. 2013. "k-Sparse Autoencoders.” arXiv (19 December). doi:10.48550/
arXiv.1312.5663.

Malliaris, Mary, and Linda Salchenberger. 1993. “A Neural Network Model for Estimating Option
Prices.” Applied Intelligence 3 (3): 193-206. doi:10.1007/BF00871937.

McCulloch, Warren, and Walter Pitts. 1943. “A Logical Calculus of the Ideas Immanent to
Nervous Activity.” Bulletin of Mathematical Biophysics 5 (4): 115-33.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, llge Akkaya, Florencia
Leoni Aleman, et al. 2023. “"GPT-4 Technical Report.” Working paper (15 March). doi:10.48550/
arXiv.2303.08774.

Pendharkar, Parag C., and Patrick Cusatis. 2018. “Trading Financial Indices with Reinforcement
Learning Agents.” Expert Systems with Applications 103 (August): 1-13. doi:10.1016/j.eswa.
2018.02.032.

Rosenblatt, F. 1957. “The Perceptron—A Perceiving and Recognizing Automaton.” Cornell
Aeronautical Laboratory 85 (460-1).

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning Representations
by Back-Propagating Errors.” Nature 323 (6088): 533-36. doi:10.1038/323533a0.

Ruud, Paul Arthur. 2000. An Introduction to Classical Econometric Theory. New York: Oxford
University Press.

90 ¢ CFA Institute Research Foundation


https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.3905/jfds.2019.1.1.159
https://dx.doi.org/10.2139/ssrn.3449401
https://doi.org/10.1111/mafi.12413
https://doi.org/10.48550/arXiv.1312.5663
https://doi.org/10.48550/arXiv.1312.5663
https://doi.org/10.1007/BF00871937
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1016/j.eswa.2018.02.032
https://doi.org/10.1016/j.eswa.2018.02.032
https://doi.org/10.1038/323533a0

Deep Learning

Sabour, S., N. Frosst, and G. E. Hinton. 2017. “Dynamic Routing between Capsules.”
arXiv (26 October). doi:10.48550/arXiv.1710.09829.

Schuster, M., and K. K. Paliwal. 1997. “Bidirectional Recurrent Neural Networks.”
IEEE Transactions on Signal Processing 45 (11): 2673-81.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, et al. 2016. “Mastering the Game of Go with Deep Neural
Networks and Tree Search.” Nature 529 (7587): 484-89. doi:10.1038/nature16961.

Sobakinskikh, Ilia, and Paul Alexander Bilokon. 2025. “Optimizing Transformer Neural
Network for Real-Time Outlier Detection on FPGAs." Journal of FinTech 5 (1). doi:10.1142/
S2705109925500014.

Sridi, Abir, and Paul Bilokon. 2023. “Applying Deep Learning to Calibrate Stochastic Volatility
Models." Working paper (25 September). doi:10.48550/arXiv.2309.07843.

Stoiljkovic, Zoran. 2025. “Advanced Option Pricing and Hedging with Q-Learning: Performance
Evaluation of the QLBS Algorithm.” Journal of Derivatives 32 (3): 48-79. doi:10.3905/
jod.2025.1.222.

Stok, Robert, Paul Bilokon, and Joseph Simonian. 2024. “From Deep Learning to Deep
Econometrics.” Journal of Financial Data Science 6 (2): 54-73. doi:10.3905/jfds.2024.1.155.

Sutton, Richard S. 2020. Reinforcement Learning: Adaptive Computation and Machine Learning,
2nd ed. Cambridge, MA: MIT Press.

Tsay, Ruey S. 2010. Analysis of Financial Time Series, 3rd ed. Hoboken, NJ: Wiley.

Varlashova, Valeria, and Paul Alexander Bilokon. 2025. “Optimal Allocation with Continuous
Sharpe Ratio Covariance Bandits." Journal of Financial Data Science 7 (3): 171-91. doi:10.3905/
jfds.2025.1.191.

Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol. 2008. “Extracting and Composing
Robust Features with Denoising Autoencoders.” In ICML ‘08: Proceedings of the 25th
International Conference on Machine Learning, 1096-103.

Yao, Jingtao, Yili Li, and Chew Lim Tan. 2000. “Option Price Forecasting Using Neural Networks.”
Omega 28 (4): 455-66. doi:10.1016/S0305-0483(99)00066-3.

Zejnullahu, Frensi, Maurice Moser, and Joerg Osterrieder. 2022. “Applications of Reinforcement
Learning in Finance—Trading with a Double Deep Q-Network.” Working paper (28 June).
doi:10.48550/arXiv.2206.14267.

CFA Institute Research Foundation ¢ 91


https://doi.org/10.48550/arXiv.1710.09829
https://doi.org/10.1038/nature16961
https://doi.org/10.1142/S2705109925500014
https://doi.org/10.1142/S2705109925500014
https://doi.org/10.48550/arXiv.2309.07843
https://doi.org/10.3905/jod.2025.1.222
https://doi.org/10.3905/jod.2025.1.222
https://doi.org/10.3905/jfds.2024.1.155
https://dx.doi.org/10.3905/jfds.2025.1.191
https://dx.doi.org/10.3905/jfds.2025.1.191
https://doi.org/10.1016/S0305-0483(99)00066-3
https://doi.org/10.48550/arXiv.2206.14267

REINFORCEMENT LEARNING AND
INVERSE REINFORCEMENT LEARNING:
A PRACTITIONER'S GUIDE FOR
INVESTMENT MANAGEMENT

Igor Halperin, PhD

Group Data Science Leader, GenAl Asset Management Technology, Fidelity Investments

Petter N. Kolm, PhD
Clinical Professor, Director of the MS in Mathematics in Finance Program,
Courant Institute of Mathematical Sciences, New York University

Gordon Ritter, PhD

Adjunct Professor, Courant Institute of Mathematical Sciences and
Tandon School of Engineering, New York University

Partner, Ritter Alpha, LP

Introduction

Traditional quantitative finance relies heavily on predictive models: forecasting returns, estimat-
ing volatilities, predicting default probabilities. These supervised learning approaches excel at
pattern recognition but fall short when the goal is to determine what actions to take in dynamic,
uncertain environments where decisions have lasting consequences.

Consider a portfolio manager deciding how to rebalance a multiasset portfolio. Traditional
approaches might forecast expected returns and use mean-variance optimization. This static
approach ignores several crucial factors, however:

e Transaction costs and market impact that depend on order size and timing

e The dynamic nature of markets where today's trades affect tomorrow's opportunities

e The need to adapt strategies as market conditions evolve

e Risk considerations that go beyond simple variance measures

Reinforcement learning (RL) is a branch of machine learning capable of addressing these

issues. RL is concerned with how intelligent agents should take actions in an environment to
maximize some notion of cumulative reward, as we will explain in more detail later. Unlike super-

vised learning, where an agent is given explicit “correct answers,” an RL agent learns through
experience—by trying out actions and observing the consequences.

Inverse reinforcement learning addresses the complementary problem: Given observed
behavior from an expert (successful trader, market participant, or even the market itself),
what underlying objectives or preferences explain that behavior? This approach is particularly

92 « © 2025 CFA Institute Research Foundation. All rights reserved.



Reinforcement Learning and Inverse Reinforcement Learning

valuable in finance, where true utility functions are rarely known explicitly but observed
behavior is abundant.

Why RL and IRL Matter for Finance

The relevance of RL to finance stems from several key characteristics:

Sequential decision making: Most financial problems involve sequences of interdependent deci-
sions. A trade execution strategy unfolds over time, with each trade affecting market condi-
tions for subsequent trades. Portfolio rebalancing decisions today influence the risk-return
profile tomorrow.

Uncertainty and adaptation: Financial markets are inherently uncertain and nonstationary.
Successful strategies must adapt to changing conditions. RL agents can learn to recognize
different market regimes and adjust their behavior accordingly.

Delayed and complex rewards: The consequences of financial decisions often manifest with sig-
nificant delays and through complex causal chains. A hedging decision today may prove its
worth only during a market crisis months later.

Market impact and feedback loops: In many financial contexts, an agent's actions influence the
environment itself. Large trades move prices, which affects subsequent trading opportuni-

ties. This dynamic creates feedback loops that traditional static optimization cannot capture.

A Practitioner’s Guide to RL Fundamentals

The RL Framework: Key Components

Understanding RL begins with its core components (Sutton and Barto 2018).

Agent

The agent is a decision maker that represents a market participant, such as a risk taker, liquidity
provider, market maker, or institutional or retail trader. The agent operates (acts) over a time
interval [0, T], where T is the planning/acting time horizon. Most RL algorithms are formulated
for discrete time steps. With a slight abuse of notation, which is quite common in the RL litera-
ture, we use the symbol t to denote both the discrete-value time and the index on the time grid,
so that we can write t = 0,1,...,T. Depending on the specific setting, T can vary between millisec-
onds and months or even years.

Environment

The environment is the market structure or venue where the agent operates and takes actions.
In finance, this includes the following:

e Electronic limit order books (exchanges, such as NYSE and Nasdaq)

e Over-the-counter (OTC) markets for bonds and derivatives

e Alternative trading systems (dark pools, crossing networks)

e Auction mechanisms (opening/closing auctions)
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e Bilateral negotiation markets (institutional block trading)

e Market-maker networks and dealer markets

State (S)

The state is a snapshot of all relevant information available to the agent at a given time.
Examples include the following:

e Current portfolio positions and cash holdings

e Market data: prices, volumes, spreads, volatility measures

e Order book depth and imbalance (if observable)

e Recent price movements and technical indicators

e Time of day, calendar effects, and time to market close

e Macroeconomic indicators and news sentiment

e Risk metrics: value at risk (VaR), exposure concentrations, correlation estimates

Action (A)
Action consists of the choices available to the agent:

e Trade quantities and directions (buy/sell/hold)
e Order types and timing
e Portfolio allocation adjustments

e Risk management decisions (hedging, position sizing)

Reward (R)

Reward is the feedback signal that guides learning. The reward in RL is typically assumed to
be received at each time step t €[0, T] over the course of action of the agent, where T is a time
horizon. The reward at time step t is usually defined to be a function of action A, taken at this
step, as well as the current-step and next-step values of the state variable—respectively, S, and
S..1, so it is usually written as R(S,,A, S..1). In finance, rewards typically reflect the following:

e Profit and loss (P&L)

e Risk-adjusted returns (Sharpe ratio, information ratio)

e Transaction costs and market impact

e Risk penalties (VaR, conditional value at risk, drawdown measures)

Policy (n)

The policy is the agent's strategy—a mapping from states to actions. This is what the RL algo-
rithm learns and optimizes. Depending on the type of the specific RL algorithm, the policy can
be deterministic, when the same current state always produces the same action, or it can be
stochastic. In the latter case, instead of being a function, the policy is given by a probability
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distribution, such that for a given state, only the probabilities of different actions, rather than
actions themselves, are fixed.

By definition, the optimal policy is a policy that maximizes the total expected reward from
taking actions.” The latter quantity is often written as follows:

.
E {Ze-Y‘R(St,At,Sm)}.
t=0

Here, E*[-] stands for the expected value assuming that policy & will be used to pick all future
actions A,. Furthermore, y[0,1] is a discount factor that specifies how much immediate
rewards are more preferred over rewards received in the future. The meaning of the discount
factor, v, in RL is quite similar to the meaning of the discount factor in finance. The expected
total reward defined in Equation 1 is often referred to as the return in the RL literature.

Example: Optimal Trade Execution

To help contextualize the foregoing information, consider an optimal execution problem in
which you need to sell 100,000 shares of a stock over the next hour:

State: Remaining shares to sell (100,000 — 0), current stock price, bid-ask spread, order book
depth, time remaining (60 minutes — 0), recent volatility
Actions: Number of shares to sell in the current time period (0 to remaining quantity)

Rewards: Execution price received minus a penalty for price impact and inventory risk—for
example,

R, = Price received - A, x Market impact - A, X Inventory risk.
Policy: A function that determines how many shares to sell given the current state

The RL agent learns through trial and error, experimenting with different execution rates under
various market conditions, gradually improving its strategy based on the rewards received.

Mathematical Foundations: MDPs and Beyond

Markov Decision Processes

The mathematical foundation for many RL problems is the Markov decision process (MDP),
defined by the tuple (S,A,P,R,Y):

e S =Set of possible states. States can be continuous or discrete.

e A =Setof possible actions. Actions can be continuous or discrete.

o P(S.:|S.A,) = State transition probabilities.

e R(S,A.S..) = Reward function.

e ve [0,1] = Discount factor for future rewards.

This definition applies to the most commonly used version of RL, called the risk-neutral RL. Other modeling choices will
be described later.
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The key assumption is the Markov property: The future depends on only the current state, not
the history of how we arrived there. This assumption allows one to define the state dynamics
in terms of single-step transition probabilities P(S,.; | S, A;) that reference only the current-step
and next-step values of the state variable. Although the Markovian assumption may appear
somewhat restrictive for financial applications, it can often be satisfied by including sufficient
information in the state representation.

Partially Observable Environments

In practice, financial environments are often partially observable. Traders do not have access

to all relevant information—such as other participants’ intentions, unrevealed news, central bank
decisions, and so on. This situation leads to partially observable MDPs (POMDPs), where agents
receive observations O, that provide only partial information about the true state, S,.

Financial POMDP Example: Trading with Hidden Liquidity

Consider a trader executing a large order in a market with hidden liquidity (e.g., dark pools
or iceberg orders):

e True state S;: Total available liquidity at each price level (including hidden orders)
e Observation O,: Only visible order book depth
o Belief state b,: Probability distribution over possible hidden liquidity levels

e Action A;: Order size and aggressiveness

The agent must maintain a belief state b, = P(S, | 0O...A;..1) and update it using Bayesian inference:

P

btﬂ(s,) _ r+1 | b ZP(S |A )b (S
t+1

POMDPs are significantly more complex to solve, often requiring agents to maintain belief
states (probability distributions over possible true states). However, they provide a more
realistic model of financial decision making under uncertainty.

Bellman Equations: The Optimization Principle

Historically, RL grew out of dynamic programming, developed by Richard Bellman in the 1960s.
Dynamic programming offers a systematic approach to the problem of sequential control that
essentially relies on additivity of the RL return defined in Equation 1. With dynamic program-
ming, the total return is viewed as a function of either the current state or a combination of
the current state and the first action taken. In the former case, the total return (Equation 1) is
referred to as the value function (or V-function), while in the latter case, it is referred to as the
value-action function (or Q-function). The policy optimization amounts to finding an optimal
policy 1. that maximizes the V-function or the Q-function. The optimal V- and Q-functions are
denoted, respectively, as V*(S,) and Q(S,,A,). These functions satisfy recursive relations known
as Bellman optimality equations:

Vi( ):maxa{E[RHJSt:s,At :a]+VZP(s'|s,a)V*( 1.

96 -« CFA Institute Research Foundation



Reinforcement Learning and Inverse Reinforcement Learning

Q'(s,a)=E[R,,,|S, =s,A =a]+ yZP(s’ |s,a)max_Q(s",a’).

These equations state that the optimal value of a state (or state-action pair) equals the
expected immediate reward plus the discounted expected value of the best possible next state.

The classical dynamic programming typically focuses on solution of the first Bellman optimality
equation for the V-function for low-dimensional and discrete sets of states and action, while
assuming that the dynamics of the transitions between states are known. Such constraints on
the dimensionality of a state-action space and the need for an explicit model of the environ-
ment presented severe limitations for the use of dynamic programming for many real-life appli-
cations where the dimensionality of the state-action space is high and where the explicit model
of the world is typically not available or hard to estimate.

Respectively, one approach of RL extends the dynamic programming formulation of sequential
decision-making problems to models with a high-dimensional continuous or discrete state-action
space, without assuming that dynamics of the world are known. Instead, this approach, known
as the value-based RL, relies on samples from data obtained from interactions of an agent with
its environment, giving rise to sample-based solutions of Bellman optimality equations.

Value-Based RL vs. Policy-Gradient vs. Actor-Critic Methods

The value-based RL that uses value or action-value functions together with Bellman equations is
not the only available approach to RL. Other approaches exist that do not rely on Bellman equa-
tions but, rather, directly optimize a parameterized policy to maximize the total return defined

in Equation 1. These methods are collectively known as policy-gradient methods. The most
basic policy-gradient method, REINFORCE, is very simple to implement but has the drawback

of producing high variance for total returns (Sutton and Barto 2018). Finally, with actor-critic

RL methods, two different parameterized functions are used to represent the value function

and the policy function. Actor-critic methods produce lower variance of total returns than pure
policy-gradient methods.

RL Algorithm Landscape

Classical Algorithms

Perhaps the most famous RL algorithm is the value-based RL algorithm called Q-learning.
It learns the optimal action-value function, Q’(s,a), through temporal difference updates:

Q( ,a) «Q( ,a)+o¢[Rm+ymaxa,Q( @) —Q( ,a):|.

The Q-learning algorithm can be interpreted as a sample-based solution of the Bellman opti-
mality equation for the Q-function. For discrete state-action systems, values of the Q-functions
for different combinations of the state and action can be stored in a table in which rows and
columns correspond to different values of the state and action, while the Q-update equa-

tion shown here is used to update the values in the table upon observing a new state and
rewards from taking a certain action in the current state. This process is referred to as tabular
Q-learning. Q-learning is considered “off-policy," meaning it can learn the optimal policy while
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following a different (exploratory) policy. A different form of tabular learning is presented by the
SARSA algorithm, an “on-policy” alternative that updates according to the action actually taken:

Q(s.a) « Q(s,a) + o[Ruq + YQ(Se1,ar1) — Q(s,a)].

From Tabular to Deep Learning: Function Approximation
and Deep RL

Financial state spaces are typically enormous or continuous (asset prices, portfolio weights,
market indicators). Function approximation addresses this situation by learning parame-
terized functions that approximate value functions (for value-based RL methods), policies
(for policy-gradient methods), or both (for actor-critic methods). Although many machine
learning approaches (e.g., trees) are able to produce universal function approximation meth-
ods, today, various versions of artificial neural networks serve as the most popular function
approximation approach.

Among value-based deep RL methods, deep Q-networks (DQNs) are most widely known. DQNs
combine Q-learning with deep neural networks, enabling RL to handle high-dimensional state
spaces. In addition to using deep neural networks for value function approximation, DQNs
introduce other innovations that improve their training. In particular, they use experience replay,
which amounts to storing and randomly sampling past experiences for training. The other
innovations are target networks: separate networks for stability during training.

With policy-gradient methods, function approximations are used to approximate policies

(for pure policy-based approaches, such as REINFORCE) or both value and policy functions

(for actor-critic methods). Function approximations for both functions are also used in proximal
policy optimization (PPO) algorithms—a policy-gradient method that uses a clipped objective
function to ensure that policy updates stay within a certain “trust region,” which makes training
more stable.

Model-Based vs. Model-Free RL

One of the main paradigms of RL is its reliance on learning directly from experience, without
modeling environment dynamics. This is commonly referred to as model-free RL. Examples of
model-free RL methods include Q-learning and policy gradients, outlined previously. Model-free
RL approaches have both pros and cons:

e Pros: Simple to implement, effective when dynamics are unknown/complex

e Cons: Sample inefficient, requires many interactions

An alternative to model-free RL is model-based RL. With this approach, one first learns a model
of environment dynamics and then uses this model for planning. In a sense, model-based RL
takes us one step back to the setting of dynamic programming, which likewise assumes that
the dynamics of the environment are known. Model-based RL methods have their own pros
and cons:

e Pros: More sample efficient, enables planning and scenario analysis

e Cons: Possibility of model errors compounding, more complex to implement
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For financial applications, the choice between model-free and model-based RL depends
on the specific problem. High-frequency trading with complex, fast-changing dynamics
might favor model-free approaches, whereas strategic asset allocation could benefit from
model-based methods.

Online vs. Offline RL

Another important distinction between different RL algorithms concerns how they are trained.
In online RL methods, an agent learns by taking actions and observing rewards received from its
environment. Such settings are very common in applications of RL in robotics. The important
question faced by the agent is how to optimally combine taking actions that have previously
shown good reward versus trying new actions whose rewards will be observed only after

trying them. This problem is known as the exploration-exploitation dilemma of RL (Sutton

and Barto 2018).

A different setting is provided by offline RL. In this formulation, the agent learns the optimal
policy without a direct interaction with its environment but, rather, using historical data col-
lected from previous interactions of another (or the same) agent with the same environment.
In this setting, the agent can no longer rely on trial-and-error methods to find optimal actions:
The exploration-exploitation dilemma was already addressed (potentially not optimally!) by the
previous agent. As a result of its inability to explore different actions in interaction with its envi-
ronment, offline RL is generally harder than online RL. However, the setting of offline RL closely
matches the setting of classical financial models that are typically fit to fixed datasets consist-
ing some historical data.

Risk-Aware RL: Beyond Expected Returns

The total return given by the sum of all future reward is clearly a random quantity as seen at the
start of agent's action (at time 0) because it depends on future states and actions that are not
yet known at time 0. This situation is quite similar to how the future return of an investment
portfolio is a random quantity at the initial time of portfolio initiation. However, the standard

RL optimizes only the expected cumulative reward (i.e., the mean of this distribution) and

does not try to control its higher moments, such as variance, kurtosis, or tail risk measures.
Again similar to classical financial settings, this condition is often not sufficient for the practical
purposes of using RL for financial applications, where we want to control not only the mean
future total reward but also risk, or variability around this mean, as expressed, for example, by
the variance of the total reward. Because standard RL does not address risk/uncertainty around
the mean expected total reward, it is sometimes referred to as risk-neutral RL.

Because financial decision making is inherently risk sensitive, risk-neutral RL is often inadequate
for this task, especially if pure P&L (or return) is taken as the reward for RL. Several extensions
address this limitation.

Risk-Sensitive RL

Mean-variance RL incorporates both expected return and variance into the reward:

Reward = E[Return] - A x var[Return].
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In this approach, one uses a risk-adjusted return as a reward function, very much in the spirit of
the classical Markowitz portfolio theory. The attractive property of this approach is that it still
can use the risk-neutral RL formulation, where the variance penalty is simply added to the defi-
nition of the reward such that we still optimize its expected (mean) value. The other attractive
feature of this specification is that the reward defined by this relation is a quadratic function of
actions, which tremendously simplifies the RL algorithm and in fact enables its implementation
without using any neural networks altogether (Dixon, Halperin, and Bilokon 2020). The known
drawback of using variance as a risk measure is that it penalizes both negative and positive
returns, while ideally we may want to penalize only negative returns.

By using conditional value at risk (CVaR) as the risk penalty component of the reward function,
RL methods with such rewards directly optimize tail risk measures, which is crucial for downside
protection. Unlike mean-variance RL, which can proceed without using neural nets, RL methods
that use CVAR typically need to use deep neural networks as function approximation tools.

Risk-constrained RL methods are similar to CVAR-based approaches. They maximize expected
returns subject to risk constraints, such as maximum drawdown or VaR limits.

Distributional RL

Instead of learning expected values, distributional RL learns the full probability distribution of
cumulative future rewards. Having access to the full distribution of the total reward allows one
to compute any risk measure (e.g., VaR, CVaR, skewness) for the ultimate decision making.
Such algorithms as quantile regression DQN (QR-DQN) and implicit quantile networks (IQNs)
represent the return distribution using quantiles, making them particularly suitable for financial
applications focused on tail risks. Distributional RL can also be constructed with the continuous
time formulation. With this approach, policy optimization amounts to a numerical solution of
certain partial differential equations (Halperin 2024).

Use Cases for RL Applications in Finance

Here, we provide a brief outlook for various use cases for RL in financial applications. Without
attempting a detailed presentation, we focus here on the few key elements, including specifica-
tions of state, action, and reward, as well as outlining implementation consideration.

Optimal Trade Execution

Problem Setting

A fundamental problem for any large institutional investor is how to execute a large order
with minimal price disruption. Standard benchmarks such as time-weighted average price or
volume-weighted average price provide simple, static schedules but fail to adapt to changing
market conditions during the execution horizon. An RL agent, in contrast, can learn a dynamic
policy that breaks a large “parent” order into a sequence of smaller “child” orders, adapting
the pace of trading to minimize costs. The core challenge is to balance the trade-off between
the market impact cost of trading aggressively and the timing risk of trading slowly in a
volatile market.
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RL Formulation

The problem is naturally framed as a finite-horizon MDP. The state space typically includes the
remaining quantity to be traded, the time left in the execution window, current asset price,

and potentially microstructure features, such as order book imbalance or recent volatility. The
action is the size of the child order to submit in the current time slice. The reward function is
crucial and must encapsulate the trade-off: It is often formulated as the negative of implemen-
tation shortfall or, more explicitly, the execution price achieved, penalized by terms representing
price slippage resulting from market impact and the risk exposure of the remaining inventory.

Implementation Considerations

A significant challenge is developing a realistic market impact model, which can be either
estimated offline from historical data or learned online as part of the RL agent's interaction.
Furthermore, a robust execution agent must be able to generalize across different market
volatility regimes and asset-specific behaviors. For training and validation, a high-fidelity market
simulator that can accurately model price dynamics and market impact is indispensable because
training in a live market is impractical and costly. Finally, the learned policy must operate within
the constraints of regulatory requirements, such as “best execution” mandates.

Dynamic Portfolio Optimization

Problem Setting

Classical single-period portfolio optimization, such as Markowitz's mean-variance framework, is
static and highly sensitive to estimation errors in its inputs (expected returns and covariances).
Its static nature prevents optimal portfolio allocation decisions in terms of minimization of trans-
action costs or optimal use of multihorizon predictive signals. Dynamic portfolio optimization
extends the static mean-variance framework to a multiperiod setting, where an RL agent learns a
rebalancing policy over a long horizon. This approach aims to maximize cumulative risk-adjusted
returns while accounting for real-world frictions, such as transaction costs and market impact.

RL Formulation

The state space for a dynamic portfolio agent includes the current portfolio weights, recent asset
returns, market regime indicators (e.g., from a hidden Markov model), and predictive macroeco-
nomic factors. The action space is the set of target portfolio weights for the next period. Because
weights are continuous variables, this problem is ill suited for tabular RL methods and requires
function approximation. The reward is typically a risk-adjusted return metric, such as the period’s
Sharpe ratio or a utility function of the portfolio’'s return, net of transaction and holding costs.

Implementation Considerations

The continuous and high-dimensional nature of the state and action spaces makes this applica-
tion of RL challenging in practice. Advanced techniques are often used in this setting. In particu-
lar, with hierarchical RL approaches, the problem can be decomposed into a high-level strategic
allocation agent that sets broad targets over long horizons (e.g., quarterly) and a low-level tac-
tical agent that makes finer adjustments (e.g., monthly) to achieve those targets. Alternatively,
multi-objective RL can be considered to navigate the complex trade-offs between competing
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goals, such as maximizing returns, minimizing volatility, and reducing portfolio turnover to limit
transaction costs. Lastly, a computationally efficient and noise-robust approach particularly
helpful for financial portfolio optimization tasks is provided by G-learning, a probabilistic exten-
sion of Q-learning. This method was applied to goal-based wealth management by Dixon and
Halperin (2020).

Option Pricing and Hedging

Problem Setting

The classical Black-Scholes-Merton model (Black and Scholes 1973; Merton 1974) provides a
cornerstone for derivative pricing but relies on idealized assumptions, such as continuous and
costless hedging, that do not hold in practice. When hedging is discrete and involves transaction
costs, the problem of pricing and hedging a derivative becomes a sequential decision-making
problem under uncertainty. The goal is to design a dynamic hedging strategy that minimizes

a risk-adjusted measure of the total hedging cost. Several RL-inspired frameworks have been
developed to address this problem, moving beyond the classical risk-neutral paradigm.

RL Formulation and Approaches

Two main classes of methods have emerged, which can be broadly understood as value-based
and policy-based approaches to the hedging problem.

Value-Based RL

The QLBS Model proposed by Halperin (2020) directly applies the principles of value-based RL.
The problem is framed as an MDP where the agent (an option seller) seeks to learn an optimal
hedging policy. The state is defined by the underlying asset price and time to expiration. The
action is the hedge adjustment (the amount of the underlying to hold). The reward function is
defined as the negative of a risk-adjusted hedging cost. For tractability, this cost takes a qua-
dratic form (mean-variance utility), including a penalty for the variance of the hedge portfolio's
value, which directly incorporates the hedger's risk aversion. The agent learns an optimal action-
value function (Q-function), from which both the optimal hedge policy and the corresponding
option price (the negative of the Q-value) are derived simultaneously.

Deep value-based RL for option hedging is a more end-to-end approach that has been explored.
Du, Jin, Kolm, Ritter, Wang, and Zhang (2020) applied state-of-the-art DRL algorithms, such as
proximal policy optimization (PPO), to learn hedging strategies directly from market simula-
tions. A key advantage of their framework is its ability to handle practical market frictions, such
as discrete trading times and nonlinear transaction costs. Furthermore, their approach is highly
efficient because a single trained DRL agent can learn to hedge a whole range of option strikes
simultaneously, eliminating the need for retraining on a per-strike basis. The authors demon-
strated that the DRL agent can learn strategies that match or outperform traditional delta
hedging in terms of profit and loss.

Direct Policy Optimization

An alternative framework is deep hedging, pioneered by Buehler, Gonon, Teichmann, and Wood
(2019). This approach can be seen as a form of direct policy optimization. Instead of solving
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the recursive Bellman equation, it frames the entire hedging problem as a single end-to-end
optimization. A neural network is used to directly represent the hedging policy, taking the
current market state as input and outputting the hedge position. The training process involves
the following:

e Simulating a large number of market scenarios (paths) for the underlying asset(s)
e Foreach path, applying the hedging strategy defined by the current neural network
e Calculating the final P&L distribution of the fully hedged portfolio across all paths

e Using backpropagation to update the neural network’s weights to minimize a chosen
risk measure of this final P&L distribution (e.g., CVaR, mean-variance utility, or expected
shortfall)

Implementation Considerations

All RL approaches directly address the limitations of the classical model by embedding real-
world frictions, such as discrete hedging and transaction costs. However, they differ in their
philosophy and implementation. The QLBS approach aligns closely with traditional RL theory
(MDPs, Bellman equations, Q-functions) and can be computationally efficient when its qua-
dratic reward assumption leads to semi-analytical solutions, as explored in fitted Q-iteration
(Ernst, Geurts, and Wehenkel 2005). Also, because Q-learning is a model-independent method,
the QLBS approach amounts to a model-independent and data-driven option hedging and pric-
ing method. Deep hedging, while conceptually related, is implemented as a global optimization
that is very flexible; changing the risk objective simply means changing the final loss function. It
is inherently a model-based approach because it learns the optimal policy for a given simulation
model of the market (e.g., Heston, SABR). The power of neural networks also allows it to handle
very complex and non-Markovian state representations.

End-to-End Deep RL for Asset Allocation

Problem Setting

Traditional quantitative asset allocation involves a two-step process: First, predict expected
returns and covariances, and second, use these predictions in an optimization framework (e.g.,
mean-variance). This process is fragile because performance is highly sensitive to errors in the
initial prediction step. A more robust approach would be to learn the mapping from market data
to portfolio weights in an end-to-end fashion.

RL Formulation and Approaches

Noguer i Alonso and Srivastava (2020) proposed a model-free, end-to-end deep reinforcement
learning approach that bypasses the explicit forecasting step. The RL agent learns a direct
mapping from raw market data to optimal portfolio weights.

e State: The state is represented as a tensor of recent price history (e.g., 50 days of high, low,
and close prices for a universe of stocks).

e Agent: The agent is a deep neural network (the authors tested various architectures, such as
CNNs, RNNs, and LSTMs) that learns the allocation policy.
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e Action: The action is an output vector of portfolio weights for the next period.

e Reward: The reward is a simple and direct financial objective, such as the portfolio's aver-
age logarithmic return, adjusted for transaction costs. To encourage stable portfolios, the
architecture incorporates a “portfolio vector memory,” which considers past weights when
determining new ones and implicitly penalizes high turnover.

Implementation Considerations

This end-to-end framework learns to predict and optimize simultaneously. Noguer i Alonso and
Srivastava (2020) showed it can construct portfolios that outperform traditional methods, such
as mean-variance optimization and risk parity, even when only given raw price series as input.
The use of a portfolio memory is a key architectural choice to control for turnover, which is a
critical practical consideration.

Algorithmic Trading

Problem Setting

Algorithmic trading seeks to automate trading decisions to capitalize on market opportunities
more efficiently than human traders can. The core challenge is to develop a strategy that can
adapt to changing market conditions and dynamically balance the trade-off between expected
returns and various forms of risk.

RL Formulation and Approaches
The problem is naturally framed as an MDP where an agent learns an optimal trading policy.

e State space: This includes such features as historical price data, technical indicators (e.g.,
moving averages), market volatility, and the agent’s current portfolio state (cash and asset
holdings).

e Action space: This consists of such actions as buying, selling, and holding assets. The action
can be discrete (e.g., buy one unit) or continuous (e.g., allocate 15% of capital).

e Reward function: The reward function is typically defined to reflect a risk-adjusted return
measure. A simple profit-and-loss reward can be augmented with risk measures, such
as a penalty for high portfolio variance, large drawdowns, or a direct optimization of the
Sharpe ratio.

A comprehensive review by Pricope (2021) considered the application of deep RL to this
problem, noting that many studies show statistically significant outperformance over simpler
baselines in simulated environments.

Implementation Considerations

A key challenge highlighted in the literature is the gap between simulated performance and
real-world applicability. Many studies are proofs of concept conducted in environments that
do not fully capture real-time market frictions, latency, and data imperfections. Successful
implementation requires careful consideration of transaction costs, market impact, and robust
out-of-sample validation.
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Market Making

Problem Setting

Market making is a high-frequency strategy in which a trader provides liquidity by simultane-
ously placing bid and ask limit orders, aiming to profit from the spread. The main challenge is

to set optimal quotes that balance maximizing spread capture against managing two key risks:
inventory risk (holding a large, undiversified position) and adverse selection risk (trading against
an informed counterparty who knows where the price is headed).

RL Formulation and Approaches

The market making problem is well suited to an MDP formulation where the agent learns an
optimal quoting strategy.

e State space: This encompasses the agent's current inventory, features of the limit order
book (e.g., bid-ask spread, volume imbalance), and market indicators, such as volatility.

e Action space: This includes setting the bid and ask quotes relative to the market midpoint
and deciding the size of the orders to be placed.

e Reward function: Carefully designed, this function rewards captured spreads while penaliz-
ing inventory risk and losses from adverse selection.

Spooner, Fearnley, Savani, and Koukorinis (2018) presented a foundational example in which a
deep RL agent learns to perform market making. Their agent learns a value function to optimize
quotes, demonstrating that an RL approach can outperform traditional stochastic control-based
strategies in simulated environments.

Implementation Considerations

The primary challenge in applying RL to live market making is latency. High-frequency environ-
ments require decisions on microsecond timescales, which can be difficult for complex neural
network models to meet. Furthermore, creating a high-fidelity market simulator that accurately
captures order flow dynamics and adverse selection is a significant undertaking yet is crucial for
training a robust agent.

Inverse Reinforcement Learning: Inferring
Hidden Objectives

Reinforcement learning learns optimal policies given known objectives, as codified by rewards.
The reward in RL is observable, as a result of online interaction of an agent with its environment
or for offline RL, as a part of historical data. In many real-world problems, however, we observe
only agents’ actions—not their reward. Arguably, in real life, such scenarios are encountered
more often relative to scenarios where rewards are observed. The ultimate objective of learn-
ing in this setting is still the same as in the RL scenario—that is, to learn the optimal policy

by observing the agent's behavior. In contrast to the standard RL scenario, however, we now
observe only the states of the environment and actions taken by the agent and do not observe
rewards received by the agent.
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Clearly, without additional assumptions, such problems do not have a solution. For example, if
an agent's actions are purely random, not much (if anything) can be learned from such obser-
vations. If we assume that the agent's actions were supposed to achieve some objectives,
however, then we can address the inverse problem: Given observed behavior, what objectives
explain that behavior?

If the objective is to maximize the total expected reward, this inverse problem formulation gives
rise to inverse reinforcement learning (IRL). IRL uses the observed behavior of an agent and
infers the reward function that is assumed to be optimized by the agent. Note that in most IRL
applications, such inference of the reward function is not the end goal. The end goal is rather the
same as in conventional (direct) RL, which is to find the optimal policy that maximizes the total
expected reward. Unlike the task of RL, however, where rewards are a part of the inputs, in IRL
we first have to infer them from the behavior, and then we use them to find the optimal policy.

The Challenge of IRL: An lll-Posed Problem

As with many inverse problems, IRL is an ill-posed problem: For any given set of observed
behaviors, an infinite number of reward functions could explain that behavior. For instance,
a policy of doing nothing is optimal for a reward of zero but also for any reward function that
depends only on the state, not the action. This is the issue of reward shaping invariance: an
optimal policy is unchanged if we transform the reward function by adding a potential-based
term (Ng, Harada, and Russell 1999).

In order to have a solution, one needs to make additional assumptions about the agent in order
to select the "best” or most plausible reward function from the many possibilities. One such
assumption can be that the agent’s behavior is optimal or close to optimal. Although such
assumptions may be reasonable in some applications (e.g., robotics), it is hardly appropriate in
finance, where optimality does not even exist in absolute terms and can be defined only relative
to some benchmark.

IRL vs. Imitation Learning

The other question that can be asked in relation to the declared objective of IRL is, Why do

we need to first infer the reward, as long as we assume that the observed behavior is already
optimal? Can we simply build a supervised learning-type model that would simply mimic the
observed behavior of an agent in different states of the world, without even asking a question
about the agent's reward function? It turns out that such strategies are indeed feasible in certain
circumstances, and the subfield of machine learning that studies these methods is known as
imitation learning (IL). Although IL and IRL have the shared final goal of finding optimal policy
from the observed behavior, they differ in the intermediate steps. IRL infers the reward function
as the intermediate step, while IL proceeds without it. In general, IRL methods often work better
than IL methods, and they offer more flexible and portable solutions because a reward function
offers a succinct description of agents’ goals that is portable across different environments
(Dixon et al. 2020). Therefore, we will mostly focus on IRL methods for financial applications.

Key IRL Approaches

To deal with its ill-posed nature, IRL methods impose additional principles to find a unique
reward function.
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Maximum Entropy IRL

The maximum entropy (MaxEnt) IRL principle is a popular approach to regularize the problem
(Ziebart, Maas, Bagnell, and Dey 2008).

e Principle: Among all reward functions that explain the expert's behavior, choose the one that
makes the expert's policy as random as possible (i.e., maximizes its entropy). The intuition is
to match the observed behavior while being maximally non-committal about behavior that
hasn't been observed.

e Probabilistic policy: This principle naturally leads to a stochastic policy in which the prob-
ability of taking an action is exponentially proportional to its value. This is often called a
Boltzmann or softmax policy.

e Implementation: This approach turns IRL into a maximum likelihood problem on the
observed expert trajectories. The main computational challenge is often calculating the nor-
malization constant (partition function) for this policy distribution, which requires summing
or integrating over all possible actions at each step.

Bayesian and Gaussian Process IRL

Another way to handle the ill-posed nature of IRL is through a Bayesian lens. Instead of seeking
a single best-fit reward function, Bayesian IRL aims to find a posterior distribution over all plausi-
ble reward functions, given the observed expert data.

Gaussian process IRL (GPIRL) is a specific and powerful nonparametric implementation of this
idea (Levine, Popovi¢, and Koltun 2011).

e Principle: A Gaussian process (GP) is placed as a prior over the unknown reward function.
A GP can be thought of as a “distribution over functions.” It provides a flexible way to repre-
sent the belief that the reward function is likely to be smooth, without having to specify its
exact functional form (e.g., linear or quadratic).

e Learning process: Starting with this GP prior, the algorithm observes the expert's state-
action trajectories. It then uses Bayesian inference to update the prior, resulting in a poste-
rior distribution over reward functions that are consistent with the observed behavior.

e Benefits: The main advantage is flexibility. GPIRL can capture complex, nonlinear reward
functions without manual feature engineering. This ability makes it particularly suitable
for financial applications for which the relationship between market states and a trader's
implicit rewards can be highly nuanced. This method was notably used in the financial
applications discussed later.

Adversarial Imitation Learning
A different and powerful class of methods frames imitation learning as a two-player game.

e Generative adversarial imitation learning (GAIL): Ho and Ermon (2016) proposed GAIL,
which does not explicitly recover a reward function. It trains a generator (the agent’s policy)
to produce state-action trajectories that are indistinguishable from an expert's trajectories,
as judged by a discriminator. The discriminator is trained simultaneously to tell the differ-
ence between the agent's and the expert's behavior. GAIL is pure imitation learning.
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Adversarial inverse reinforcement learning (AIRL): Finn, Christiano, Abbeel, and Levine
(2016) extended this framework by structuring the discriminator in a specific way. In AIRL,
the discriminator’s output can be decomposed to recover not only a policy but also a reward
function. This approach elegantly connects adversarial learning back to the original goal

of IRL.

T-REX: Learning from Ranked Demonstrations

Standard IRL often assumes expert demonstrations are (nearly) optimal. This can be a strong
and often incorrect assumption. Trajectory-ranked reward extrapolation (T-REX) offers a power-
ful alternative by learning from demonstrations of varying quality (Brown, Goo, Nagarajan, and
Niekum 2019).

Principle: Instead of a set of optimal demonstrations, T-REX uses a set of trajectories that
have been ranked by preference (e.g., “trajectory A is better than B"). It does not require
knowing the absolute quality, only the relative ranking.

Learning intent: The objective is to learn a reward function such that the total reward
assigned to each trajectory is consistent with the given ranking. By learning what
makes one trajectory better than another, T-REX can infer the underlying intent of the
demonstrator.

Surpassing the teacher: Because it learns an underlying reward function rather than simply
mimicking actions, the learned reward can be used with a standard RL algorithm to find a
policy that is even better than the best demonstration provided. This is a crucial step toward
building agents that can learn from and improve on human behavior.

Inverse Reinforcement Learning in Action:
Financial Use Cases

IRL opens up new avenues for analyzing financial behavior and markets. In this section,
we present a short and nonexhaustive overview of applications of IRL in the financial domain.

Algorithmic Trading Strategy Identification

Problem: High-frequency trading (HFT) firms use a diverse set of strategies. Regulators

and market operators are interested in identifying and clustering these strategies from
observable order data to monitor market health and detect manipulative behavior. Standard
clustering based on statistical features of trading activity (e.g., order-to-trade ratio) can be
crude and may not capture the underlying objectives.

IRL approach: Yang, Qiao, Beling, Scherer, and Kirilenko (2015) pioneered an approach using
Bayesian IRL (specifically, Gaussian process IRL). Their approach treats HFT strategies as
"experts” and uses their observed order placements (actions) in the limit order book (state)
to infer the reward function each strategy is optimizing. By clustering strategies based on
the parameters of their learned reward functions, they achieved more meaningful and inter-
pretable groupings of behavior than by using simple statistical features. The reward func-
tion captures the agent's implicit trade-offs between, for instance, aggressive execution and
inventory risk.
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Sentiment-Based Trading Strategies

e Problem: Build a trading system that systematically exploits the relationship between
investor sentiment and market dynamics.

e IRL approach: Yang, Yu, and Almahdi (2018) framed the problem using GPIRL. Their
approach treats aggregate news sentiment as the “action” of a single, collective market
agent. The market state is defined by recent price dynamics, and GPIRL is used to infer the
reward function that this collective agent is maximizing. This learned reward function, which
implicitly captures how the “market” values taking bullish or bearish actions given certain
conditions, can then be used by a direct RL agent to make its own trading decisions.

Inferring Customer Preferences in Consumer Finance

e Problem: Businesses offering subscription or recurring utility services (e.g., mobile data
plans, cloud computing, energy) need to understand customer behavior to design better
products and pricing plans. Customer decisions, such as daily consumption, are sequential
and depend on the current state (e.g., remaining quota, days left in the billing cycle).

e IRL approach: This problem can be framed as inferring a customer’s latent utility (reward)
function from their observed consumption patterns. A MaxEnt IRL algorithm for this prob-
lem was proposed by Dixon et al. (2020). It uses a parametric reward function that captures
the trade-offs a customer makes, including the utility of consumption, a penalty for exceed-
ing a quota (and paying an overage price), and a potential reward for forgoing consumption.
By observing a customer's consumption history, the MaxEnt IRL algorithm finds the utility
parameters that make the observed behavior most probable.

Once this customer-specific utility function is learned, the firm can perform powerful counter-
factual simulations. For example, it can predict how that customer’s consumption would change
if the monthly price were lowered or the data quota were increased. This ability provides a
principled, data-driven method for product design and targeted marketing that goes far beyond
simple statistical analysis.

Goal-Based Wealth Management and Robo-Advising

e Problem: A core challenge in wealth management is optimizing a client’s portfolio over a
long horizon to meet a specific goal, such as funding retirement. This problem differs from
standard portfolio optimization because it involves periodic cash flows (contributions during
the accumulation phase, withdrawals during decumulation) in addition to asset rebalancing.
The objective is often to reach a target wealth level, a more intuitive goal for retail investors
than maximizing a Sharpe ratio or tracking a mean-variance-efficient frontier.

e IRL-RL approach: Dixon and Halperin (2020) proposed a two-part framework to tackle this
problem.

1. G-learner (the RL agent): First, they define a direct RL agent, the G-learner, which solves
the goal-based wealth management problem. The G-learner uses a specific quadratic
reward function that penalizes underperformance relative to a target wealth path and
accounts for transaction costs. By defining actions as absolute dollar changes in asset
positions, it handles cash flows naturally and scales to high-dimensional portfolios.
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This G-learner serves as a powerful, computationally tractable solver for the direct
RL problem.

2. GIRL (the IRL method): The second part, GIRL (G-learning IRL), addresses the inverse
problem. Many investors cannot explicitly define their reward function parameters (e.g.,
their exact risk aversion or how they weigh tracking a benchmark versus growth). GIRL
takes the observed trading history of an investor (or a human portfolio manager) and
infers the most likely reward function parameters that the investor was implicitly opti-
mizing. It assumes the investor behaves like a G-learner and uses maximum likelihood
to find the reward parameters that best explain the observed actions.

e Application to robo-advising: The combination of these two algorithms creates a power-
ful tool for robo-advising. GIRL can be used to learn the implicit reward functions (i.e., the
investment “styles” and risk preferences) of successful human portfolio managers. This
learned "best-in-class” reward function can then be given to the G-learner, which computes
a new, enhanced optimal policy. This process creates a system that can learn from human
expertise, formalize it, and then use Al to find an even better strategy, providing superior,
data-driven recommendations.

Learning Optimal Asset Allocation from Collective Behavior
of Fund Managers

e Problem: How can we learn from the collective behavior of a group of active fund manag-
ers to provide improved asset allocation recommendations? Although individual managers
are experts, their decisions can contain noise or suboptimal biases. A method is needed to
distill their collective wisdom while filtering out individual errors.

e IRL-RL approach: Halperin, Liu, and Zhang (2022) proposed a practical two-step framework
that combines IRL and RL to learn from and improve on the investment practices of a group
of fund managers.

Step 1: Infer collective intent (IRL): The framework first takes the historical trading data
from a group of fund managers with similar investment mandates (e.g., large-cap
growth funds). The historical performance of these funds is used to rank their trajec-
tories. Using the T-REX algorithm, the system learns a single, shared reward function
whose parameters are optimized to be consistent with these performance rankings.
This step infers the collective intent of the group—what objectives, on average, lead
to better performance within this peer group.

Step 2: Optimize policy (RL): The collective reward function learned in the IRL step is
then passed to a direct RL agent (the G-learner). This agent solves for the optimal asset
allocation policy that maximizes this reward function. Because the reward function is
based on the distilled wisdom of the entire group, the resulting policy is often superior
to the strategies of the individual managers it learned from.

e Application as an assistant: This framework is designed not to replace portfolio managers
but to assist them. The output of the RL step is a set of recommended asset allocation
changes (e.g., reweighting portfolio exposure across industry sectors). Managers can use
these recommendations as a data-driven input to refine their own decisions, leveraging the
collective intelligence of their peers to improve performance. This demonstrates a practical
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human-machine interaction loop, where IRL learns from human experts and RL provides
optimized suggestions to them.

High-Frequency Market Making with Imitation Learning

e Problem: Traditional HFT models for market making, such as the Avellaneda-Stoikov model,
are often calibrated on historical data and make strict assumptions about market dynamics
(e.g., stable order flow, specific price processes). These models struggle to adapt when real-
world market conditions diverge from these assumptions. Standard RL approaches, on the
other hand, can be sample-inefficient and often optimize myopically for single-step actions,
which can lead to compounding errors and poor inventory management in HFT.

e Imitation learning approach (FlowHFT): To address these challenges, Li, Chen, and Yang
(2025) proposed FlowHFT, a novel framework based on imitation learning. Instead of
assuming a single expert model is best for all conditions, FlowHFT learns from a diverse set
of expert demonstrations. It simulates various market scenarios (e.g., high/low volatility,
trending/mean-reverting) and identifies the best-performing traditional model (e.g., AS,
GLFT) for each specific scenario.

e Flow-matching policy: The core of the framework is a flow-matching policy. This is a sophis-
ticated generative model that learns to map a market state to a sequence of optimal trading
actions. It does so by learning a “flow"” that transforms a simple noise distribution into the
complex distribution of expert actions observed across all market scenarios. This process
allows a single, adaptive model to integrate the knowledge of many specialized experts.
Crucially, it learns to generate entire action sequences over a planning horizon, which inher-
ently considers the near-term consequences of actions and helps mitigate the compound-
ing errors seen in single-step RL.

e Application: The trained FlowHFT model can adaptively generate trading decisions suitable
for the prevailing market state, effectively leveraging the best strategy from its library of
learned experts. Li et al. (2025) showed that their single framework can consistently out-
perform the best individual expert model in each tested market condition, demonstrating
a powerful application of imitation learning to build robust, adaptive HFT agents.

Computational Requirements and Infrastructure:
Hardware and Software Ecosystem

Implementing RL for financial applications requires careful consideration of computational
infrastructure:

Hardware requirements

e Development phase: GPU-enabled workstations (NVIDIA RTX 3090 or better) for deep RL
algorithms
e Production phase: Low-latency inference servers for real-time decision making

e Memory requirements: 32GB+ RAM for experience replay buffers in high-frequency
applications
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Software stack

e RL frameworks:
= Stable Baselines3: Production-ready implementations of standard algorithms
= RLlib: Distributed training for large-scale applications
= TF-Agents/PyTorch RL: For custom algorithm development
e Market simulators:
= ABIDES: Agent-based market simulator for microstructure research
= FinRL: Integrated environment for financial RL applications

= Custom simulators using historical tick data

Challenges and Frontiers

Although RL and IRL hold immense promise for finance, practitioners must navigate a set of
significant challenges before these methods can be widely and reliably deployed.

Key Challenges
The following are some of the main challenges for RL and IRL:

e Sample efficiency and data requirements: RL agents, particularly model-free ones, often
learn through extensive trial and error. Financial data, although vast, can be noisy, and the
number of truly independent historical scenarios is limited. This situation makes it difficult
to train agents that are robust to rare but critical market events, such as financial crises.

e Nonstationarity of financial markets: The core assumption of a stationary MDP is often
violated in finance. Market dynamics, volatility regimes, and correlation structures evolve
over time. A policy learned on historical data may become suboptimal or even detrimental
when market conditions change. This dynamic necessitates continuous learning or adaptive
models that can detect and adjust to regime shifts.

e Fidelity of simulation environments: Training and validating RL agents, especially for high-
stakes applications, require a realistic market simulator. For example, for applications for
trading in the limit order book, building a simulator that accurately captures market micro-
structure, order flow dynamics, latency, and the feedback loop of market impact is an
extremely challenging problem in itself. An agent that performs well in a flawed simulation
may fail spectacularly in a live market.

e Reward specification and risk sensitivity: For direct RL, defining a reward function that perfectly
aligns with a long-term financial objective is nontrivial. A myopic reward (e.g., single-period
profit) can lead to undesirable behavior, such as excessive risk taking. As discussed, standard
RL optimizes for expected returns (risk neutrality), whereas financial applications almost
always demand explicit management of risk (e.g., variance, tail risk, drawdown). Risk-sensitive
and distributional RL can therefore present a particular interest for financial applications.

e Interpretability and trust: Many modern RL agents, especially those using deep neural net-
works, function as “black boxes.” This lack of transparency is a major hurdle for adoption in
a highly regulated industry where portfolio managers and risk officers need to understand
and justify investment decisions.
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The Research Frontiers

Addressing these challenges is the focus of ongoing research. Several exciting frontiers are
emerging that are particularly relevant for finance:

e Model-based RL and learned simulators: To improve sample efficiency, researchers are
developing agents that simultaneously learn a policy and a model of the environment.
A learned world model can be used to generate simulated experiences, allowing the agent
to “plan” and learn much faster than by relying solely on real market data.

e Explainable Al (XAl) for RL/IRL: A critical area of research is the development of methods to
make the decisions of RL/IRL agents more transparent. Such techniques as sensitivity anal-
ysis and feature attribution can help practitioners understand which market signals are driv-
ing an agent’s actions, fostering greater trust and facilitating model risk management.

e Multi-agent RL (MARL): Financial markets are inherently multi-agent systems. MARL moves
beyond the single-agent paradigm to model the strategic interactions between multiple
learning agents (e.g., competing high-frequency traders, interacting institutional investors,
networks of broker/dealers in OTC markets). Similarly, multi-agent IRL aims to deconvolve
the observed market dynamics into the behaviors and objectives of distinct classes of
agents, which is a significant step beyond “single representative agent” models.

e RL with large language models (LLMs): The intersection of RL and LLMs is a rapidly developing
area with significant implications for finance. LLMs can process and synthesize vast amounts of
unstructured text data, such as news, filings, and social media, creating a richer, more nuanced
state representation for an RL agent. Beyond simply enhancing the state, the methods used to
align LLMs with human intent are directly applicable to financial decision making.

= Reinforcement learning from human feedback (RLHF): This is the established tech-
nique used to fine-tune models such as ChatGPT. It involves a multistage process:
First, a reward model is trained on human preference data (e.g., a human ranks several
model-generated responses). Then, this reward model is used to fine-tune the LLM's
policy using an RL algorithm (such as PPO). In a financial context, this approach could
be adapted to align a trading or allocation agent with the complex, hard-to-specify intu-
ition of an expert portfolio manager. A manager could provide qualitative feedback by
ranking several trade proposals generated by the agent, allowing the system to learn
the manager's implicit risk preferences and market views without the manager having
to articulate an explicit utility function.

= Direct policy optimization: Although powerful, RLHF is a complex and potentially unsta-
ble multistage process. Rafailov, Sharma, Mitchell, Ermon, Manning, and Finn (2023)
introduced a more elegant and direct method called direct preference optimization
(DPO), which bypasses the need for an explicit reward model. It uses a clever math-
ematical re-parameterization to show that the reward-modeling-plus-RL objective
can be optimized directly on the preference data with a single, stable loss function.
This approach significantly simplifies the training process. For finance, DPO offers a
more robust and efficient way to fine-tune an RL agent's policy based on direct human
preference data.

= Group preference optimization: A limitation of both RLHF and DPO is their focus on
a single preference provider. In many financial settings, decisions must satisfy multi-
ple stakeholders with potentially conflicting objectives (e.g., a pension fund manager
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balancing the needs of different beneficiary groups or a team of traders with diverse
market views). Zeng, Zhang, Yang, and Chen (2024) formalized this problem as group
preference optimization (GPO), a multi-agent extension of DPO. GPO learns a single
policy that represents a social welfare optimum—a Condorcet winner—that is most
preferred by the group as a whole. This approach provides a principled framework

for building RL agents that can learn from and make decisions for a group of diverse
financial experts or stakeholders.

Case Study: Trading and Option Hedging

In this section, we apply RL to building trading and option hedging strategies. We begin by
exploring how RL can be used in trading, focusing on the ability of Al to discover optimal strat-
egies despite market frictions, the definition of optimality in finance, and ways to encode risk
preferences within the RL framework.

Next, we examine how various reward functions and state representations arise naturally in
trading problems. We discuss how to formulate RL problems to reflect real financial objectives,
such as maximizing expected utility, managing risk, or hedging derivatives.

We then introduce simple illustrative models—mean-reversion trading and option hedging—that
demonstrate the mechanics of RL in finance and reveal key practical challenges. These foun-
dational examples set the stage for more-advanced RL methods, including policy-gradient and
deep RL approaches. As a practical complement to the discussion, we provide an open-source
code example implementing the mean-reversion trading model, allowing readers to experiment
with RL in a real trading context.

By the end of the case study, you will have a practical understanding of how to frame trading
problems within the RL paradigm, design reward and state structures aligned with investment
objectives, and interpret the results and limitations of RL-based trading strategies. This founda-
tion prepares you for further study of deep RL, risk-sensitive methods, and real-world deploy-
ment in quantitative finance.

Defining Optimality and the Role of the Reward Function
in Trading

We begin this section by discussing some worthwhile questions that motivated the first investi-
gations into the application of RL to optimal trading strategies.

Question 1. Can an artificial intelligence autonomously identify an optimal dynamic trading
strategy, accounting for transaction costs, without prior knowledge of the strategy’s structure?

AlphaGo Zero (Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, et al. 2017) is
a historically important RL system that learned to play with “zero” human guidance, given only
the rules of the game and the chance to play against a simulator. Question 1 asks, What are the
various financial analogues of AlphaGo Zero—where an RL agent learns trading or investment
strategies from first principles, with minimal human guidance?

Question 2. In the context of Question 1, how should we define an optimal strategy? Is opti-
mality inherently subjective, or can we rigorously quantify the strategy that a rational decision
maker would employ?
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In finance, we define a strategy as optimal if it maximizes the expected utility of terminal
wealth. This notion is grounded in the seminal work of von Neumann and Morgenstern (1944),
who showed that if a decision maker (a) faces uncertain (probabilistic) outcomes and (b) has
preferences satisfying four axioms of rational behavior, then the decision maker will behave as
if maximizing the expected value of a utility function u, defined over possible outcomes. For
further details, see Benveniste, Kolm, and Ritter (2024). When applied to trading or investment
management, the relevant outcome is typically terminal wealth wy, so the rational agent's
objective becomes

E[u(wy)]. (1)

This principle underpins modern portfolio theory (Markowitz 1952; Merton 1969; Merton 1971)
and provides the foundation for quantitative models of optimal investment and trading. We
express terminal wealth as the sum of initial wealth w, and the cumulative increments in wealth
over time:

w_o=w,+ Y w, (2)
where
W, == W, - w4 (3)
denotes the wealth increment at time t and T is the final time.

Although it might be tempting to maximize E[w;] directly, doing so ignores risk and can lead to
paradoxes or undesirable outcomes. In contrast, maximizing expected utility E[u(w;)] incorpo-
rates risk preferences appropriately. Chamberlain (1983) and Benveniste et al. (2024) showed
that the equivalence between maximizing expected utility and using mean-variance optimi-
zation is much broader than most practitioners realize. The classic mean-variance approach
remains theoretically justified across a wide range of realistic return distributions—not just
under the normality assumption. Specifically, this result applies whenever the distribution of
terminal wealth is mean-variance equivalent (MVE), a broad class that includes all elliptical dis-
tributions, such as the normal and multivariate t-distributions, as well as a family of asymmetric
distributions with well-defined first and second moments. In such cases, a rational agent's pref-
erences over risky outcomes can be fully characterized by the mean and variance of terminal
wealth, and the optimal strategy reduces to maximizing expected return penalized by risk,

as in the classical Markowitz mean-variance framework (Markowitz 1952). We clarify those
assumptions next.

Assumption 1 (Discreteness). Trading occurs at discrete times (t=1,...,T), and final wealth is
given by Equation 2.

Assumption 2 (Portfolios). There exists a set of portfolios (h,,...,hr4) known at t = 0 such that
dw, = heyry (4)

where h, is the dollar holdings vector at time t and r, is the random vector of asset returns
over [t-1,t].

Assumption 3 (Independence). If t # s, then r,and r, are independent.
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Assumption 4 (Mean-Variance Equivalence). For each t, the distribution of r, is mean-variance
equivalent.

Assumption 5 (Utility). The utility function is increasing and concave, and it has continuous
derivatives up to second order.

The assumption that the distribution is MVE is perhaps the most interesting one. Although the
mean-variance optimization framework dates back to Markowitz's pioneering work in the early
1950s, the precise conditions under which mean-variance optimization is truly equivalent to
expected utility maximization were only recently clarified by Benveniste et al. (2024). This dis-
tinction is central in our context, because a von Neumann-Morgenstern rational investor aims
to maximize E[u(wy)], whereas the reward signal in Equation 11 takes a mean-variance form.
Under the MVE condition, these objectives are, in fact, equivalent. Specifically, there exists
some constant

k>0, (5)
that depends on initial wealth w, and the investor’s utility function, such that maximizing
Elu(wr)] (6)
is equivalent to maximizing
1
E[WT]—EKV[WT]. (7)
In the following, we focus on
maximize{]E[wT]—gV[wT ]}. (8)

The first example of a reward signal appropriate for mean-variance utility in the context of RL
was provided by Ritter (2017), which we now describe (see also Ritter 2018). Suppose we could
invent some definition of reward (R,) such that

Elw, ——V[w iR 9)

Then, the optimization problem (Equation 8) looks like the kind of “cumulative reward over time"
problem that is typical in RL. RL searches for policies that maximize

E[G] =E[Ru1 + YRuz + VPR3 + ..1], (10)
which by Equation 9 would then maximize expected utility as longas y= 1.

We consider the reward function proposed by Ritter (2017):
wi=8 | ——(dw,—fi), (11)

where [i is an estimate of a parameter representing the mean wealth increment over one
period, (u:= E[dw,]). Then, averaging over T periods yields

1T 1\ K1 2
_Z‘ ?Zs AT (dw, -41)’, (12)
—E[dw, ] —V[w,]

—~
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where for large T, the first term approaches the sample mean and the second approaches
the sample variance of the wealth increments. Thus, with the reward function (Equation 11),
maximizing cumulative reward implies maximizing the mean-variance form of expected utility.

State Variables for Trading Problems

The state variable (s,) is a data structure that, simply put, should contain everything the agent
needs to make an informed trading decision and nothing else. Variables that are natural
candidates for inclusion in the state are

e the current position or holding in the asset,
e the values of any signals that are believed to be predictive,

e the current state of the market, including current price and any relevant microstructure/limit
order book details, and

e if the portfolio includes contracts with expirations, such as futures or options, the time
remaining until expiry.

In trading problems, the most natural choice for an action is the number of shares to trade, 6n,.
This choice identifies the action space (A c Z). When market microstructure effects are signif-
icant, the action space may need to be expanded. For example, the agent could decide which
execution algorithm to use, choose between crossing the spread or submitting a passive order,
or set the target participation rate. If one of the assets is an option, the agent may also have the
ability to take additional actions, such as early exercise.

Trading Examples

In this section, we present two simple examples—mean-reversion trading and option hedging—
that highlight key ideas and challenges in applying RL in trading.

Mean Reversion

We assume there exists a tradable asset with a strictly positive price process p, > 0. This “asset”
could be a portfolio of other assets, such as an exchange-traded fund or a hedged relative value
trade. Further suppose that there exists an “"equilibrium price” p, such that x, = log(p./p.) has
dynamics

dx, = —Ax, + &, (13)

where &, ~ N(0,1) and &, are independent when t # s. This means that p, tends to revert to its
long-run equilibrium level, p,, with mean-reversion rate A.

These assumptions describe a scenario that is close to an arbitrage: Positions established far
from equilibrium have a very small probability of loss and highly asymmetric gain/loss profiles.
Initially, we do not allow the agent to know anything about the dynamics. That is, the agent
does not know A, ¢, or even that some dynamics of Equation 13 are valid. The agent also does
not know there are trading costs. We impose a spread cost of one tick per trade. If the bid-offer
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spread were equal to two ticks, then this proportional cost would correspond to the slippage
incurred by an aggressive fill that crosses the spread to execute. Hence,

SpreadCost(dn) = TickSize - |8n|. (14)

Additionally, we assume there is a temporary price impact with a linear functional form: Each
round lot traded is assumed to move the price one tick, hence leading to a dollar cost

on, x TickSize/LotSize (15)
per share traded, for a total dollar cost for all shares
ImpactCost(6n) = (6n)? x TickSize/LotSize. (16)
Together, the total trading cost is given by
Cost(dn) = Multiplier x [SpreadCost(6n) + ImpactCost(6n)]. (17)

This functional form matches the t-cost assumptions of Almgren and Chriss (1999). In fact,
the Almgren-Chriss model of optimal execution can be learned by an RL agent, similar to the
Ornstein-Uhlenbeck trading model discussed here.

The state variable at time ¢,

5:= (ptlnt—1)l (1 8)

consists of the current asset price, p,, and the agent's position in shares, n,, at the start
of the period.

As a proof of concept and in the spirit of exhausting the simplest method first, Ritter (2017)
trained a tabular Q-learner with n,,,;, = 107 training steps and then evaluated the system on
5,000 new samples of the stochastic process; see Exhibit 1.

These results look encouraging. We simulated a simple dynamic wherein we know there is an
arbitrage, analogous to a game where it is actually possible to win. The machine then learns

to play this game and develops a profitable strategy. How well did the agent really learn? To
find the answer, we examine a cross-section of its learned action-value function g, a diagnostic
that reveals not only whether the agent profits but also how it chooses actions across different
states. This deeper analysis helps us move beyond performance to evaluate the quality and
reliability of the learned policy (see Exhibit 2).

The main weakness of the tabular method is that it estimates each element

q(s.a) (19)

in isolation, without any smoothing across neighboring states or any inherent continuity.
In this example, the optimal action choice exhibits a natural monotonicity, which we now
describe intuitively.

If the current holding is h = 0 and for some price p < p, the optimal action is to buy 100 shares,
then for any lower price p’< p, the optimal action should be to buy at least 100 shares. As
Exhibit 2 illustrates, however, for large prices, the tabular value function often oscillates
between different decisions, violating this monotonicity. This behavior reflects estimation
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Exhibit 1. Tabular Q-Learner with 107 Training Steps, Evaluated
on 5,000 New Samples

Simulated Net P/L over 5,000 Out-of-Sample Periods
3e+06 A

2e+06 A

P/L

1e+06 A

0e+00 A

0 1,000 2,000 3,000 4,000 5,000
Time Periods

Notes: This exhibit uses simulated data. P/L stands for profit/loss.

error and incomplete convergence, even after millions of iterations. The tabular value function
also tends to collapse to a trivial form in the far-left tail because those states are rarely visited
during training.

All these issues stem from the same fundamental limitation: the use of a finite, tabular state
space. Methods that rely on discretizing the state space inevitably break down as dimension-
ality increases. For example, if the state vector included 10 variables, each taking 100 possible
values, the number of parameters to estimate would reach into the billions. The solution to
this curse of dimensionality is to move beyond tabular methods and adopt continuous state
spaces with function approximation in RL. In the next section, we illustrate this approach with
a concrete example.

Option Hedging with Transaction Costs

We now consider another problem of interest to traders: hedging an option position. For clarity,
we focus on the simplest possible case—a European call option with strike K and expiry T on
a non-dividend-paying stock. We set the strike and maturity as exogenous constants and, for
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Exhibit 2. Value Function p — g [(0, p), a], Where G Is Estimated
by the Tabular Method

Tabular Q-Learning Value Function
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simplicity, assume a risk-free rate of zero. We train the agent to hedge this specific option with
its given strike and maturity, rather than teaching it to hedge options with arbitrary parameters.

To hedge a European option, the state must at least contain the current price, S,, of the
underlying; the time remaining to expiry,

T:=T-t>0; (20)
and our current position of n shares in the underlier. The state is thus naturally an element of
S:=R?xZ={(S,y,n)| >0,1>0,ne Z}. (21)

We emphasize that the state does not need to contain the option Greeks, because these quan-
tities are nonlinear functions of the state variables already available to the agent. We expect
agents to learn such nonlinear functions on their own as needed. This approach has the advan-
tage of not requiring any model-based calculations. First, we consider a “frictionless” world
(i.e., without trading costs) and ask whether it is possible for a machine to learn what we teach
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students in their first semester of business school: the dynamic replicating portfolio strategy.
Unlike our students, the machine can learn only by observing and interacting with the environ-
ment, without any explicit instruction.

The RL agent is initially at a disadvantage. Recall that it does not know any of the following
pertinent pieces of information:

e The strike price, K

e The fact that the stock price process is a geometric Brownian motion

e The volatility of the price process

e The Black-Scholes-Merton formula

e The payoff function, (S — K),, at maturity

e Any of the Greeks

It must infer the relevant information from the state variables, insofar as it affects the value
function, by interacting with the environment. We present the results in Exhibit 3. Notably, the
cumulative stock and option P&L largely offset each other, resulting in a total P&L with relatively

Exhibit 3. Out-of-Sample Simulation of a Trained Agent
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Note: We depict cumulative stock, option, and total P&L; the RL agent'’s position in shares (Stock.pos.shares);
and —100 - A (Delta.hedge.shares).
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low variance. We also see that the RL agent's position closely tracks the delta position, despite
having no direct access to it. For a more detailed discussion, see Kolm and Ritter (2019).

Policy Gradient Methods

When working in continuous state spaces, policy gradient methods frequently outperform
value-based approaches. Du, Jin, Kolm, Ritter, Wang, and Zhang (2020) were the first to apply
proximal policy optimization (PPO) to the problem of option hedging with transaction costs.
The authors developed models that replicate options across a wide range of strikes while incor-
porating discrete trading, round lots, and nonlinear transaction costs. These models use deep
RL techniques—including deep Q-learning and PPO—and are built to interface easily with any
option pricing and simulation library, enabling users to train them on arbitrary option portfo-
lios without further modification. Our empirical studies demonstrate that deep RL models can
match or surpass traditional delta hedging, with PPO delivering superior results in terms of
profit and loss, training speed, and data efficiency; see Exhibit 4.

Note that policy gradient methods, including PPO and asynchronous actor-critic (A2C), can
be applied to the mean-reversion trading model discussed earlier and, in practice, yield signifi-
cantly better results than the simple tabular Q-learning approach used by Ritter (2017).

Exhibit 4. Average Reward vs. GPU Seconds for the DQN and PPO
Agents in the One and Five Strike Scenarios
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Computational Implementations

The state of the art for computational Al is evolving at an extraordinary pace. Nevertheless,
we believe that providing readers with a short, self-contained program that implements the
mean-reversion example we showed will contribute to practical understanding and further
progress in this area.

The code for this guide was developed with the goal of prioritizing simplicity, brevity, and repro-
ducibility, using only open-source frameworks. Computational efficiency was intentionally not
the aim, in the spirit of Knuth's well-known advice that premature optimization is the root of all
(programming) evil.

For our implementation, we chose Stable Baselines 3 (SB3), a set of reliable, well-tested, and
standardized RL algorithms built on PyTorch. SB3 offers a clean, modular codebase and a con-
sistent API for training, evaluating, and deploying RL agents. It is compatible with gymnasium
environments. These features make SB3 an ideal computational engine for our examples.

For clarity, our code sample consists of just two short files: reversion.py defines the custom
environment for the mean-reversion trading problem described previously, and main.py is a
main script that orchestrates the training and performance evaluation. The primary outputs of
the main script are a set of image files that summarize the learning curve, the behavior of the
trained agent, and the key performance metrics, such as P/L and the Sharpe ratio. The trained
model is also saved as a file that can be reloaded for later use. Setting the Boolean variable
discrete to true switches the model to a discrete action space; by default, the model operates
with a continuous action space.

In summary, machines can identify arbitrage opportunities in data when such opportunities
exist and can learn to optimize over long horizons in the presence of transaction costs.
Despite these advances, the field of RL in finance remains in its early stages, and we are still
far from a fully autonomous “Skynet” for trading. In practice, working in continuous state
spaces is most effective because most optimal value functions in finance are continuous—and
often monotonic—functions of the state, with properties grounded in economic intuition.
Many optimal value functions are smooth or piecewise smooth, as seen in such classic prob-
lems as the linear-quadratic regulator. These same RL methods can be applied to derivative
hedging in illiquid markets, where trading costs play a crucial role. RL agents can learn to
price and hedge derivatives in environments where perfect replication is either impossible
or prohibitively expensive.

Conclusion and Outlook

Reinforcement learning and inverse reinforcement learning mark a paradigm shift in quantita-
tive finance, transitioning from static predictive models to dynamic, adaptive decision-making
systems. RL excels in optimizing sequential decisions under uncertainty, making it ideal for such
tasks as asset allocation, trade execution, and risk management. IRL, although less mature,
enables the inference of preferences or objectives from observed behaviors, offering novel
insights into individual trader strategies or market dynamics.
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For practitioners aiming to adopt these technologies, a disciplined and strategic approach
is essential. The path to real-world deployment is complex, but the benefits—improved per-
formance and deeper market understanding—are significant. We provide the following key
recommendations:

Target well-defined problems: Choose applications with clearly defined states, actions,
and rewards to ensure effective RL implementation. Identify problems aligned with your
specific objectives, where the decision-making process can be modeled and optimized
systematically.

Integrate risk management early: Incorporate risk considerations directly into the reward
function, using risk-averse or distributional RL frameworks. Doing so ensures alignment
with the desired risk-return profile, avoiding the pitfalls of retrofitting risk controls.

Prioritize robust simulation: Success hinges on high-quality data and realistic simulation
environments. Rigorous backtesting, out-of-sample validation, and stress testing across
diverse market scenarios are critical before deployment.

Leverage hybrid intelligence: Combine RL and IRL with human expertise for optimal results.
Use IRL to codify successful human strategies and RL to refine them, creating systems that
augment human decision making while addressing ethical considerations.

Address practical constraints: Design frameworks to meet computational, latency, and reg-
ulatory requirements. Interpretability is essential in regulated environments and should be a

core design principle.

The future of quantitative finance lies in adaptive, real-time learning systems. RL and IRL pro-
vide the theoretical and practical tools to realize this vision. Despite challenges, their ability to
enhance performance and uncover new market insights makes them critical for practitioners
to master. As computational power grows and algorithms advance, RL and IRL are poised to
become indispensable components of the quantitative finance toolkit, driving widespread
adoption across the industry.
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NATURAL LANGUAGE PROCESSING
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Introduction

Natural language processing (NLP) has become a foundational technology in financial analysis
and investment decision making. As modern financial markets are increasingly shaped by the
flow of unstructured textual information—from earnings calls and regulatory filings to news
articles and social media—investors and analysts face growing pressure to systematically
process, interpret, and act on these data.

At the same time, large language models (LLMs) have ushered in a paradigm shift in how textual
data can be analyzed. These models—trained on vast corpora of text—can perform a wide range
of tasks with minimal supervision, including question answering, summarization, classification,
and entity extraction. Their ability to generalize across tasks and domains has made them par-
ticularly attractive for financial applications, where bespoke data and limited training labels
often hinder the use of conventional supervised learning approaches.

This chapter explores the evolving role of NLP in finance, with a particular emphasis on the
transformative impact of LLMs. | argue that the flexibility, scalability, and adaptability of LLMs
have opened up new frontiers for analyzing financial text, enabling both discretionary and sys-
tematic investors to extract insights that were previously inaccessible. The integration of these
models into financial workflows, however, also introduces new challenges related to trust,
evaluation, infrastructure, and regulation. The sections that follow trace the technical evolution
of NLP methods, examine the capabilities and limitations of generative models, and highlight
the most relevant applications, risks, and future directions for financial professionals.

Evolution of NLP Techniques

Although today's LLMs offer flexible and high-performing solutions for a wide range of text-
based tasks, their development has been built upon decades of progress in the field of NLP.
Understanding the historical evolution of NLP methods is valuable not only for appreciat-

ing how the field arrived at its current capabilities but also for identifying use cases where
simpler, more computationally efficient techniques may still be appropriate. In many financial
applications, classical NLP tools remain relevant and cost-effective when high predictive
accuracy or linguistic nuance is not essential.

Computers cannot naturally interpret language in the same way they handle structured, numer-
ical data. As a result, early NLP efforts focused on converting textual information into numerical
representations suitable for modeling. Over time, methods have evolved from treating language
as unordered collections of words to more sophisticated approaches capable of capturing
syntax, semantics, and even pragmatic meaning.
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Rule-Based and Dictionary Approaches

The earliest NLP techniques, dating back to the 1950s, were based on rule-based systems and
hand-crafted dictionaries. These approaches involved predefined word lists associated with
particular categories, such as sentiment, emotion, or subject matter. For example, a senti-
ment dictionary might classify “excellent,” “profit,” or “growth” as positive terms, while “loss,”
"decline,” or “risk” would be labeled negative. An analyst could then quantify the sentiment

of a document by counting the number of positive and negative words it contained.

To illustrate, consider a simple example. Suppose a sentence reads, “The company reported
strong revenue growth but noted increased supply chain risks.” Using a basic sentiment
dictionary, this sentence might register both positive (e.g., “strong,” "growth”) and neg-
ative (e.g., "risks") words, with the final classification depending on their relative counts.
These methods were intuitive and easy to implement, but they came with substantial

limitations:

e Lack of context: Dictionary methods ignore the surrounding context of words.
For instance, they typically fail to account for negations (“not profitable”) or modifiers
("barely profitable"), leading to misclassification.

e Polysemy and ambiguity: Words with multiple meanings, such as “interest” (loan interest
versus personal interest), are treated uniformly, often introducing noise into analysis.

o Equal weighting: All words in the dictionary are treated as equally informative, failing to
capture intensity differences—for example, “good” and “great” may both be classified as
positive, despite differing in strength.

e Subjectivity in word selection: Manually assigning words to categories can reflect human
bias and domain insensitivity.

These limitations became particularly apparent in financial applications. General-purpose sen-
timent dictionaries developed for consumer product reviews or news articles often performed
poorly when applied to financial documents. For instance, the word "“liability” may be negative
in everyday language, but in accounting, it is a neutral technical term. Recognizing this issue,
Loughran and McDonald (2011) analyzed common financial texts and found that approximately
two-thirds of words classified as negative by standard dictionaries were not actually negative in
a financial context. To address this, they introduced the “Loughran-McDonald Master Dictionary
w/Sentiment Word Lists,” specifically tailored for financial analysis. This development marked a
turning point in domain-specific NLP and highlighted the importance of context-aware tools.

Statistical and Count-Based Methods

To address the limitations of rule-based and dictionary approaches, the next phase in NLP
involved representing textual data in structured, statistical formats that could be analyzed using
traditional machine learning models. This approach centers on the document-term matrix,
where each row represents a document (such as a news article or earnings call) and each
column corresponds to a unique word, or term, in the corpus. The entries in this matrix indicate
the frequency with which each word appears in each document.

This representation enables words to be assigned weights by a statistical model, rather than
relying on predefined dictionary labels. In effect, the model learns the relationship between
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words and an outcome variable—such as stock returns or sentiment labels—based on observed
co-occurrence patterns, allowing for a more data-driven understanding of language.

To illustrate, consider two documents:

e Document A: “The company reported strong earnings.”

e Document B: “The company faced weak earnings.”

A document-term matrix would represent these as follows (simplified for clarity):

Company Reported Strong Earnings Faced Weak
Document A 1 1 1 1 0 0
Document B 1 0 0 1 1 1

These count vectors can then be used as inputs to standard classifiers, such as logistic regres-
sion or naive Bayes, enabling empirical estimation of which words are associated with positive
or negative outcomes.

This approach introduces new challenges, however, including dimensionality and sparsity:

As the vocabulary size increases—particularly in financial text where domain-specific terminol-
ogy is abundant—the document-term matrix becomes high-dimensional and sparse. That is,
most entries are zero because any given document contains only a small subset of the total
vocabulary. This sparsity can reduce model performance and increase computational burden.

To mitigate this drawback, practitioners often apply text preprocessing techniques, including
the following:

e Stopword removal: Common, noninformative words, such as “the,” "and,” and “of"
are removed.

e Stemming and lemmatization: Words are reduced to their base or root forms. For example,
“running,” “ran,” and “runs” may all be reduced to “run,” improving consistency and reducing
dimensionality.

e TF-IDF weighting: In raw count-based matrices, common words dominate. To address this
problem, term frequency-inverse document frequency (TF-IDF) weighting is used. TF-IDF
downweights words that appear frequently across all documents (such as “company”) and
upweights words that are more unique to a specific document, helping highlight discrimina-
tive terms.

Despite these refinements, count vector-based methods still have significant limitations:

e No context or ordering: Word order is ignored, making it impossible to distinguish between
"not profitable” and “profitable.” This feature limits the model’s ability to capture negation
and other contextual modifiers.

e No semantic relationships: Each word is treated as an independent token, with no recog-
nition of synonymy or antonymy. For instance, “good” and “great” are no more similar than
“good” and “terrible” in this representation.
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These drawbacks motivated the development of more-advanced models that can capture con-
textual and semantic meaning in language, which are discussed in the following sections.

Neural Models and Word Embeddings

The techniques discussed thus far focus on representing text in structured formats that can
be used as inputs to traditional machine learning models. These representations—whether
based on word counts or term frequency weighting—treat words as independent and do not
attempt to capture the underlying relationships among them. Although useful for many tasks,
these models fall short in their ability to understand language in a deeper, semantic sense.

As machine learning models and computational power advanced, NLP shifted from merely
representing text to learning from text. Rather than manually crafting features or counting word
occurrences, models began using neural networks to learn relationships between words directly
from large corpora of text. This process is typically done through semisupervised learning:

The model is trained on a simple prediction task, such as predicting a missing word based on

its surrounding context. In doing so, the model develops an internal representation of word
meaning—referred to as word embeddings.

A word embedding is a high-dimensional vector that encodes semantic information about a
word. Words that appear in similar contexts tend to have similar embeddings. One of the most
well-known approaches for generating word embeddings is Word2Vec, introduced by Mikolov,
Sutskever, Chen, Corrado, and Dean (2013). Word2Vec is trained on such tasks as the following:

e Continuous bag of words: Predict a word based on its surrounding context
(e.g., given “The company [...] strong earnings,” predict “reported”).

e Skip-gram: Predict surrounding words given a central word.

Through training, the model learns to associate each word in the vocabulary with a dense vector
of real numbers. These vectors capture meaningful linguistic relationships. For example,
consider the famous analogy from Mikolov et al. (2013):

vector(“king") - vector(“man”) + vector("“woman") = vector(“queen”).

It demonstrates how arithmetic operations on word embeddings can reveal latent semantic
structure. What this says is that if we take the word embedding from “king,” subtract that vector
with the vector of the word embedding of “man,” and add the vector for “woman,” it will be
more similar to the word embedding for “queen,” illustrating the semantic meaning embedded
in these word vectors.

The output of a model such as Word2Vec is an embedding matrix, where each row corresponds
to a word in the vocabulary and each column represents a learned feature of the word.

These embeddings can then be used as inputs to downstream models (i.e., models specializ-
ing in a specific task) for classification, clustering, or regression tasks—offering a more com-
pact and semantically rich representation relative to the sparse count vectors discussed in

the previous section.

These methods still have limitations, however, such as static embeddings: Once trained,
each word has a single fixed embedding, regardless of context. This situation creates
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problems for words with multiple meanings. For instance, consider the word “position”
in two financial contexts:

e "The fund increased its position in Apple.”

"The trader accepted a new position at the firm.”

In both cases, the same word vector would be used, even though “position” refers to an
investment in one case and a job title in the other.

To address this issue, researchers introduced recurrent neural networks (RNNs) that process
sequences of words in order, allowing models to generate contextual embeddings—word rep-
resentations that change depending on surrounding words. Two widely used architectures

in this family are the long short-term memory (LSTM) network and the gated recurrent unit.
These models read a sentence one word at a time and retain a memory of the preceding words,
enabling them to generate richer, context-aware representations.

Although sequential models such as LSTM networks improved performance on many NLP tasks,
they also introduced new challenges:

o Computational inefficiency: Processing words one at a time limits parallelization and
increases inference time (i.e., how long it takes a model to output predictions or
embeddings).

e Unidirectional context: Standard LSTM networks typically read text in one direction—usually
left to right—so they can condition only on previous words and not on future context.

These limitations paved the way for the next major breakthrough in NLP: the transformer archi-
tecture, which enables more efficient and flexible modeling of text with full context awareness.
This development is explored in the following section.

The Transformer Revolution

The introduction of the transformer architecture, proposed by Vaswani, Shazeer, Parmar,
Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017), in the landmark paper “Attention Is

All You Need,” marked a turning point in NLP development. The transformer not only outper-
formed prior models across a wide range of NLP benchmarks but also became the foundational
architecture for all modern LLMs, including BERT, GPT, and their successors.

Although the transformer is a neural network like those discussed in the previous section,
it departs significantly from earlier sequential models such as RNNs and LSTM networks.
To understand its impact and how it differs from past architectures, this section presents a
high-level conceptual overview of the transformer architecture and its two key innovations:
self-attention and encoder-decoder separation.

Self-Attention: Capturing Relationships Across Text

At the core of the transformer is the self-attention mechanism, which allows the model to con-
sider the relationship between all words (or tokens) in a given input sequence, regardless of
their position. In contrast to LSTM networks, which process sequences word by word and typi-
cally look only at previous words (i.e., left to right), self-attention enables the model to compute
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relevance scores across the entire sequence in parallel. This approach means that each word
can attend to every other word, with the model weighting them based on learned relevance.

For example, in the sentence, “The investor sold the stock because it was overvalued,” the word
"it" could plausibly refer to either "stock” or “investor.” A model equipped with self-attention
can learn to focus on the correct referent—"stock”"—by assigning higher attention weight to it.
This capability to model long-range dependencies and ambiguity is one of the reasons why
transformer-based models have proven so effective in capturing the complexity of human
language.

The Encoder-Decoder Architecture
The original transformer architecture consists of two major components:

e Encoder: processes the input text and converts it into a contextualized vector
representation

e Decoder: uses this representation to generate an output sequence, such as translated text,
a summary, or a response

This encoder-decoder configuration was designed for such tasks as machine translation,
summarization, and question answering—where the model must first understand the full input
before producing a meaningful output. The encoder portion of the model captures the semantic
content of the source text, while the decoder portion generates new text conditioned on that
information captured by the encoder.

In practice, however, encoder and decoder components are often used independently,
depending on the task:

e Encoder-only models (e.g., BERT)" are designed to create high-quality, contextualized
embeddings of the input text. These embeddings can then be used as features for down-
stream tasks, such as sentiment analysis, classification, or information retrieval. Encoder-
only models are especially valuable in settings where the goal is to interpret or score a piece
of text rather than generate new text.

e Decoder-only models (e.g., GPT)? are optimized for language generation. These models
predict the next token in a sequence given all previous tokens—a formulation known as
causal or autoregressive language modeling. This approach enables the model to generate
coherent text, answer questions, and engage in dialogue. Decoder-only models form the
backbone of modern chat-based systems and instruction-following agents.

The transformer architecture introduced two breakthroughs: the ability to process all tokens in
parallel through self-attention and the modular encoder-decoder framework that enables both
understanding and generation of new text. These innovations not only improved performance

'BERT refers to the bidirectional encoder representations from transformers model introduced by Devlin, Chang, Lee,
and Toutanova (2019).

2GPT refers to the generative pretrained transformer model introduced by OpenAl through a series of breakthrough
papers (Radford, Narasimhan, Salimans, and Sutskever 2018; Radford, Wu, Child, Luan, Amodei, and Sutskever 2019;
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, et al. 2020). GPT also refers to the class of decoder-only
models popularized through modern LLMs.
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across a wide range of NLP tasks but also made it feasible to scale models to unprecedented
size, giving rise to today's LLMs.

The next section explores how these architectural advances, coupled with massive pretraining,
have enabled a new paradigm of generative modeling that can solve a broad range of tasks with
little or no task-specific data.

Pretraining, Fine-Tuning, and the Modular Nature
of LLMs

To understand how LLMs work—and why they have become so powerful—it is helpful to break
down their training into distinct phases: pretraining and fine-tuning. These phases reflect

a modular and scalable approach to training LLMs that separates the acquisition of general
linguistic and world knowledge from the adaptation of the model to specific tasks. Although
the underlying model architecture (encoder, decoder, or both) plays an important role in shaping
the model’s capabilities, it is ultimately the training process that determines what the model
can do in practice.

Pretraining: Building General Linguistic and World Knowledge

Pretraining is the foundational phase of LLM development. In this stage, the model is
exposed to a massive corpus of raw textbooks, articles, websites, and other publicly available
documents—and trained to predict missing or future words. This process does not require
labeled data, making it highly scalable. The goal is to instill the model with a statistical under-
standing of language and a broad (though implicit) knowledge of the world.

The specific training objective depends on the architecture:

e Masked language modeling (MLM): Used primarily for training encoder-only models
(e.g., BERT), MLM involves hiding or “masking” certain words in a sentence and training
the model to predict the masked word(s) based on surrounding context. For example,
given the input “The company reported a [MASK] gain in profits,” the model learns to infer
that “strong” might be an appropriate word. Because encoder models attend to the entire
input at once, they generate rich contextual embeddings useful for classification and
retrieval tasks.

e Causal language modeling (CLM): Used to train decoder-only models (e.g., GPT),
CLM trains the model to predict the next word in a sequence given all previous words.
For instance, given “The company reported a strong gain in,” the model learns to predict
“profits.” This autoregressive objective aligns naturally with generative tasks and enables
the model to produce coherent, fluent text. Radford, Narasimhan, Salimans, and Sutskever
(2018) demonstrated that performance improves substantially with model scale, leading
to the development of highly parameterized models capable of general-purpose text
generation.

This pretraining phase is computationally intensive and typically carried out by large technology
firms with access to significant compute infrastructure and massive datasets. The resulting pre-
trained models can be distributed and reused, however, providing a strong foundation for down-
stream customization.
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Fine-Tuning: Adapting Models to Tasks and Domains

Although pretraining equips LLMs with general capabilities, it does not tailor them to specific
tasks. Pretrained models may be able to generate fluent text or encode sentences into embed-
dings, but they often lack the domain-specific behavior needed for practical applications in such
areas as finance. This is where fine-tuning comes in.

Fine-tuning involves continuing the training of a pretrained model on a smaller, domain-specific
or task-specific dataset. This process allows users to adapt general-purpose models for their
own use cases without starting from scratch.

For encoder-only models, fine-tuning typically involves supervised learning. For example,

to build a sentiment classifier, a practitioner would start with a pretrained BERT model

and fine-tune it on labeled data consisting of text samples paired with sentiment labels.

The resulting model becomes highly specialized for sentiment classification. The resulting
model will be able to produce meaningful outputs only for that specific task, however, which is
why fine-tuned encoder-only models are also referred to as “narrow” or “task-specific” models.

For decoder-only models, fine-tuning can be more general. After pretraining on internet-scale
data, these models are often fine-tuned on curated datasets of human interactions—such as
question-and-answer pairs or chat logs—to teach the model how to be helpful, safe, and respon-
sive in a conversational setting. Without this additional tuning, a model might respond to a
prompt such as “What is your name?" with a story or unrelated prose. With fine-tuning, it learns
to respond appropriately to user queries.

One of the reasons decoder-only models have become so widely used is their flexibility. Rather than
needing a new model for each task (e.g., sentiment classification, summarization, ESG scoring),

a single decoder-only model can be fine-tuned to perform a wide range of tasks simply by changing
the prompt—the input instruction or context provided to the model. For instance:

nm

e "Classify the sentiment of this text: ‘Markets rallied after the rate cut.
“Summarize the following earnings report.”

e ‘"List three ESG risks mentioned in this document.”

This ability makes decoder-only models attractive in such domains as finance, where labeled

data are often scarce but a wide range of tasks need to be performed on unstructured text.

By shifting the complexity to the prompt design, practitioners can avoid the costly process of
training narrow models for every new application.

Prompting vs. Fine-Tuning

Although prompting allows users to extract useful behavior from a pretrained or
instruction-tuned model without any additional training, it has its limits. In cases where the
model fails to follow instructions, struggles with domain-specific jargon, or underperforms
on niche tasks, fine-tuning can still play an important role.

Fine-tuning can be used for the following:

o Task-specific adaptation: training the model for a narrow task, such as legal clause
extraction or credit rating prediction
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e Domain adaptation: exposing the model to domain-specific data (e.g., financial filings,
regulatory texts) to improve its familiarity with specialized vocabulary and formats

e Knowledge injection: teaching the model facts or behaviors that are underrepresented in the
pretraining corpus

In practice, many financial workflows now combine these approaches, using off-the-shelf
LLMs where prompt engineering suffices and fine-tuning smaller versions of the model when
reliability and domain expertise are critical.

Computational Efficiency and Fine-tuning

Although LLMs with billions of parameters tend to exhibit superior performance across a range
of tasks, this ability comes at a significant computational cost. Both training and deploying
such models require high-end hardware—typically graphics processing units (GPUs) or tensor
processing units (TPUs)—and scale roughly with model size. As a result, the use of very large
models can be prohibitive in environments with limited compute resources or strict latency
constraints, such as real-time financial systems.

One solution is to fine-tune smaller models to replicate the behavior of larger ones, commonly
done through a process known as knowledge distillation. In this setup, a high-performing,
large model (the teacher) generates high-quality outputs for a given task and a smaller model
(the student) is trained to imitate these outputs. For instance, if a large model excels at sum-
marizing long financial documents, its summaries can serve as labeled training data to fine-
tune a smaller model to perform the same task. This process allows practitioners to deploy a
compact model that behaves similarly to a much larger one but with far lower computational
requirements.

In addition to distillation, another strategy for improving efficiency is quantization. Quantization
reduces the numerical precision of a model's parameters—from 32-bit floating point numbers
(FP32) to lower-precision formats, such as 8-bit integers (INT8) or 4-bit floats. Although this
approach can slightly reduce model performance, it dramatically reduces the memory footprint
and speeds up inference, particularly on GPU hardware. Because inference cost is one of the
most significant factors in large-scale deployment, quantization plays a key role in bringing LLM
capabilities to environments with limited resources.

Taken together, these techniques—fine-tuning, distillation, and quantization—offer powerful
levers for balancing performance and efficiency. They enable organizations to deploy LLMs
that are adapted to specific tasks and constraints, without bearing the full costs of operating
state-of-the-art, billion-parameter models. In the context of finance, where tasks are often
repeated at scale and latency can be critical, these efficiency gains are not just convenient;
they are essential.

Fine-Tuning Techniques

The specific strategy used to fine-tune a language model depends largely on its architecture—
whether the model is encoder only or decoder only. These two types of models serve
different purposes and therefore require distinct approaches when adapting them to
downstream tasks.
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Fine-Tuning Encoder-Only Models

Encoder-only models, such as BERT, are designed to generate rich, contextual embeddings
of input text sequences. These embeddings are high-dimensional vectors that capture the
semantic meaning of the text, incorporating the full context of surrounding words through
self-attention.

Fine-tuning these models generally involves one of two approaches:

e Feature extraction: In this setup, the pretrained model is used to generate embeddings for
each input document, and these embeddings are then used as input features to a separate,
downstream machine learning model (e.g., logistic regression, random forest). The weights
of the language model itself remain fixed.

e End-to-end fine-tuning: A classification or regression head (i.e., an additional fully connected
feedforward layer) is added on top of the encoder model, and the entire architecture—
including the weights of the pretrained model—is trained jointly on labeled data. For
example, if a BERT model outputs a 768-dimensional embedding vector, a single-layer
neural network can be added to map this vector to a three-class output for sentiment classi-
fication (e.g., positive, neutral, negative). This process fine-tunes the entire network for the
target task.

End-to-end fine-tuning often leads to better performance but is more computationally
demanding. Variants of this approach include partial fine-tuning, where only the top few layers
of the model are updated while the rest are frozen (i.e., unchanged), and layer-wise freezing,
where layers are gradually unfrozen during training. These techniques reduce computational
cost and help prevent overfitting, especially when labeled data are scarce.

Fine-Tuning Decoder-Only Models

Decoder-only models, such as GPT, are designed for text generation and contain significantly
more parameters than encoder-only models. Fine-tuning these models in a traditional end-
to-end fashion is often prohibitively expensive in terms of memory and compute resources,
especially when dealing with billions of parameters. To address this problem, researchers
have developed more efficient fine-tuning methods, the most prominent of which is low-rank
adaptation (LoRA).

LoRA was introduced by Hu, Shen, Wallis, Allen-Zhu, Li, Wang, and Chen (2021) as a
parameter-efficient fine-tuning method for large models. Instead of updating all weights of the
pretrained model, LoRA inserts small, trainable weight matrices into the existing architecture
while freezing the original weights. These low-rank matrices capture the necessary task-specific
adjustments without needing to train the entire model. As a result, LoRA significantly reduces
the number of trainable parameters, lowers GPU memory usage, and allows for faster training.

Importantly, LoRA also helps mitigate catastrophic forgetting—a phenomenon where a model
forgets previously learned knowledge when fine-tuned on a narrow task—because the original
pretrained weights remain intact. This feature offers a form of regularization when training
highly parameterized models and makes LoRA particularly attractive for adapting general-
purpose LLMs to specialized domains, such as finance, without compromising their broader
language capabilities.
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Deployment Strategies and Infrastructure
Considerations for LLMs in Finance

The Challenge of Real-Time Information in Finance

One of the most significant challenges in applying LLMs in financial contexts is the pace at
which information changes. News articles, social media posts, SEC filings, and earnings call
transcripts can alter the investment landscape in real time. Traditional LLMs, however, are static
once trained; they can make use only of the information available at the time of their pretraining
or fine-tuning. In high-stakes, time-sensitive domains, such as finance, this fact poses a fun-
damental limitation: Retraining a large model every time new information becomes available is
both impractical and cost prohibitive.

To overcome this constraint, many LLM-based systems now use a design pattern known as
retrieval-augmented generation (RAG). RAG is not a model itself but an architectural framework
that allows LLMs to dynamically incorporate external information at inference time. This ability
enables a form of real-time updating without retraining the model.

RAG systems typically consist of two main components:

e Anencoder-based retriever processes the user's query and searches an external document
repository (such as a database of recent filings or news articles) for relevant information.
This component is typically built using an encoder-only model, which generates
embeddings for both the query and the documents and then identifies the most seman-
tically similar content through measuring cosine similarity of the embedding of the user’s
query and embeddings of the document repository.

e Adecoder-only language model receives the retrieved documents as context and generates
a coherent answer to the user’s query. This model does not need to have seen the docu-
ments during training—it uses the retrieved information as context provided via the prompt.

This modular approach solves a key problem in financial NLP: incorporating new and proprietary
data on the fly. Rather than training the model to “know everything,” encoders are used to
structure and fetch the relevant information, and decoders are used to synthesize and reason
over that information. This process is particularly powerful in such workflows as

e summarizing recent earnings call transcripts,

e responding to ESG-related inquiries with up-to-date regulatory documents, and

e generating investment commentary based on newly filed 10-Ks or 8-Ks.

By separating retrieval from generation, RAG frameworks enable dynamic, domain-aware
responses without compromising latency or requiring model retraining.

Agentic Frameworks and Autonomous Systems

Although retrieval-augmented systems allow LLMs to access up-to-date information,
many real-world financial workflows require more than just a single question-and-answer
interaction. Such tasks as portfolio monitoring, document triage, regulatory surveillance,
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and risk assessment often require multistep reasoning, conditional execution, and coordination
across multiple tools or models. This is where agentic frameworks come into play.

Agentic Frameworks

An agentic framework refers to an architectural approach in which LLMs are embedded within
a broader decision-making system that can sequence multiple steps to achieve a complex
objective. Rather than providing a single response to a single prompt, the LLM acts as a
“thinking component” that can

e break down a goal into sub-tasks,

e decide what action to take at each step,

e retrieve or generate intermediate information,

e use external tools (e.g., calculators, databases, search APIs), and

e determine when the task is complete.
In financial applications, this might involve chaining together such tasks as

e reading and extracting risk factors from a 10-K filing,

e identifying which factors are new or material relative to prior filings,

e summarizing their potential impact on valuation, and

o flagging the result for human review if certain thresholds are exceeded.

Rather than relying on a single LLM to do all this, the system orchestrates multiple steps,
often using different models or tools tailored to the specific subtasks. This modular and

compositional approach enables more interpretable, reliable, and extensible pipelines—
crucial attributes in high-stakes domains such as finance.

Autonomous Agents

Agentic systems can be taken a step further with autonomous agents: LLM-based systems
that are goal directed and capable of operating with minimal human oversight. These agents
maintain a persistent objective (e.g., “monitor the top 500 firms for changes in litigation risk"),
autonomously initiate actions to gather information, and adapt their behavior according to
the results.

What distinguishes autonomous agents from simpler pipelines is their ability to

e formulate plans based on their objective,
e monitor their own progress and iterate,
e communicate with multiple systems or data sources, and

e run continuously or on demand.
Examples in finance might include
e an autonomous compliance monitor that scans regulatory filings, compares them with

internal policies, and flags discrepancies;
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e amarket intelligence agent that compiles real-time information across sources to maintain
an up-to-date dashboard for analysts; or

e adue diligence assistant that autonomously reads through multiple data sources and
summarizes potential red flags during deal evaluation.

These systems remain experimental in many financial institutions, but early results suggest that
autonomy can reduce human workload on repetitive tasks while increasing responsiveness

to new developments. They also introduce new risks, however, particularly around reliability,
traceability, and control. Because the system is capable of executing its own plan, rigorous
evaluation and monitoring infrastructure are needed to ensure safety, especially in regulated
environments.

Deployment Models: API Access vs. Self-Hosting

As LLMs become increasingly integral to financial workflows, institutions must carefully
consider how these models are deployed. Deployment choices involve trade-offs across cost,
control, compliance, performance, and security—particularly when dealing with sensitive or
proprietary data. Broadly, there are two primary approaches to deploying LLMs: commercial
APl access and self-hosting open-source models.

Commercial APl Access

The most accessible way to use LLMs is through cloud-based APIs provided by such com-
panies as OpenAl, Anthropic, Google, or Cohere. These models are hosted on proprietary
infrastructure and accessed via subscription or usage-based pricing. They offer the following
advantages:

e Ease of integration: These models allow for quick setup with standard APIs.

e Performance: They provide access to state-of-the-art models trained on massive
datasets and enhancing models with additional tools, such as internet search or code
execution.

e Scalability: Providers manage infrastructure, allowing dynamic scaling of workloads.
The models have limitations as well, however:

e Data privacy concerns: Sensitive or proprietary information must be transmitted to third-
party servers, raising concerns about confidentiality, data retention, and compliance with
data protection regulations.

e Lack of control: The model architecture, parameters, training data, and update schedule
are fully managed by the provider, limiting transparency and customization.

e Ongoing cost exposure: Pay-as-you-go pricing can become expensive at scale, especially
for high-frequency or latency-sensitive applications.

APl-based access is suitable for exploratory research, public-facing applications, and tasks that
do not involve proprietary financial data. It is often insufficient, however, for enterprise-grade
use cases that require full data custody and customized model behavior.
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Self-Hosting and Open-Source Models

An alternative is to deploy open-source LLMs, such as LLaMA, Mistral, Falcon, or GPT-J,

on private infrastructure. This approach allows organizations to run inference and fine-tuning
on their own servers—either on premises or in private cloud environments—and provides the
following advantages:

e Data security and compliance: No data can leave the organization's environment, which is
critical when handling client information, trading strategies, or internal documents.

e Customizability: Models can be fine-tuned, distilled, or augmented to meet domain-specific
requirements or to improve performance on financial texts.

e Cost control over time: Although upfront compute and staffing costs are high, long-term
operational costs may be lower than continued API usage at scale.

This approach has two main limitations:

e Infrastructure complexity: Running large models requires specialized hardware (e.g., GPUs),
as well as specialized human capital for deployment, scaling, and monitoring.

e Lag behind frontier models: Open-source models often trail commercial models in absolute
performance, although the gap has narrowed considerably in recent releases.

Hybrid and Strategic Considerations

Many institutions adopt hybrid strategies, using commercial APlIs for low-risk or generic
use cases and deploying internal models for high-sensitivity or proprietary tasks.
Two examples follow:

e Use ChatGPT to summarize public market news.

e Use anin-house model to analyze internal credit memos or regulatory filings.

Ultimately, the choice of deployment model must align with the organization's data governance
policies, use-case sensitivity, latency requirements, and long-term cost structure. In finance—
where intellectual property, compliance, and risk management are paramount—these
considerations are not peripheral but central to the successful deployment of LLMs.

Applications of LLMs in Finance

Sentiment analysis and topic modeling have long been central to the application of NLP in
finance. Seminal works, such as Tetlock's (2007) study on the predictive power of media pessi-
mism and Loughran and McDonald's (2011) research on domain-specific sentiment dictionaries,
showed that textual sentiment contains information relevant to returns, volatility, and trading
behavior. Early methods relied on lexicons, dictionaries, or simple machine learning classifiers,
but these techniques have evolved alongside the growing sophistication of NLP models,

as discussed previously.

In this section, | outline how LLMs have opened new frontiers in financial NLP—moving
beyond traditional tasks toward applications in compliance, ESG monitoring, risk surveillance,
and financial summarization. | then present a practical tutorial demonstrating how LLMs
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can be implemented for sentiment analysis, focusing on open-source models accessible to
practitioners and researchers. Although LLM applications extend much further, this hands-on
example provides a foundational approach for integrating LLM techniques into financial
workflows.

Classic NLP Tasks and How LLMs Changed Them

Before the rise of LLMs, many core financial NLP tasks—such as named entity recognition
(NER), event extraction, and relation extraction—were tackled using rule-based methods,
feature engineering, or early machine learning models, such as conditional random fields
(CRFs). For example, Wang, Xu, Liu, Gui, and Zhou (2014) applied CRFs augmented with
domain-specific dictionaries to identify company names, tickers, and monetary amounts in
financial news, and Yang, Chen, Liu, Xiao, and Zhao (2018) developed document-level event
extraction systems for the Chinese stock market.

With the advent of LLMs, many of these tasks have become almost trivial: Modern models can
perform zero-shot or few-shot NER, relation extraction, or event detection without task-specific
architectures or large, labeled datasets. Recent evaluations (e.g., Lu and Huo 2025) have
shown, however, that although general-purpose LLMs perform reasonably well, fine-tuned
domain-specific models still outperform them in precision-critical extraction tasks, especially
when dealing with subtle distinctions in entity types or regulatory language.

New Frontiers Enabled by LLMs

LLMs have significantly expanded the scope of NLP applications in finance.

e Compliance monitoring and regulatory reporting: Hillebrand, Berger, DeuRer, Dilmaghani,
Khaled, Kliem, Loitz, et al. (2023) introduced ZeroShotALI, demonstrating that LLMs can
match financial documents against complex regulatory requirements in a zero-shot setting,
potentially automating parts of compliance checks and audits.

e ESG analysis: Mehra, Louka, and Zhang (2022) fine-tuned BERT to develop ESGBERT,
a model capable of classifying and extracting ESG-related content from sustainability and
CSR reports, improving the automated detection of environmental, social, and governance
themes.

e Risk monitoring via news and events: Guo, Jamet, Betrix, Piquet, and Hauptmann (2020)
built ESG2RIisk, a pipeline using LLM-based models to track ESG-related news and predict
abnormal stock volatility, illustrating how LLMs can detect material nonfinancial risks from
unstructured text.

e Financial document summarization: Kim, Muhn, and Nikolaev (2023) showed that ChatGPT
can effectively summarize long, complex 10-K filings, helping investors distill key risks and
opportunities. Their results suggest that LLM summarization improves market efficiency by
reducing information asymmetry.

These examples illustrate that LLMs are no longer limited to traditional classification or
extraction. They now support more complex workflows involving multistep reasoning,
summarization, and regulatory interpretation.
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Sentiment Analysis, Topic Modeling, and Quantitative Investing

Sentiment analysis has historically been one of the most widely used NLP applications in
quantitative finance. Early approaches, such as FinBERT (Araci 2019), fine-tuned BERT models
on financial news and earnings calls, offering more accurate sentiment classifications than
traditional dictionary-based methods. These sentiment signals became important features

in quantitative models, helping improve predictions of stock returns or volatility.

Recent advances in LLMs have expanded how text-derived signals are used in investing—moving
beyond simple sentiment scores to richer representations that directly predict returns or
explain price movements. For example, Lopez-Lira and Tang (2023) tested whether prompting
generative LLMs, such as GPT-4, on company news headlines could predict next-day stock
returns. They found that even without fine-tuning, the model’s outputs contained predictive
signals, suggesting that LLMs implicitly capture financial sentiment and context well enough
to inform trading strategies. This line of research connects closely with the work of Chen, Kelly,
and Xiu (2024), who used LLM-derived embeddings as features for predicting returns across

16 international equity markets. They found that these embedding-based features, paired with
a simple penalized linear model, improve the risk-adjusted returns of the resulting portfolios
over traditional approaches.

Another emerging approach focuses on organizing and clustering the patterns found in textual
data. Cong, Liang, Zhang, and Zhu (2024) introduced the idea of textual factors—interpretable
clusters of themes or topics identified by applying clustering techniques to LLM-derived
embeddings. These textual factors can be incorporated into economic and financial models,
providing scalable, data-driven ways to analyze large sets of unstructured information,

from macroeconomic news to corporate filings.

Wang, lzumi, and Sakaji (2024) combined generative prompting and quantitative modeling by
using LLMs to produce explainable summaries of news, corporate events, or leadership tone,
which were then transformed into structured factors for predicting stock movements. Together,
these advances highlight the versatility of modern LLMs: They can be used to generate direct
predictions, to build structured thematic clusters, or to extract interpretable features through
carefully designed prompts.

LLMs in Practice

In this section, | demonstrate how to apply LLMs for sentiment classification using Python.
To follow along with this tutorial, | recommend using Google Colab because it provides easy
access to GPUs (i.e., speeding up model outputs) and a reproducible environment for testing.

When working with LLMs, it is important to be familiar with Hugging Face,? the platform where
open-source datasets and language models are shared. The models here range from pretrained
LLMs to models fine-tuned from those pretrained LLMs. Hugging Face has two Python
packages that can be used to easily load models and datasets: transformers and datasets.

In this exercise, we will use the Financial Phrasebank dataset introduced by Malo, Sinha,
Korhonen, Wallenius, and Takala (2014). This dataset consists of 4,840 sentences randomly

3For more information, visit https://huggingface.co/.
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sampled from financial news, with each sentence being labeled by a set of annotators as
"positive,” “negative,” or "neutral.”

| will demonstrate two methods for sentiment analysis using LLMs: (1) a fine-tuned feature
extraction model using SBERT* and (2) a pretrained language model using OpenAl's API.

SBERT Feature Extraction Model

SBERT (Reimers and Gurevych 2019) is a BERT-based model that specializes in sentence-level
embeddings. That is, text is input to the model and a vector is returned. Because sentiment
scores are not directly output by the model, we need to train the model to predict sentiment
scores. To do so, we create a training and test set (in practice, we would use a validation set
for hyperparameter tuning).

>> Ipip install -U datasets

>> from datasets import load_dataset

>> data load_dataset("financial_phrasebank", "sentences_5@agree")

>> data = data['train'].to_pandas()

>> train = data.sample(frac=0.8, random_state=200)

>> test = data.drop(train.index)
SBERT can be loaded through the sentence-transformers Python package, which handles much
of the preprocessing required to extract vector embeddings. Next, | show how to install the
package, load the model, and extract embeddings for each sentence in the training and test

datasets. Note that it is necessary to split the text into chunks or “batches” because computa-
tional restraints prohibit evaluating all sentences at once.

>> Ipip install sentence-transformers

>> from sentence_transformers import SentenceTransformer

>> model = SentenceTransformer('all-MinilM-L6-v2"')

>> def batch_sentences(sentences,batch size=100):
batch_sentences = []

for i in range(@,len(sentences),batch_size):

batch_sentences.append(sentences[i:i+batch_size])

return batch_sentences

train_batches = batch_sentences(train['sentence'].tolist())

test_batches = batch_sentences(test['sentence'].tolist())

X_train = [model.encode(batch) for batch in train_batches]

X_test = [model.encode(batch) for batch in test_batches]

“Available at https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.
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Once the embeddings are loaded, they can be concatenated to formulate a matrix of size

n x 384. You can then fit a ridge classification model on those embeddings to create a mapping
between embedding vectors to sentiment labels. Predictions on the test set are obtained by
passing the test embeddings through the fitted model.

>> import numpy as np

>> from sklearn.linear_model import RidgeClassifier

>> # Train model
>> clf = RidgeClassifier()
>> clf.fit(np.vstack(X_train),train['label’])

>> # Predictions: © = Neg, 1 = Neut, 2 = Pos

>> preds = clf.predict(np.vstack(X_test))

In practice, you would want to create a validation set to fit the model with different penalization
terms (i.e., alpha terms) in the ridge regression to determine the parameter that produces
the best fit. For this example, | simply demonstrate obtaining predictions.

OpenAl ChatGPT

Although open-source LLMs can be run using the transformers package in Python, | will focus
on an easy-to-implement pipeline using OpenAl's API. Instead of sourcing computational
resources or getting caught up in the technical aspects of running LLMs, you can instead rely on
an APl-based approach to do this for you. The idea is that you can send your prompted text to
the API, and the output from the model will be returned.

Because | am using a sophisticated, pretrained LLM like GPT-3.5, | do not need to train the
model but instead simply prompt the text for the model to respond with a sentiment score:

>> prompt = Evaluate the sentence below and determine the sentiment

score.

Respond with either positive, neutral, or negative.

Sentence: %sentence

Response:

>> prompted_sentences = [

prompt.replace("%sentence",i) for i in data.sentence
]

| use this prompt because it assists in (1) reducing the number of output tokens that | need to
obtain from the model (i.e., output tokens are more expensive to produce) and (2) easy parsing
of the response because the model will respond immediately with solely “positive,” "neutral,” or
"negative.” If you do not prompt it to provide a "Response:” at the end, the model typically
provides some preamble to its actual response, making the response more costly as well as
harder to parse.
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To obtain responses from the API, the openai Python package can be used. To obtain responses
from the API, go to OpenAl's API platform® and generate an API key, which associates your input
with your account for billing. Then, obtaining sentiment scores is as easy as looping through
the list of prompted sentences and parsing the response.

>> lpip install openai

>> from openai import OpenAl

>> client = OpenAI(api_key="ENTER_API_KEY_HERE")

>> # Define function to query model
>> def get_gpt_sentiment(sentence,model name="gpt-3.5-turbo"):
response = client.responses.create(
model="gpt-3.5-turbo",
input=sentence

)

return response.output_text
>> responses = [get_gpt sentiment(i) for i in prompted_sentences]

>> responses[@] # = “Neutral”

Risks, Challenges, and Considerations

As financial institutions adopt LLMs into their workflows, it is important to be aware of
the risks and challenges of doing so. This section outlines several of the most pressing
challenges: output reliability, evaluation standards, model leakage over time, and legal
uncertainty.

Hallucinations and Output Reliability

LLMs are probabilistic models designed to predict the next most likely word given the previous
sequence of words. Although this ability makes them flexible and powerful, it also means they
are prone to producing hallucinations—text that is fluent, plausible, and confidently stated

but factually incorrect or fabricated.

A now-famous example involves a lawyer who used ChatGPT to draft a legal filing.

The model generated convincing citations to court cases that, upon inspection, did not
exist. This episode underscores the difficulty in relying on LLMs in domains where factual
precision is essential—such as regulatory interpretation, earnings analysis, or compliance
reporting.

One solution is the use of RAG frameworks, discussed earlier, which allow the model to con-
sult an external knowledge base and leverage the relevant information in the knowledge base

Visit https://openai.com/api/.
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in crafting its response. Even with RAG, however, verifying that the model used the information
appropriately remains a challenge.

In practice, evaluating output reliability often requires secondary evaluation mechanisms
such as the following:

e Human review, particularly for complex or high-impact use cases

e Secondary LLMs, which can be prompted to judge whether the model or workflow being
evaluated is generating the expected output and/or sourcing the correct information based
on the prompt

Evaluating output becomes even more challenging in multi-agent pipelines—systems where
different LLMs or modules hand off intermediate outputs. If one model produces a hallucinated
output, that output may silently propagate through the system, breaking task logic or triggering
unintended behaviors. Thus, output validation and fallback systems are essential components
in production-grade deployments.

Evaluation in Domain-Specific Contexts

In general NLP research, model capabilities are evaluated using benchmark datasets,

which are labeled datasets used to determine LLM performance in different contexts or tasks.
Domain-specific evaluation in finance remains an underdeveloped area, however. Most financial
tasks—such as interpreting a 10-K filing, generating risk summaries, or classifying ESG
disclosures—lack standardized ground truth labels.

This situation creates several challenges:

e No universal “correct” answer exists for such tasks as summarization or narrative analysis.

e Crafting an evaluation metric is not as straightforward as evaluating classification
performance. Often, one must be creative in constructing a single metric to determine
performance or reliability in a pipeline.

e Task-specific benchmarks must often be constructed in house, with significant human
effort.

For such applications as return prediction or sentiment classification, evaluation may be
grounded in market response (e.g., future returns). But for more qualitative tasks—such as
policy interpretation or stock recommendations—quantifying model performance requires
human expertise and domain fluency. Without rigorous evaluation, firms risk deploying models
whose performance may degrade silently under new conditions or inputs.

Forward-Looking Contamination in Backtests

Another risk in using LLMs for alpha signal generation is the issue of forward-looking bias.
Most large LLMs have been pretrained on internet-scale text up to a certain cutoff date. If that
training corpus includes data from the backtest period, then the model may “know"” future
outcomes during historical simulations, even if inadvertently.
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For instance, if a model is used to predict the sentiment or return of stocks using news head-
lines from 2010, the model may implicitly encode information that was not available at the time.
That is, if a news article has the headline “NVIDIA Introduces X Chip” and the model implicitly
knows that this chip was very popular from forward-looking training data, this will inherently
bias the model’s response to be more positive.

Some studies have noted, however, that this forward-looking information can sometimes
negatively influence out-of-sample performance because the model is distracted by the future
narratives and information, not focusing on the current information available. Glasserman

and Lin (2024) referred to this phenomenon as the distraction effect.

Compliance, Data Security, and IP Risk

As discussed earlier in the context of deployment models, the use of third-party APIs for LLM
inference raises serious compliance concerns. But beyond data privacy, a new class of legal
and intellectual property (IP) issues is emerging around ownership and liability.

Key concerns include the following:
e Ownership of model outputs: Does the firm own the generated text? What if that text

closely resembles a copyrighted source seen during pretraining?

e Liability for misinformation: If a model generates a misleading investment recommendation
or incorrect regulatory interpretation, who is responsible?

e Internal data leakage: If proprietary data are used in prompts or fine-tuning and processed
by a third-party model, the data may be inadvertently retained or exposed, depending
on provider policies.

These concerns are amplified in finance, where data governance and regulatory compliance
are not optional. Firms should establish clear policies around

e internal versus external LLM usage,
e data anonymization and minimization practices, and

e logging, audit trails, and human-in-the-loop reviews.

Conclusion

The advances in NLP have revolutionized financial workflows through the development of
LLMs. Although traditional, task-specific NLP models found their way into earlier quantita-

tive models, the flexibility granted by conversational models has made LLMs accessible to
nearly every facet of the investment process. As the technology continues to advance, it is
important to understand the different types of models, their applications, and implementation
frameworks.

The power of these models comes with important caveats, however. Effective deployment
requires an understanding of their architectural foundations, training processes, and the
trade-offs involved in different implementation strategies. Moreover, issues of reliability,
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interpretability, computational cost, compliance, and domain-specific evaluation demand
careful consideration, particularly in high-stakes financial contexts.

The future of NLP in finance will likely be shaped by hybrid approaches that combine the
generative power of LLMs with structured data pipelines and traditional time-series models.
As models continue to evolve—integrating multimodal inputs, improving reasoning abilities,
and adapting to specialized domains—success will depend not only on technical sophistica-
tion but also on rigorous evaluation, sound governance, and a deep understanding of the
financial domain.

In short, LLMs are a powerful technology that will make information assimilation in financial
markets much faster and efficient. Like any powerful tool, however, their value lies not in
raw capability but in careful, context-aware application.
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MACHINE LEARNING IN COMMODITY
FUTURES: BRIDGING DATA, THEORY,
AND RETURN PREDICTABILITY

Tony Guida
Senior Quantitative Analyst, R&D, Atonra

During the past decade, machine learning (ML) methods have become foundational in quanti-
tative equity investing, where datasets spanning traditional fundamentals to alternative signals
have enabled the modeling of nonlinear relationships and cross-sectional return drivers. In con-
trast, commodity futures remain an underexplored frontier for ML applications, despite the
growing maturity of commodities as a financialized asset class and their rising prominence in
institutional portfolios.

This asymmetry arises from multiple structural frictions. First, commodities are not capital
assets in the traditional sense. They are tangible goods, often classified as “consumption
assets” (Lucas 1978), and lack a balance sheet or accounting disclosure framework compara-
ble to that of stocks. Their value is shaped by physical supply chains, geopolitical disruptions,
seasonality, and idiosyncratic features, such as storage costs or delivery mechanisms—factors
that are harder to quantify and less standardized than firm-level financial fundamentals. Second,
the academic literature in commodities (Fama and French 2015; Gorton and Rouwenhorst 2006,
among others) has long been dominated by reduced-form econometric models, largely relying
on price-based inputs for one or a specific group of contracts (e.g., metals, agricultural). These
models are often constrained by past returns and/or technical indicators derived from the
futures curve.

And yet, commodity futures offer a highly attractive laboratory for modern predictive model-
ing. Unlike equities, commodity prices are tightly linked to macroeconomic conditions, exhibit
abrupt regime shifts, and are influenced by distinct classes of agents, hedgers, producers,

and speculators, each with different risk preferences and trading constraints. The pricing
literature has already surfaced a range of theoretical factors, such as momentum, basis,
hedging pressure, open interest, and skewness, which could be embedded into ML pipelines to
forecast returns. Despite the diverse range of potential signals stemming from the literature on
factors, most ML studies on commodities remain narrow in scope, focusing either on a single
commodity group or on technical-only signals without theoretical foundations.

This chapter seeks to correct that imbalance. | follow a supervised learning framework familiar
in equity ML research, where cross-sectional returns are predicted using engineered features
grounded in theory and empirical evidence. | construct a wide signal database combining both
theoretical premiums and traditional technical trading predictors variables. The implementation
leverages a boosted tree ensemble to learn from these signals and generate daily predictions
over eight target horizons across 41 commodity futures over a 30-year horizon. | then analyze
the ML term structure, as shown in Blitz, Hanauer, Hoogteijling, and Howard (2023) for equity,
and create a meta ensemble over the eight target horizons to mitigate target variable model
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risk and reduce turnover, which is usually high with machine learning models applied to
financial markets.

This chapter addresses three key gaps in the financial literature. | begin by taking an expansive
view of feature engineering, grounding input construction in the academic commodity factor
investing literature rather than relying exclusively on off-the-shelf technical indicators. Next,

| extend the equity-based machine learning methodology to the construction of long-short
signals in commodity futures. Finally, | introduce the concept of ensemble portfolios by predict-
ing over multiple target horizons, effectively characterizing the pseudo-term structure of ML
signals in commodities before aggregating them into a unified strategy.

The main findings can be summarized as follows. By training gradient boosted trees in an
expanding window framework, | replicate the empirical asset pricing approach seen in equities,
extracting feature importance scores as pseudo-betas that quantify the relative value of

each signal through time. Momentum-based indicators, particularly time-series momentum,
consistently emerge as dominant features, while skewness-based signals are more promi-
nent at shorter horizons, supporting the relevance of both trend and reversal effects. Portfolio
results exhibit a mirror J-shaped pattern in annualized returns, with low correlation between
ultra-short-term and long-term models. This J-shaped configuration highlights the value of
horizon diversification and justifies an ensemble approach, which delivers smoother returns,
lower volatility, and improved drawdown control.

This chapter is organized as follows. | begin with a review of the theoretical and empirical
foundations of commodity return predictability, covering key pricing models and documented
anomalies, and assess the recent literature in ML commodities. | then describe the dataset,
detailing the construction of input features and the machine learning methodology used
throughout the analysis. The core empirical results follow, including model-level and ensemble
performance, feature relevance over time, and portfolio-level attribution. The chapter concludes
with a summary of the main insights and implications for machine learning-based commodity
investing.

Seeking Commodity Features: Foundations
of Commodity Factor Investing

Despite their narrower universe and shorter history of financialization, commodities bene-

fit from a surprisingly rich theoretical and empirical foundation. Early work in the economics
of commodity markets introduced two core theories that remain essential today: the theory
of storage (Kaldor 1939; Working 1949) and the hedging pressure hypothesis (Keynes 1930;
Hirshleifer 1988). These frameworks are not academic artifacts; they provide operational
foundations for return predictability in futures contracts and have shaped the classification of
commodity anomalies, such as basis, term structure slope, and inventory cycles.

The theory of storage ties the slope of the futures curve to physical inventories. High inven-
tory levels imply low convenience yields and upward-sloping curves (contango), whereas low
inventories lead to backwardation, offering a reward to those willing to hold scarce assets.

In contrast, the hedging pressure hypothesis focuses on the positioning of commercial hedgers
and speculative traders. When commercial players dominate one side of the market, risk
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premiums tend to compensate the speculators taking the opposite position. These economic
frictions manifest in observable features that can be engineered into factor models.

What makes commodities distinct and appealing from a quantitative perspective is their
structural heterogeneity, showing even negative pairwise correlations. Energy, metals, and
agricultural products are driven by different microeconomics and subject to disjoint supply
shocks. And yet, empirical work has shown that a coherent set of predictors can explain return
differentials across commodities. Fama and French (2015) and Gorton and Rouwenhorst (2006)
established that traditional factors, such as basis and momentum, carry explanatory power in
a cross-sectional framework. More importantly, these predictors are grounded in the econom-
ics of storage, risk transfer, and price discovery. The financialization of commodity markets,
reflected in the growth of commodity index funds and increased institutional flows, cemented
their status as an investable asset class. Part of this appeal stemmed from diversification.
Commodities have historically exhibited low correlations with stocks and bonds, especially

in inflationary environments. Precious metals in particular show positive co-movement with
unexpected inflation (Bhardwaj, Gorton, and Rouwenhorst 2015).

Commodity Anomalies, Liquidity, and Technical Indicators

Although commodities are widely recognized for their diversification benefits, a growing body
of empirical research highlights persistent return anomalies in futures markets that go beyond
passive exposure. These anomalies, grounded in momentum, carry, skewness, and basis, reflect
systematic inefficiencies that can be exploited through well-structured, rule-based strategies
and that have been harvested as standalone quantitative investment strategies products.
Building on this foundation, | constructed nine families of predictive features that span both
price-based dynamics and market microstructure signals.

Momentum and time-series momentum capture recent return behavior and trend persistence.
Carry and basis signals extract information from the slope and curvature of the futures curve,
while basis momentum extends this insight by comparing relative performance across nearby
maturities. Skewness proxies for asymmetries in return distributions that may reflect senti-
ment extremes or positioning risk. Additional signals include idiosyncratic volatility, which
isolates contract-specific risks, and liquidity (open interest), which measures market partici-
pation and capital flows. Finally, classical technical rules, such as moving averages and relative
strength index (RSI) filters, are included to benchmark modern signals against widely used
technical heuristics.

Momentum: The Trend Is Your Friend

Momentum is arguably the most robust and widely validated anomaly across asset classes,
and commodities are no exception. Two forms are documented: cross-sectional and time-
series momentum. Cross-sectional momentum looks at how commodities perform relative

to each other. The idea is simple: Go long the winners and short the losers. Miffre and Rallis
(2007) showed that sorting commodities according to their past 12-month returns produces a
long-short portfolio with strong and statistically significant excess returns. This effect survives
standard risk adjustments, indicating that it is not only compensation for known exposures.
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Exhibit 1. Time-Series Momentum for Each Futures Contract,
January 1994-June 2024
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In contrast, time-series momentum, shown in Exhibit 1, treats each commodity on its own. If a
given contract has risen during the past year, it is likely to continue to rise, and if it has been
falling, one can expect more of the same. Moskowitz, Ooi, and Pedersen (2012) implemented
this logic by going long commodities with positive 12-month returns and short those with neg-
ative ones. The result was highly consistent profits across dozens of markets. This approach is
the backbone of many trend-following commodity trading advisers (CTAs) and managed futures
funds, proving its relevance in live strategies.

Why does momentum work? The explanations for this phenomenon range from behavioral
biases, such as herding and anchoring, to structural frictions that slow information diffusion.
Importantly, momentum in commodities is not a market-specific quirk. Rather, it is part of

a global anomaly observed in equities, bonds, and currencies alike (Asness, Moskowitz,

and Pedersen 2013).

Carry and Basis: The Term Structure as a Predictor

The term structure of futures prices offers valuable insight into the expectations and

positioning of various economic agents. By examining the relationship between a commodity's
futures price and its spot price or by comparing prices across different contract maturities, it is
often possible to infer directional signals about future returns. This information is encapsulated
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in the carry or basis, which serves as a key predictive signal in many empirical asset pricing
frameworks.

When futures are in backwardation (near-term futures priced below spot), it often signals
supply stress and low inventories. According to the theory of storage (Kaldor 1939; Working
1949), backwardation reflects a high convenience yield, an implicit benefit to holding the
physical commodity. In this context, going long earns you a premium for providing liquidity or
inventory services.

Conversely, contango (when futures are above spot) reflects surplus supply and lack of urgency
to hold the good. Long positions in such markets often lose value as contracts roll forward.
Gorton, Hayashi, and Rouwenhorst (2013) confirmed with decades of data that commodi-

ties with tight inventories and high basis tend to earn higher returns. The hedging pressure
hypothesis offers a complementary view. Commercial players, such as producers, hedge their
exposure by shorting futures. Speculators willing to take the long side demand a risk premium.
This dynamic leads to predictable drift in futures prices over time, typically upward, benefiting
long holders. Empirical studies (e.g., de Roon, Nijman, and Veld 2000; Basu and Miffre 2013)
have shown that long-short strategies based on hedging pressure or carry signals capture
substantial excess returns. In practice, a simple carry strategy involves ranking commodities by
their basis and going long the top quantile and short the bottom.

Skewness: When Asymmetry Matters

A more recent and nuanced anomaly is return skewness. Commodity prices are prone to spikes
from geopolitical events, weather, or supply chain shocks. This tendency creates asymmetry

in returns, with some markets showing fat right tails (lottery-like upside) and others, left tails
(sudden crashes). Fernandez-Perez, Frijns, Fuertes, and Miffre (2018) found that this asymmetry
contains predictive value. Commodities that have experienced negative skewness—frequent
small gains with rare large losses—tend to deliver higher future returns. The intuition is risk
based: Investors require a premium to bear downside tail risk. In contrast, positively skewed
commodities (a small chance of windfall gains) attract overconfident or risk-seeking buyers,
pushing prices up and expected returns down.

A skewness-based strategy, long on negatively skewed and short on positively skewed futures,
earns abnormal returns not explained by momentum or carry. Although harder to imple-

ment because of higher-moment estimation and signal instability, this anomaly highlights

that tail risks matter—that financial markets price the full shape of the return distribution, not
only variance.

|diosyncratic Volatility: The Role of Unexplained Risk

Idiosyncratic volatility (IVOL) refers to the volatility of a commodity's returns that is not
explained by broad market or factor movements. In equity markets, high idiosyncratic volatility
is often associated with lower subsequent returns (the IVOL anomaly), and a similar phenome-
non has been explored in commodities. Early studies found that commodity futures with high
past idiosyncratic volatility tend to underperform, suggesting a negative relation between
IVOL and future returns analogous to equities’ low-volatility anomaly. In the context of com-
modity futures, IVOL captures risks that are market specific, such as supply shocks, seasonal
patterns, or logistical disruptions, that do not co-move with the broader commodity complex.
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Fuertes, Miffre, and Fernandez-Perez (2015) explored the role of IVOL in commodity markets,
showing that its integration into multisignal frameworks can improve portfolio diversifica-
tion. For instance, combining IVOL with momentum and term structure signals allows for the
construction of more robust long-short strategies by exploiting complementary sources of
information. Fernandez-Perez et al. (2018) further analyzed IVOL in the presence of established
commodity factors, highlighting its relevance for understanding commodity-specific risk
beyond systematic drivers. Although IVOL use as a standalone signal is less straightforward,
its interaction with other structural features of the market is worth investigating in an ML
research context.

Basis Momentum: Riding the Curve's Slope

Basis momentum is a recently identified predictor that exploits information in the shape of

the futures curve. It is defined as the difference between the momentum of near-term futures
and the momentum of deferred (second-nearby) futures. This factor effectively captures the
slope and curvature dynamics of the term structure: A strategy going long commodities
whose nearby contracts have outperformed their second-nearby contract (and shorting those
with the opposite pattern) earns significant returns. Boons and Prado (2019) introduced basis
momentum and showed it strongly outperforms traditional signals, such as simple momentum
or carry (basis) in predicting commodity returns. In their findings, a portfolio sorted on basis
momentum produced large spread returns both in cross-section and time series, indicating that
this maturity-specific momentum effect is a powerful anomaly. The basis momentum premium
appears to be related to volatility and segmentation across contract maturities. For example,
when speculators' risk-bearing capacity is strained, mispricing can occur between near and far
contracts, which basis momentum strategies exploit. Follow-up studies have confirmed the
robustness of this factor. Paschke, Prokopczuk, and Simen (2020), for instance, documented

a similar “curve momentum” strategy (operating on the first two contract maturities) that
achieves high Sharpe ratios and positive alpha after controlling for other factors.

Open Interest: Reading the Crowd

Open interest represents the total number of outstanding contracts (long or short) in a
futures market and is often viewed as a gauge of market participation and liquidity. Uniquely,
open interest is not a price-based signal but a quantity-based measure that can reflect the
ease with which risk is absorbed by the market. Research by Hong and Yogo (2012) showed
that movements in open interest contain valuable information about commodity risk premia.
Specifically, they found that increases in open interest tend to predict lower future returns for
commodity contracts, whereas declining open interest predicts higher future returns. This
pattern is consistent with the idea that when more investors (particularly speculators) enter

a market, driving open interest up, they provide risk-bearing capacity and push risk premiums
down. Conversely, when open interest dries up, remaining hedgers must offer higher expected
returns to entice speculators to take the other side. Related work also has shown that open
interest is highly procyclical and correlated with macroeconomic activity, reinforcing the inter-
pretation that it signals the broad flow of investment into commodity markets. Moreover, the
predictive power of open interest holds even alongside other predictors. Cheng, Kirilenko, and
Xiong (2015) found that surges in participation (often captured by open interest or investor
positions) can lead to “convective risk flows," affecting pricing beyond what fundamentals
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alone would suggest. In practice, low-open-interest environments have been associated with
subsequent positive commodity returns, as risk premiums rise to attract capital, whereas
high-open-interest periods coincide with compressed returns.

Relative Strength Index: A Technical Oscillator

The relative strength index is a bounded oscillator designed to capture the velocity of recent
price movements, typically using a 14-day window. In commodity futures, it is often used as

a contrarian tool, with threshold levels above 70 interpreted as overbought and below 30 as
oversold. Although RSI-based strategies are intuitive and widely adopted by practitioners,
early academic evaluations found that the approach produced less reliable results compared
with trend-following rules. Lukac, Brorsen, and Irwin (1988) reported limited profitability from
standard RSl implementations across a broad set of commodity markets. More-recent studies,
however, suggest that its performance can improve when combined with volume indicators or
modified threshold levels. Yen and Hsu (2010) showed that hybrid strategies incorporating RSI
and money flow signals perform competitively in certain commodity sectors, and Anderson and
Li (2015) demonstrated that tuning RSI parameters enhances returns in energy and agricultural
markets. Although the standalone signal may exhibit limited forecasting power in isolation, RSI
remains a useful timing tool within multisignal frameworks, particularly for refining entries and
exits in mean-reverting environments.

Moving-Average Crossovers: Trend Following in Practice

Moving-average crossover systems are among the most enduring and empirically supported
technical rules in commodity futures markets. These strategies involve comparing a short-term
moving average, commonly a 50-day window, with a longer-term average, such as 200 days.

A buy signal is generated when the short-term average crosses above the long-term average,
and a sell signal occurs on a downward crossover. This mechanism seeks to exploit persistent
trends while avoiding short-term noise. Lukac et al. (1988) found that dual moving-average
strategies produced statistically significant risk-adjusted returns across multiple commod-

ity contracts. Park and Irwin (2007), in a comprehensive review of more than 90 studies,
concluded that moving-average systems were consistently among the most robust technical
rules in futures markets. Szakmary, Shen, and Sharma (2010) further validated the effective-
ness of these rules across 28 commodity markets, showing that excess returns persist even
after accounting for transaction costs and data-snooping concerns. Narayan, Ahmed, and
Narayan (2015) also confirmed the signal’s predictive value in a cross-sectional portfolio con-
text, although they noted sensitivity to parameter tuning. These findings align with the broader
time-series momentum literature, including the framework of Moskowitz et al. (2012), whose
one-year trend filters echo the logic of long-horizon moving-average systems. Taken together,
this body of work underscores the continued relevance of moving-average crossovers as
reliable building blocks for systematic commodity trading strategies.

Existing Relevant Machine Learning in Commodity Markets

In this subsection, | review the most relevant recent developments in applying machine learning
to commodity markets. Two key strands of literature are particularly relevant to the scope of
this study.

CFA Institute Research Foundation

e 157




Al in Asset Management: Tools, Applications, and Frontiers

e First, the integration of macroeconomic variables into ML-based models for commodity
price forecasting has received growing attention, with numerous studies (Ben Jabeur,
Khalfaoui, and Ben Arfi 2021; Wang and Zhang 2024) demonstrating the predictive value of
macro-financial indicators.

e Second, a methodological distinction has emerged between univariate models, applied in
isolation to individual commodities or subsets, such as metals, agricultural products, or
energy, and cross-sectional (panel) approaches that model multiple commodities jointly.

| examine the main features and signals used in each stream, highlight the respective method-

ological trade-offs, and contrast their empirical findings. This review serves to position my own
contribution, which builds long-short commodity portfolios using machine learning, in relation
to these established approaches.

The Role of Macroeconomic Variables in ML-Based Commodity
Forecasting Literature

Macroeconomic fundamentals are known to influence commodity markets through demand,
supply, and investment channels. ML models often integrate these variables as predictors to
capture broader economic signals that drive commodity price movements. Common macroeco-
nomic features include indicators of global economic activity (e.g., industrial production growth
or GDP), inflation rates, interest rates, exchange rates (especially for commodity-exporting
countries' currencies), equity market indexes, and measures of liquidity or risk appetite
(Gargano and Timmermann 2014; Costa, Ferreira, Gaglianone, Guillén, Issler, and Lin 2021).

By including such variables, ML models aim to account for shifts in the business cycle and finan-
cial conditions that affect commodity prices. Early work by Gargano and Timmermann (2014)
demonstrated the value of macro variables in commodity forecasting using traditional models.
They found that certain predictors, such as commodity currency exchange rates (currencies of
major commodity exporters), have significant short-horizon predictive power for commodity
price indexes, while industrial production growth and investment ratios matter at longer hori-
zons. Moreover, their results indicated that the predictive power of macroeconomic variables is
regime dependent: Commodity return predictability was strongest during global recessionary
periods, when macro conditions undergo substantial shift. This finding suggests that macro
indicators help capture low-frequency economic trends and structural breaks.

Building on such insights, recent ML studies have incorporated large sets of macroeconomic
features to improve forecast accuracy. Costa et al. (2021), for example, explored oil price fore-
casting with an extensive "big data” macro-financial dataset of 315 variables, combined with

a suite of 23 modeling approaches, including tree-based ML (random forests, gradient boost-
ing), regularized regressions, and classical econometric benchmarks. Their comprehensive
pseudo-out-of-sample study showed that machine learning models leveraging rich macroeco-
nomic information can significantly outperform naive benchmarks in the short run. In partic-
ular, at forecast horizons up to six months, such models as LASSO regression and tree-based
ensembles (applied to macro and financial predictors alongside oil futures prices) yielded the
most accurate forecasts, often achieving substantial gains in out-of-sample R? relative to a
random walk. These improvements, on the order of two-digit percentage reductions in forecast
error in some cases, underscore that ML algorithms can effectively exploit the predictive con-
tent of a broad array of macroeconomic indicators. At longer horizons (one to five years ahead),
Costa et al. (2021) noted that no single ML method dominates but combinations of forecasts

158 e« CFA Institute Research Foundation



Machine Learning in Commodity Futures: Bridging Data, Theory, and Return Predictability

and structural models become more relevant, implying macro variables still contribute when
used in ensemble approaches.

Other studies have confirmed that adding macroeconomic features boosts commodity price
forecasts in ML frameworks. Wang and Zhang (2024) examined 22 commodity futures and
showed that including both commodity-specific variables and macroeconomic factors as
inputs to ML algorithms improves out-of-sample performance for the majority of those com-
modities. In their experiments, a gradient boosting model (LightGBM) augmented with such
features as global economic indexes, interest rates, and financial market variables produced
lower prediction errors than simple autoregressive benchmarks—AR(1) models—in most cases.
The authors used SHAP (SHapley Additive exPlanations) values to interpret the importance of
features in the ML forecasts, finding that the most influential predictors vary across commodi-
ties. For instance, some commodities are driven strongly by general macro variables (such as an
aggregate demand index or currency values), whereas others are more influenced by idiosyn-
cratic factors (such as inventory levels or past price momentum). This heterogeneity highlights
that macroeconomic inputs have significant predictive value overall, but their impact can be
commodity specific.

In commodity markets that are highly sensitive to policy and global conditions, macroeconomic
predictors may be especially critical. For example, Ben Jabeur et al. (2021) used an explainable
ML approach to predict crude oil price crashes by integrating such variables as stock market
indexes, currency exchange rates, and green energy indexes. Their findings indicated that
macro-financial indicators improve the early warning signals for oil market downturns by captur-
ing broad market sentiment and structural shifts. Likewise, Ampountolas and AlGharbi (2025),
using a hybrid ML model for orange juice commodity prices, reported that including financial
market indexes (e.g., the S&P 500 Index) alongside macro factors improved forecast accuracy.
This finding aligns with Gargano and Timmermann's (2014) emphasis on macro predictors:
Broad indexes likely capture global economic conditions and investor risk appetite, which
translates into better predictions of commodity demand and pricing pressures.

Univariate vs. Cross-Sectional in ML Commodity Research: Global vs. Local

A second key dimension in the literature is whether researchers model commodity prices in
isolation (univariate time-series approach) or leverage information across a cross-section or
panel of commodities. The univariate approach entails building a separate predictive model for
each commaodity’s price or return, using that commodity's own lagged values and potentially
some exogenous features (which could include macro variables or that commodity’s specific
fundamentals). In contrast, cross-sectional (or panel) approaches involve modeling multiple
commodities jointly—for example, by pooling data across commodities to train a single model
or by predicting the entire cross-section of commodity return at each pointin time using
common predictors (similar to factor investing models).

Each approach has distinct methodological trade-offs, and has been explored in recent ML-based
commodity research. Univariate ML models are common in studies focusing on a particular
commodity or commodity index group. Many studies take this route for major commodities,
such as crude oil or gold, often comparing various ML algorithms to find the best performer for
that single series. For instance, Foroutan and Lahmiri (2024) implemented 16 different machine
learning and deep learning models to forecast prices of four individual markets (West Texas
intermediate crude oil, Brent oil, gold, and silver), essentially treating each market as a separate
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forecasting task. They found that advanced neural networks, such as temporal convolutional
networks or Bi-GRU networks, could outperform other models for certain commodities, while
tree-based models, such as LightGBM, also performed strongly as a baseline.

The point of the univariate approach is that it allows specialized modeling of each commodity’s
unique dynamics, capturing specific supply shocks, seasonal patterns, or specific economic
linkages (such as oil's linkage to oil inventory levels or gold’s inverse relationship with interest
rates) without being “diluted” by data from other commodities. Researchers can include com-
modity-specific features (such as metal inventories, energy rig counts, and weather variables
for crops) alongside macro variables tailored to that market. This approach often improves inter-
pretability for that commodity. One drawback, however, is that the data for each commodity
are limited, which can constrain complex ML models—and most of the time, those data (like the
macro variables) are lagged and their granularity is at best monthly. Overfitting is a risk, and the
model might fail to generalize if the training sample (sample of one commodity) is small or if
structural changes occur.

In contrast, cross-sectional and panel ML approaches attempt to “learn” across multiple
commodities simultaneously, leveraging the idea that different commodities may share
common patterns or factors. Cross-sectional modeling for forecasting is widespread in equities.
In this approach, one might use characteristics or factors of each commodity (such as the family
of factors previously introduced) at time t to predict the cross-section of returns in the next
period. ML algorithms can be used to combine these commodity-specific characteristics in a
nonlinear way.

Angelidis, Sakkas, and Tessaromatis (2025) followed this approach by comparing time-series
models for individual commodities versus cross-sectional models that predict all commod-

ities' returns jointly. They examined 37 commodity futures and found that cross-sectional
models produce superior forecasts compared with time-series models for commodity

returns. In other words, a model that pools information across commodities (and exploits
cross-sectional predictors, such as each commodity's basis, momentum, or other characteris-
tics at a given time) achieved lower overall prediction error than modeling each commodity in
isolation. The authors reported that combining forecasts and using modern ML methods further
enhanced performance, suggesting that the cross-sectional signals contain exploitable struc-
ture that ML methods can capture more effectively relative to traditional approaches. Intuitively,
cross-sectional models benefit from wider information sets. They can detect, for example, that
commodities with certain traits (say, a high prior-year return or a negative skewness) tend to
mean-revert or continue trending, based on patterns learned from the full panel of commod-
ities. This dynamic can improve generalization because the model draws on a larger sample

of observations (multiple commodities over time) to learn predictor-response relationships.
There are several methodological trade-offs between univariate and cross-sectional approaches.
Generalization versus specialization is a key consideration.

Cross-sectional ML models effectively assume that different commodities’ price dynamics
share some underlying functional form or factors, which the model can learn. This pooling can
dramatically increase the effective sample size for training, aiding generalization and reducing
estimation noise. Indeed, the superiority of the cross-sectional ML in Angelidis et al. (2025)
echoes findings in other asset classes (e.g., equities) that “global” models using panel data can
outperform many separate "local” models by borrowing strength across series. Nonetheless,
the optimal approach may depend on the context: If the forecasting goal is to rank or allocate
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across commodities (long-short portfolio construction), panel ML models are naturally suited.
If the goal is to predict exact price movements of a particular commodity (for hedging pur-
poses), however, a univariate model with that commodity’s key drivers might be better suited.

Empirical Results

This section presents the empirical evaluation of the proposed framework. | begin by describ-
ing the dataset, feature construction, and methodological setup used for forecasting across
multiple horizons. Next, | analyze the information content and relative importance of each
feature within boosted tree-based models to understand how predictive drivers vary with
horizon length. Finally, | assess the out-of-sample performance of individual models and ensem-
ble approaches through long-short portfolio simulations, comparing their risk-adjusted returns
and analytics across forecast horizons.

Data and Methodology

The sample universe consists of 41 daily continuous futures contracts: 23 agricultural com-
modities, 8 energy products, and 10 metals, as shown in Exhibit 2. | sourced prices and open
interest data from Bloomberg for the first and second contracts along the term structure,
which were used to construct the features. For each contract, | computed a continuous price
series using the back-adjusted ratio methodology. This approach applies a multiplicative
adjustment five days prior to each contract roll, using the ratio between the next and previ-
ous contract prices to rescale all preceding prices. This process ensures that returns and all
price-based features remain consistent across the series, avoiding artificial jumps caused by
roll effects. For return-based features, all prices not denominated in US dollars were converted
to US dollars. When | computed price ratios, however, contracts were maintained in their local
currency to minimize the influence of exchange rate movements on daily price dynamics.

As outlined in the previous section, | constructed the feature set on the basis of both theoret-
ical and practical insights from the literature. Theoretically motivated features include carry,
time-series momentum, cross-sectional momentum, basis momentum, and idiosyncratic
volatility, which are well documented in empirical asset pricing studies. Practically motivated
signals were drawn from widely used technical analysis heuristics, such as moving average
crossovers, the relative strength index, and moving averages of open interest, reflecting
strategies often implemented by systematic traders. This process resulted in a total of nine
distinct feature families, each aiming to capture different structural aspects of commodity
price behavior.

In line with standard practices in equity-based machine learning research and inspired by the
lookback window parameter (J) in Jegadeesh and Titman (2001), | applied 14 different lookback
periods to each of the nine feature types. The lookbacks, expressed in trading days, are 10,
22,44, 66, 88, 130, 200, 252, 300, 382, 400, 504, 600, and 756. These windows are designed
to span ultra-short-term, short-term, medium-term, long-term, and ultra-long-term horizons,
allowing the models to learn from trend dynamics and seasonal patterns. This approach yielded
a total of 126 distinct daily features per contract.

The full dataset consists of approximately 40 million data points across contracts, dates, and
features. For supervised machine learning, | computed daily returns from continuous futures
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price series over various prediction horizons: 5, 10, 22, 44, 66, 80, 100, and 200 days. Each
prediction horizon corresponds to a separate supervised learning model, enabling the analysis
of time-varying predictability across horizons. All features and target variables are normalized
into percentiles to ensure comparability across commodities and over time, mitigating scale
differences and enhancing model stability during training. Exhibit 3 shows the correlation
heatmap of percentile-transformed features. It reveals that several feature families, such as
BASISMOM, CARRY, and SKEW, are largely uncorrelated with each other, indicating they capture
distinct dimensions of return predictability. Within individual families, the impact of lookback
parameters varies: IVOL features are highly correlated across different horizons, suggesting that
the choice of lookback has limited influence on their information content, while such features
as MOM, TSMOM, and RSI show greater variation with horizon length, highlighting their sensi-
tivity to the lookback parameter.

Because the scope of this chapter is not to compare different supervised models but rather to
focus on the application of ML to commodities, | selected a single type of ML model—a regres-
sion boosted tree model—to train over all the various prediction horizons. Boosted trees are a
powerful and regularized implementation of gradient boosting, widely used in cross-sectional
finance (see Guida and Coqueret 2019). Instead of fitting one large tree, the algorithm builds
an ensemble of shallow trees, where each new tree focuses on correcting the residuals of the

Exhibit 3. Correlation Heatmap of Percentile-Transformed Features

over the Full Sample
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previous ones. This sequential learning process enables the model to capture complex, non-
linear interactions between predictors and the target variable. At each iteration, boosted trees
minimize a regularized objective function that combines a differentiable loss, such as squared
error or logistic loss, with penalties on model complexity, including the number of leaves and
the magnitude of leaf weights. The algorithm leverages both the gradient and the Hessian of
the loss function to construct an accurate approximation of the optimal tree structure. Split
quality is evaluated using a second-order Taylor expansion, which guides the model toward
partitions that effectively reduce the loss while maintaining parsimony. These technical refine-
ments make boosted trees especially effective in financial settings, where predictive signals are
often subtle and embedded in noisy data.

Each boosted tree model is trained using an expanding window approach, beginning with a
minimum of three years of historical data. For the initial training window of five years, 90% of
the observations are used for training and the remaining 10%, corresponding to approximately
six months, are reserved for out-of-sample testing. In subsequent iterations, the test set is kept
fixed to ensure that the training data do not become too temporally distant from the prediction
period. Models are retrained annually by extending the training window to incorporate the most
recent data, while maintaining a fixed-length, non-overlapping six-month test set. To avoid look-
ahead bias, particularly in models that predict long-term returns (such as the 200-day forward
horizon), a temporal buffer is introduced. Specifically, the end date of the test features is shifted
to ensure that the return label window does not extend into the subsequent prediction period.
For example, if the next prediction period begins in January 2023, the test features for a 200-day
horizon model would end in January 2022. This adjustment isolates the training and testing
phases and prevents any leakage of future information.

Because some hyperparameters introduce randomness, each model is run 20 times with differ-
ent random seeds for each target variable. The results are then averaged to reduce statistical
noise and improve robustness. Consistent with standard practice in financial machine learning,
| treat the model's output not as a point forecast but as a ranking signal. Each supervised model
produces daily predictions across assets, which | interpret as cross-sectional scores. These
scores are then normalized into quantiles and used to sort assets into a long-short portfolio,

in a manner closely aligned with traditional factor-based investing. The same score drives both
portfolio construction and weighting: Assets with the highest predicted returns are assigned
to the long leg, and those with the lowest scores populate the short leg. Within each leg,
position sizes are proportional to the scores themselves, giving more weight to the most con-
fident predictions. This setup ensures that the model’s relative convictions are fully reflected

in the portfolio. | fix the gross exposure of each leg at 1, resulting in a total gross exposure of 2.
The process is repeated independently for each prediction horizon, enabling horizon-specific
portfolio views.

Model hyperparameters are tuned separately for each target horizon and rebalancing point

via a light grid search (for each hyperparameter, | selected three variants), choosing the best
parameter set that minimizes the mean squared error. The grid search explores tree depth
(from 1 to 3), learning rate (from 0.05 to 0.005), number of trees (from 50 to 150), feature
subsampling per tree (from 0.55 to 0.85), and feature subsampling per level (from 0.55 to 0.85),
balancing model complexity with out-of-sample robustness. The L2 regularization parameter is
held at its default value of 1.
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Results: Interpreting Feature Importance across Horizons
and Models

In linear models, coefficients represent the marginal contribution of each predictor to the target
variable. Although tree-based models, such as gradient boosting, do not yield coefficients in the
classical sense, they do provide feature importance scores that reflect the relative contribution
of each feature to the model’s predictions. These scores can be derived using various metrics,
such as the following:

e Gain: the improvement in the model’s loss function brought by a feature when it is used to
split the data

e Cover: the number of samples affected by splits on that feature

e Frequency: how often a feature is used in splits across all trees

Alternatively, SHAP (SHapley Additive exPlanations) values (Shapley 1953) offer a game-
theoretic approach to feature attribution. SHAP values assign each feature a contribution value
for individual predictions, enabling both local (per-sample) and global (aggregated) interpret-
ability. Unlike gain or frequency, SHAP values are consistent and provide additive explanations
across features. As Simonian, Wu, Itano, and Narayanam (2019) proposed, feature importance
can be interpreted as pseudo-betas, offering a directionless yet informative measure of mar-
ginal predictive power. This concept plays a central role in interpreting machine learning models,
often (wrongly) seen as opaque, and offers insights into which signals the model relies on and
how this reliance evolves through time. Understanding which characteristics influence model
predictions directly relates to the interpretability challenges discussed in empirical asset pricing
applications using machine learning (Gu, Kelly, and Xiu 2020).

In Exhibit 4, | report the top 10 normalized feature importance values for each model based

on different target horizons, using a last-10-year window for clarity’s sake. Each table is sorted
by the cumulative importance of each feature across the last 10 years. On average, the top 10
features account for 20% of total importance, while the top 50 features explain roughly 66%.
Because of regularization constraints, on average about 40 of the 126 input features are consis-
tently unused by the models.

The models are trained in an expanding window framework, meaning that feature importance

in a given year reflects cumulative learning up to that point. For instance, importance values
observed for end-of-year 2020 models include data from January 1994 to May 2020, yet mean-
ingful shifts occur in model behavior following the onset of the COVID-19 crisis. This effect is
especially pronounced in short-horizon models, such as the 5-day and 10-day variants. As more
postcrisis data enter the training set, these models adjust rapidly. In contrast, longer-horizon
models, such as the 200-day version, exhibit greater stability, with little change observed
between 2019 and 2020. This behavior reflects the model's regularization bias toward persistent
signals and its aversion to unstable feature dynamics.

One of the most consistent findings across models and timeframes is the dominance of
momentum-based signals, particularly time-series momentum. TSMOM252 appears in the

top 10 features for every model, and TSMOMB300 is ranked similarly in six out of eight models.
Although validating the factor investing literature is not the primary objective of this chapter,
the results, derived from a purely data-driven boosted tree model, confirm the predictive power
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Exhibit 4. Yearly Normalized Features' Importance

Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
MOM252 5d 2.3% 2.3% 5.8% 4.8% 25% ORI 23% 6.0% 3.4% 7.0% 23%
SKEW130 5d 1.5% 1.5% 2.3% 2.1% 1.6% 4.4% 1.7% 6.2% 38% | 19% | 24%
TSMOM252 5d 1.9% 1.9% 3.8% 3.1% 1.8% 4.9% 1.9% 4.1% 2.5% 3.7% 1.6%
BASISMOM130 5d 1.5% 1.6% 2.5% 3.4% 1.8% 4.0% 2.0% 3.9% 2.4% 5.0% 1.7%
MOM88 5d 2.4% 2.0% 52% 1.8% 2.0% 4.5% 1.9% 3.7% 1.9% 2.4% 1.7%
SKEW200 5d 1.5% 1.5% 2.3% 2.1% 1.4% 3.9% 1.6% 4.4% 2.1% 5.3% 2.0%
TSMOM300 5d 1.6% 1.4% 4.2% 2.2% 1.5% 4.1% 1.6% 2.9% 1.6% 3.3% 1.4%
SKEW400 5d 1.4% 1.4% 2.3% 15% 12% | 1.9% 3.3% 2.4% 4.6% 1.5%
CARRY66 5d 1.4% 2.4% 22% 2.5% 2.1% 2.0% 33% 1.3%
MOM?756 5d 1.9% 1.9% 2.9% 1.3% 2.5% 1.6% 3.0% 1.3%
Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
MOM252 10d 2.4% 24% NG 54% 3.1% 3.3% 22% 2.0% 27% | 55% 1  19%
TSMOM?252 10d 1.9% 1.9% 3.8% 3.8% 3.4% 32% 2.3% 4.8% 2.8% 3.3% 1.7%
SKEW130 10d 1.2% 1.2% 2.5% 3.1% 1.8% 2.0% 1.6% 51% 29% [NeEBNN 2%
BASISMOM130 10d 1.6% 1.5% 3.6% 4.2% 2.6% 23% 2.0% 3.4% 2.4% 3.9% 1.5%
SKEW200 10d 1.3% 1.3% 2.0% 2.2% 1.8% 2.0% 1.6% 3.5% 27% 6% 1.9%
TSMOM300 10d 2.1% 2.1% 4.5% 2.9% 2.0% 2.4% 1.7% 2.3% 1.8% 2.4% 1.6%
SKEW382 10d 1.4% 1.4% 2.6% 1.9% 1.4% 1.3% 1.1% 2.7% 33% [eBTIN  1.6%
BASISMOMé6 10d 1.4% 1.4% 3.1% 2.9% 1.8% 1.8% 1.2% 2.0% 1.8% 3.8% 1.2%
SKEW756 10d 1.3% 1.5% 3.1% 2.5% 22% 2.1% 1.7% 2.6% 23% [00% N 1.5%
SKEW600 10d 1.4% 1.0% 3.1% 2.4% 1.8% 1.5% 1.3% 2.5% 2.5% 2.1% 1.3%
Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
MOM252 22d 2.7% 2.7% 5.5% 5.6% 2.2% 2.9% 2.1% 3.5% 5.4% 6.3% 2.0%
TSMOM252 22d 2.4% 2.5% 6.5% 5.5% 2.4% 3.6% 2.5% 4.6% 4.2% 3.4% 22%
SKEW130 22d 1.6% 1.7% 3.4% 2.9% 1.7% 2.0% 2.0% 5.6% 23%
SKEW200 22d 1.6% 1.6% 1.7% 2.4% 1.5% 2.0% 1.8% 4.0% 5.8% 22%
TSMOM300 22d 2.3% 2.8% 4.7% 3.9% 1.6% 2.9% 2.2% 2.0% 3.2% 3.9% 1.4%
SKEW252 22d [ 00% | 09% | 00% @ 00% | 1.6% 1.9% 1.4% 4.7% 2.0%
BASISMOM130 22d 1.3% 1.5% 3.0% 3.1% 1.8% 2.0% 1.9% 2.7% 3.9% 3.6% 1.6%
MOM756 22d 1.3% 1.4% 2.7% 2.4% 1.5% 1.8% 1.7% 2.7% 3.9% 4.3% 1.8%
SKEW382 22d 1.8% 1.8% 2.2% 2.2% 1.5% 1.9% 1.7% 3.3% 51% [e% T 12%

BASISMOM200 22d 1.4% 13%  [7010% L T000% ] 1.4% 1.5% 1.5% 3.4% 4.5% 4.2% 14%

Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
TSMOM252 44d 2.6% 2.8% 5.6% 3.5% 3.8% 2.8% 2.9% 3.1% 2.2% 3.6% 2.0%
MOM252 44d 2.3% 2.6% 5.8% 3.4% 3.1% 2.5% 1.5% 2.0% 1.8% 5.3% 1.9%
BASISMOM200 44d 1.7% 1.5% 3.8% 2.8% 3.0% 2.4% 2.2% 2.9% 2.2% 5.8% 2.0%
SKEW252 44d 1.8% 09% [I00%IN  2.6% 2.8% 1.7% 1.9% 3.4% 31% [NOA%N  2.7%
BASISMOM130 44d 1.4% 1.3% 2.5% 22% 2.7% 22% 2.4% 2.5% 2.1% 5.5% 1.9%
TSMOM300 44d 2.0% 2.0% 5.0% 2.5% 2.5% 1.9% 2.3% 1.9% 1.6% 3.7% 1.3%
BASISMOMS88 44d 1.6% 1.5% 3.5% 2.4% 3.0% 2.0% 2.3% 2.5% 1.8% 33% 1.9%
SKEW130 44d 1.3% 1.6% 25% [NO0%N  22% 1.8% 2.0% 2.9% 2.3% 6.1% 2.5%
CARRY88 44d 1.7% 1.6% 2.8% 2.4% 3.0% 2.0% 2.2% 2.0% 11% 32% 1.9%
SKEW756 44d 1.6% 1.5% 3.8% 2.0% 2.3% 1.6% 1.7% 2.0% 2.1% 3.2% 1.9%
Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
TSMOM252 66d 2.6% 3.2% 5.5% 3.3% 3.3% 3.0% 2.7% 2.8% 2.3% 4.3% 2.0%
SKEW252 66d 1.4% 1.3% 1.5% 2.2% 1.4% 1.8% 2.9% 38% [0S 3.1%
BASISMOM130 66d 1.1% 1.7% 2.8% 2.0% 3.0% 22% 2.3% 2.6% 2.5% 6.8% 22%
BASISMOM200 66d 1.6% 1.8% 3.6% 2.5% 2.7% 2.5% 21% 2.3% 2.0% 6.4% 1.8%
SKEW300 66d 1.3% 1.7% 2.4% 1.5% 1.8% 2.1% 2.0% 2.4% 2.4% 7.3% 1.9%
SKEW130 66d 1.2% 1.3% 3.2% 2.0% 1.8% 2.0% 1.9% 2.7% 2.7% 5.3% 22%
MOM252 66d 2.0% 2.9% 5.0% 2.9% 2.0% 1.2% 1.6% 1.6% 4.6% 1.6%
TSMOM300 66d 1.9% 2.4% 41% 1.6% 1.7% 2.5% 3.0% 1.4% 1.6% 32% 1.6%
SKEW600 66d 1.6% 1.9% 3.7% 2.1% 2.4% 1.6% 1.9% 2.3% 2.1% 3.5% 1.6%
SKEW400 66d 2.1% 2.3% 3.9% 2.0% 1.8% 1.7% 1.8% 2.2% 2.4% 3.1% 1.3%

Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021
TSMOM252 88d 3.1% 5.8% 6.5% 3.4% 41% 2.9% 2.8% 2.4% 1.8%
TSMOM200 88d 3.1% 5.2% 6.0% 3.4% 41% 2.3% 2.3% 2.3% 1.9%
SKEW130 88d 1.7% 2.3% 3.7% 1.9% 2.5% 2.0% 2.1% 3.3% 3.2%
BASISMOM130 88d 1.8% 2.3% 3.2% 2.1% 2.7% 2.0% 2.1% 3.2% 2.9%
BASISMOM200 88d 1.7% 2.5% 3.5% 2.7% 3.3% 2.1% 2.5% 2.6% 1.9%
SKEW200 88d 1.7% 2.2% 2.5% 2.2% 2.7% 2.0% 2.0% 2.1% 1.8%
SKEW252 88d 12% [1000% 00% 00% 1  1.8% 1.6% 2.4% 3.1% 3.5%
IVOL400 88d 1.7% 2.1% 2.6% 1.9% 2.2% 1.9% 1.9% 2.0% 2.1%
TSMOM400 88d 22% 4.0% 5.7% 3.3% 3.3% 11% 0% 1.7% 1.5%
SKEW600 88d 2.5% 2.9% 3.9% 1.9% 2.3% 1.4% 1.7% 2.2% 2.3%
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Exhibit 4. Yearly Normalized Features’ Importance (continued)

Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
TSMOM252 100d 3.3% 4.5% 6.1% 3.4% 7.0% 2.5% 2.3% 1.9% 1.7% 32% 1.5%
TSMOM200 100d 3.2% 4.3% 5.6% 3.3% 5.9% 2.4% 22% 2.1% 1.8% 3.4% 1.8%
SKEW130 100d 2.0% 2.0% 3.2% 22% 3.7% 2.1% 22% 3.4% 32% eI 2.7%
BASISMOM130 100d 21% 1.9% 3.3% 22% 4.6% 21% 2.4% 3.3% 2.6% 5.6% 23%
BASISMOM200 100d 1.9% 1.9% 3.1% 2.9% 5.2% 2.3% 2.4% 2.4% 1.9% 3.3% 1.9%
SKEW200 100d 1.7% 1.7% 2.2% 22% 3.7% 2.0% 2.0% 1.9% 1.8% 76N 2.0%
TSMOM400 100d 2.6% 2.8% 5.5% 3.6% 5.3% 1.0%  [1700% @  1.2% 1.5% 2.4% 1.6%
IVOL400 100d 1.8% 2.0% 2.6% 1.9% 3.6% 1.7% 1.7% 1.9% 2.1% 3.9% 1.9%
SKEW600 100d 2.4% 2.9% 3.8% 2.1% 3.2% 1.6% 1.8% 2.2% 2.1% 1.5%
SKEW400 100d 2.9% 2.4% 4.0% 1.9% 3.4% 1.8% 1.8% 22% 1.6% 1.5%
Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
TSMOM200 200d 3.2% 6.2% 61% - 6.5% 3.0% 2.9% 2.6% 2.4% 6.3% 2.3%
TSMOM?252 200d 2.5% 6.6% 5.4% 2.4% 2.6% 1.8% 1.6% 5.3% 1.9%
IVOL300 200d 1.6% 3.5% 3.7% 4.8% 3.6% 2.0% 21% 1.4% 1.2% 5.3% 1.7%
IVOL382 200d 1.6% 2.8% 3.6% 4.1% 3.9% 2.0% 2.2% 2.0% 1.6% 3.7% 1.5%
TSMOM300 200d 31% 7% 5.6% 5.6% 1.9% 13% 0% 1.4% 1.4% [00%N 1.5%
SKEW600 200d 1.9% 3.3% 3.2% 3.3% 2.9% 1.6% 1.3% 1.4% 1.1% 4.1% 1.8%
IVOL252 200d 1.9% 3.9% 3.8% 3.9% 3.6% 1.7% 1.6% 1.3% 1.4% [N00% ] 1.6%
MOM600 200d 1.5% 3.0% 2.8% 2.7% 21% 1.9% 1.8% 1.8% 4.4% 22%
MA756 200d 1.6% 2.1% 2.1% 2.3% 2.2% 1.8% 1.5% 1.4% 1.8% 4.7% 2.2%

TSMOM382 200d 2.1% 4.5% 5.6% 56% | 00% | 12% 1.1% 1.1% 11% [ 00% | 12%

Feature Target_Variable 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
TSMOM252 ens 2.3% 3.4% 4.9% 3.7% 3.5% 2.8% 2.2% 2.8% 21% 3.3% 1.6%
SKEW130 ens 1.3% 1.3% 23% 1.6% 1.7% 2.0% 1.7% 3.4% 3.0% 2.0%
BASISMOM130 ens 1.3% 1.6% 2.6% 2.5% 2.5% 21% 1.9% 2.6% 2.2% 4.0% 1.6%
MOM252 ens 1.7% 1.4% 3.5% 3.0% 1.2% 27% 1.2% 1.9% 1.7% 3.5% 1.3%
SKEW200 ens 1.5% 1.6% 1.8% 1.7% 1.8% 1.9% 1.5% 2.4% 22% 4.4% 1.6%
BASISMOM200 ens 1.3% 1.3% 21% 1.6% 2.4% 1.6% 1.6% 2.3% 2.0% 4.0% 1.5%
TSMOM300 ens 2.0% 23% 31% 2.3% 1.4% 2.0% 1.6% 1.6% 1.5% 2.5% 1.3%
SKEW600 ens 1.6% 1.8% 2.9% 1.9% 1.8% 1.6% 1.3% 1.7% 1.8% 1.3% 1.4%
TSMOM200 ens 1.3% 21% 2.4% 1.9% 2.4% 1.6% 1.5% 1.2% 1.1% 23% 1.2%
SKEW252 ens 0.7% 05% [ 00%  06% 1.3% 1.2% 1.5% 27% 31% USSR 1.9%

Source: Bloomberg LLC.

of trend signals in commodity markets. Cross-sectional momentum (MOM252) also appears
frequently among the most important features, suggesting that both absolute and relative price
dynamics are integral to model performance.

Another notable result is the prominence of skewness-based features, particularly in short-term
models. For example, SKEW130 and SKEW200 display elevated importance in 2022, especially
in models with shorter forecast horizons. This finding is consistent with the hypothesis that
negative skewness can trigger short-term price overreactions, followed by reversals (Fernandez-
Perez et al. 2018). In this sense, short-term models tend to load more on reversal-type sig-

nals, often combining skewness with momentum indicators, whereas longer-horizon models
gravitate more heavily toward pure trend-following signals, such as TSMOM.

Finally, it is worth noting that classical technical indicators, such as RSI, MA, and MAV, rank
lower in importance for almost all horizons. Regardless of lookback period, these features
appear less frequently in the top 10, suggesting that when competing against more academi-
cally grounded signals, their marginal contribution to predictive accuracy is limited.

Performance Analysis Comparing Models and Ensemble

Exhibit 5 presents the detailed statistics of long-short portfolios constructed for each target
horizon. Each leg of the long-short portfolio is weighted according to its normalized predic-
tion score. Given the narrow nature of the commodity investment universe, limited to only
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Exhibit 5. Performance and Analytics Table for Models
and Ensemble

Annualized
Return Net of
Transaction | Annualized Downside | at Risk | Success
Costs Volatility | Sharpe | Sortino | Volatility Rate Drawdown | Turnover

5d 49% 13.5% 3.6 5.3 9.2% 1.2% 60% -17% 38%
10d 39% 13.5% 29 4.2 9.1% 1.2% 58% —24% 37%
22d 26% 13.5% 1.9 2.7 9.7% 1.3% 56% -28% 31%
44d 20% 13.8% 1.5 2.1 9.8% 1.3% 55% -26% 29%
66d 18% 13.9% 1.3 1.8 9.9% 1.3% 55% -34% 27%
88d 18% 13.7% 1.3 1.9 9.6% 1.3% 54% -25% 28%
100d 20% 13.7% 1.4 2.0 9.8% 1.3% 55% -25% 27%
200d 22% 13.1% 1.7 2.4 9.1% 1.2% 55% -23% 27%
Ensemble 27% 10.9% 2.4 33 8.3% 1.0% 57% -22% 17%

Source: Bloomberg LLC.

41 contracts, it would not be meaningful to form decile portfolios. Instead, the long portfolio
includes contracts with normalized predictions above the cross-sectional median, and the
short portfolio contains those below it. As explained previously, all models are retrained each
year in December and new predictions are made every day for the following year that becomes
the out-of-sample results. Hence, the models' portfolio would change daily according to new
unseen features' input. | applied a generic prediction-level weighting scheme (comparable to a
factor intensity) to accentuate the role of predictions in the performance of the models’ long-
short portfolio.

Results are shown for the full sample of out-of-sample predictions from January 2000 until
June 2024, net of transaction costs, which are computed, for the sake of simplicity, as 5 bps

per unit of turnover. The ensemble is created using the average of normalized predictions,
which are normalized once more to filter and weight the assets in the same fashion as the other
target horizon models. The gross market value (GMV) is kept at a constant level for each model
because a new model weight is recomputed each day with new predictions between two yearly
retrainings.

Annualized net performance by target horizon exhibits a nonmonotonic pattern: Performance
is higher for shorter-term horizons—it decreases from 5 to 66 days—and it rises slightly after
88 days. Sharpe and Sortino ratios are generally high, especially for shorter-term models
(Sharpe ratio of 3.6 and 2.9 for, respectively, 5d and 10d). The cost, however, is a high level of
turnover. Even with conservative transaction costs of 5 bps, the capacity (maximum assets
under management that is tradeable without impacting the market too much and leaving

too visible a market footprint) is in the low hundreds of millions, especially for achieving the

CFA Institute Research Foundation ¢ 169




Al in Asset Management: Tools, Applications, and Frontiers

required turnover on such contracts as orange juice, rubber, or rice. The success rate, defined as
the number of positive returns over the total number of daily returns, is generally very good for
all models and very high for shorter-term horizon strategies (60.0% for 5d, 58.3% for 10d).

The risk measures do not indicate large differences among the models, with volatility being
around 13% and downside volatility being below 10%. There are some differences in maxi-
mum drawdown over the full period, part of which occurred during the COVID-19 pandemic;
maximum drawdown is high in general and in particular for the 22d and 66d models. For these
models, maximum drawdown exceeds the rule of thumb of 1.5 times the volatility of the
strategy, which is commonly used as a “red flag” in multistrategy hedge funds pods. Regarding
the ensemble, the results show that blending predictions together provides a risk diversification
effect that smooths volatility and tail risk. While providing a mid-range net annualized return

of 27.3%, the ensemble cuts annual volatility by 2 to 3 points relative to the best standalone
models, lowers value at risk, and keeps the drawdowns moderate.

Exhibit 6 shows the full-period pairwise correlation matrix for the strategies, each defined
by a specific target horizon, ranging from short term (5d) to long term (200d), including their
relationship to an ensemble strategy that aggregates them.

First, the matrix reveals a high degree of correlation among the medium-term models (22d to
100d), with values typically exceeding 0.80. For example, the correlation between the 22d
and 44d strategies is 0.84, while the 66d and 88d correlation reaches 0.88. These elevated
correlations suggest that the corresponding models are identifying overlapping patterns in
commodity returns, arising from important common features. Although this finding confirms
the robustness of certain signals, it also implies a degree of informational redundancy among
these models, which may limit the incremental benefit when combining them into the
ensemble.

Conversely, the 200d strategy stands out because of its markedly lower correlations.

For instance, its correlations with the 5d and 22d strategies are only 0.41 and 0.49, respectively.
This divergence suggests that the 200d model is extracting fundamentally different signals,

as depicted by the top 10 most important features table (Exhibit 4), potentially aligned

with slow-moving structural or seasonal phenomena. In an ensemble framework, such low

Exhibit 6. Correlation Matrix for Long-Short Portfolios

Target Variable 5d 10d 22d 44d 66d 88d 100d 200d Ensemble
5d 1.00 0.83 0.77 073 0.71 0.66 0.65 [ 041 | 083
10d 0.83 1.00 0.83 0.78 076 071 0.69 0.50 0.88
22d 0.77 0.83 1.00 0.84 0.81 074 0.72 0.49 0.89
44d 0.73 0.78 0.84 1.00 0.86 0.79 0.77 0.51 0.91
66d 071 0.76 0.81 0.86 1.00 0.88 0.84 0.58 0.93
88d 0.66 071 074 079 0.88 1.00 0.92 0.63 0.91
100d 0.65 0.69 0.72 0.77 0.84 0.92 1.00 0.64 0.90
200d [ 041 o050 0.49 0.51 0.58 0.63 0.64 1.00 0.68
Ensemble 0.83 0.88 0.89 0.91 0.93 0.91 0.90 0.68 1.00

Source: Bloomberg LLC.
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correlation is valuable because it introduces more “orthogonal” information that can reduce
portfolio variance and enhance risk-adjusted returns, even if the 200d model has a lower stand-
alone Sharpe ratio.

The ensemble model itself exhibits very high correlations with the base strategies, particularly
with the mid-term ones, reaching 0.928 with the 66d model and 0.915 with the 88d model.
This finding indicates that the ensemble is primarily shaped by these horizons, which may
dominate because of superior performance or greater predictive stability. Nevertheless,

the ensemble’s correlation with the 200d model remains moderate at 0.684, showing that it
still benefits from some degree of diversification. The inclusion of all horizons in the ensem-
ble, even those with weaker performance or less commonality, supports the principle of
model averaging, where aggregating diverse signals leads to smoother and more robust
predictive outputs.

Exhibit 7 shows the long and short book group breakdown of the ensemble portfolio. | classified
contracts into subsectors (base metals, precious metals, energy oil, energy gas, softs, grains
and oilseeds, livestock) and show the exposure of the long leg and the short leg. Both legs are
highly dynamic and invest in all subsectors but with substantial shift in time-varying exposure
from net long to net short. When looking at each portfolio separately and focusing on the long
leg, grains and oilseeds and precious metals consistently represent a significant portion of

the long exposure across the entire sample period. Soft commodities and base metals exhibit
elevated exposure during specific intervals, notably between 1999 and 2003, 2009 and 2012,
and 2018 and 2021. Crude oil-related positions show pronounced spikes in exposure that
coincide with major macroeconomic and geopolitical disruptions, such as those observed

in 2008, 2014-2016, and 2022. Natural gas begins to play a more prominent role from 2010
onward, potentially reflecting increased market volatility. Livestock exposures display a more
erratic pattern but maintain a persistent presence, with notable peaks occurring in the early
2000s and again in the post-2020 period.

Short exposures are predominantly concentrated in grains and oilseeds, particularly from 1998
to 2011 and after 2022. Natural gas exhibited substantial short allocations between 2006 and
2009 and again from 2019 to 2022, suggesting persistent bearish signals or mean-reverting
behavior. Crude oil positions were heavily shorted during 2005-2008 and 2011-2015, coinciding
with episodes of elevated volatility and shifting macro conditions. Precious metals and livestock
also contribute meaningfully to the short book, with consistent allocations observed through-
out 2004-2012. In contrast, base metals and soft commodities exhibit limited or intermit-

tent short exposure, potentially reflecting a structural long bias or weaker signal strength in
these sectors.

Finally, Exhibit 8 shows the net exposure by group. As hinted by the long and short exposure,
net market value (NMV) highlights significant temporal variation in directional positions across
sectors. Grains and oilseeds show the most pronounced fluctuations, with large positive
swings in the early 2000s, 2007-2008, and 2021 and deep negative exposures in 1999-2000,
2005, 2014, and after 2023. Energy oil displays sustained positive net exposure in multiple
periods, notably in 2003-2006 and 2012-2015 and from 2020 through 2022. These periods
coincide with major energy market cycles, indicating the model’s persistent tilt toward oil-re-
lated trends during macro-driven dislocations. Livestock maintains consistent, though smaller,
net long positions through most of the sample, with occasional reversals during 2008-2010
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Exhibit 7. Gross Exposure (GMV) Breakdown for Ensemble Long
and Short Book

Portfolio Exposure in %

Long Portfolio Exposure (%)
B Base Metals M Energy Gas M Grains Oilseeds M Livestock Energy Oil M Precious Metals M Softs

Portfolio Exposure in %

Short Portfolio Exposure (%)
B Base Metals M Energy Gas M Grains Oilseeds M Livestock Energy Oil M Precious Metals M Softs

Source: Bloomberg LLC.

and after 2015. Base metals and soft commodities demonstrate alternating positive and neg-
ative net exposures, with base metals notably net long during the post-Global Financial Crisis
commodity supercycle (2009-2011) and again after the COVID-19 crisis with inflation rising,
while softs show long tilts around 2003, 2017-2018, and 2021. Precious metals exhibit notable
net short phases in 1999-2000, 2005-2006, and 2013-2015 and after 2022, interspersed with
long phases, such as 2008-2009 and the early COVID-19 crisis. These shifts likely reflect both
macro-hedging behavior and relative value signals.
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Exhibit 8. Net Exposure (NMV) per Contract Type for Ensemble
0.8
0.6
0.4
0.2

Net Portfolio Exposure (%)
o

Net Portfolio Exposure (%)

——— Grains Oilseeds Energy Oil

Precious Metals

Source: Bloomberg LLC.

Conclusion

This chapter began with a simple question: Can the rigor and structure of equity-based machine
learning pipelines be transposed onto commodity futures markets, where economic intuition
runs deep but modeling applications have remained largely siloed and segmented? The results
of this study suggest the answer is a clear yes, although not without important structural
adaptations relative to equities.

Commodity futures are not stocks. They lack balance sheets, are governed by supply chains
rather than corporate disclosures, and move to the beat of exogenous cycles, weather, geopol-
itics, inventories, and institutional positioning. These characteristics, often framed as modeling
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challenges, are in fact the very properties that make commodity markets an ideal testbed

for modern supervised learning techniques. When organized through a cross-sectional lens,
where predictors are derived from asset pricing theory and not just price patterns, commodity
futures reveal a persistent and learnable structure that can be used for long-short portfolio
construction.

My approach was built on three foundational choices. First, | rooted the features in academic
theory, not technical folklore. Carry, basis momentum, skewness, time-series momentum,
and so on are not ad hoc constructs but manifestations of storage constraints, hedging pres-
sure, and market segmentation. Second, | extended the empirical asset pricing logic of equity
factor models into the commodity space by constructing cross-sectional long-short portfolios
guided by machine-learned scores. Finally, | introduced temporal diversity by predicting across
multiple horizons, which is a realistic modern way of creating tradable portfolios, capturing
both short-term reversals and long-term trend cycles by fusing them via ensemble averaging.

Across a 30-year window and 41 futures contracts, | showed that ML can not only forecast
cross-sectional returns but also rank assets in a way that produces consistent economic

value. The empirical results are instructive. Time-series momentum, the cornerstone of
trend-following CTAs, dominates most models, particularly over intermediate to long horizons.
Skewness, a higher-moment feature often ignored in equity ML, plays a meaningful role at short
horizons, hinting at reversal tendencies and potential sentiment-driven mispricing. Importantly,
the ensemble strategy does more than just blend signals; it reconciles the tension between
short-term alpha and long-term robustness. Unlike individual models, which exhibit a mirror
J-shaped performance curve across horizons, the ensemble smooths these extremes, offering
better drawdown control and volatility reduction without materially sacrificing returns. This
finding echoes a broader principle in financial ML: Diversity of signal horizons matters just as
much as signal quality.

The correlation structure among horizons further reinforces the value of multiscale model-
ing. Mid-term models (22d to 100d) cluster tightly, suggesting that they capture variations
on a shared theme, likely driven by overlapping features. But the 200-day model, with its low
correlations and distinct top features, adds a unique longer-cycle perspective. This decorrela-
tion, although dilutive on a standalone basis, enhances the ensemble’s stability and reduces
fragility to negative events, as depicted by the better risk profile of the ensemble.

At the portfolio level, the results reveal meaningful heterogeneity. Exposure patterns vary
strongly across sectors and time, with pronounced tilts toward grains, energy, and metals at
key macro inflection points. These shifts are not noise; they reflect the interaction between
predictive signals and regime-specific fundamentals. For instance, long tilts in crude oil during
geopolitical crises or short positions in grains after 2022 mirror real-world economic dynamics
that models have learned to anticipate.

In conclusion, this chapter bridges the methodological divide between equity ML and commod-
ity return forecasting. It demonstrates that with careful feature construction, robust out-of-
sample validation, and thoughtful aggregation across time horizons, ML can serve not only as a
modeling tool but as a research framework—one that makes commodities more interpretable,
predictable, and, ultimately, investable. As systematic investing continues to evolve, the fusion
of domain theory with modern ML holds the key to unlocking latent structure in every markets.
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Introduction

This chapter aims to illustrate how quantum computing is expected to transform the future
of finance. It provides a concise overview of the fundamental concepts underlying quantum
computing, along with several of its most prominent applications in finance, such as portfolio
optimization and quantum-enhanced machine learning.

Quantum computing encompasses three related but distinct quantum technologies: quantum
computation, quantum communication, and quantum sensing. In this chapter, | primarily
focus on quantum computation—the idea that quantum computers can solve certain problems
more efficiently and accurately than classical computers. Quantum communication, although
currently of interest to financial organizations, will be mentioned briefly. Quantum sensing,
which has no application in finance, will not be discussed.

The chapter is organized as follows: First, | provide an overview of quantum computing,
emphasizing current capabilities in light of the present state of hardware development. Next,
| review applications of machine learning in finance and present the fundamental ideas behind
applying quantum computing to financial problems. Then, | discuss quantum communication,
and | conclude with a summary and a brief discussion of other topics of interest.

Quantum Computation

Quantum computation is a quantum-mechanical approach to solving computational problems.
Instead of relying on traditional Boolean algebra, where information is represented in binary
form—either 0 or 1—quantum computation uses the principles and mathematical formalism of
quantum mechanics, such as state vectors, unitary operators, and measurements, to arrive at
logical solutions to computational problems. A quantum computer is the physical device that
implements the quantum computational processes of interest.

Quantum mechanics describes nature in a fundamentally different way from classical physics,
which relies on such concepts as force, mass, velocity, and electrical currents. With this caveat
in mind, however, drawing an analogy between classical and quantum circuits can still be useful.

A standard electronic circuit consists of electrical currents and a series of electronic compo-
nents known as logic gates. A circuit can be designed specifically to solve a given problem. This
arrangement of currents and gates—that is, the circuit—constitutes an algorithm. These circuits
are deterministic in the sense that, given a set of input currents and a sequence of gates, the
output is uniquely determined. The efficiency of the algorithm is evaluated on the basis of the
number of gates and layers it uses—a field known as circuit complexity.
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The basic elements of a quantum circuit are the quantum analogues of electric currents and
electronic components. The “quantum electric currents” are called qubits, and the “quantum
electronic components” are called quantum gates. An arrangement of quantum gates forms

a quantum circuit. When a quantum circuit is designed to solve a particular computational
problem, it is referred to as a quantum algorithm. In contrast to classical circuits, quantum
circuits are generally nondeterministic because the measurement process—an integral part of a
quantum circuit—typically produces a probabilistic output. For example, in a classical circuit, one
always measures either the presence or absence of a current in a predictable way. In contrast,
in a quantum circuit, measuring the same qubit can yield different outcomes—sometimes
indicating the presence of a current and other times indicating its absence—even if the circuit

is unchanged.

In mathematical terms, qubits are represented by vectors in a normed complex vector space,
and quantum gates are realized by unitary transformations. The most basic qubit is a 7-qubit.
This quantum state is represented by a complex linear combination of two nonparallel vectors
(usually taken as orthogonal). Quantum gates acting on single qubits change the configuration
of the qubit by modifying the complex coefficients. For example, a quantum gate can exchange
one of the basis vectors for the other or simply make it vanish. The measurement process at
the end provides a probabilistic result based on the new combination created by the quantum
gate, or gates, depending on the complexity of the problem. For more general qubits, we use
the term n-qubit. The vector describing this quantum state is more complicated: It involves

2" nonparallel vectors, usually orthogonal, and 2" complex coefficients. Quantum gates are
unitary transformations that change the coefficients of the input qubit. Quantum gates and
circuits more generally leverage the entanglement property of quantum mechanics, which
involves creating an output qubit that contains more information than the individual input
qubits used to create it.

A final word about quantum circuits: It has been known since the early days of modern com-
puting that any classical circuit can be constructed using a small set of electronic components.
Such a set is known as a universal gate set. Similarly, any quantum operation can, in theory, be
approximated using a finite set of basic gates—known as a universal quantum gate set.

The motivation for developing quantum computers stems from two central beliefs:

e They may significantly outperform classical devices on certain tasks, providing exponential
or polynomial increases in speed.

e Quantum machines might be able to solve problems deemed intractable for classical
computers—offering not only faster computation but also fundamentally new capabilities.

Although this potential remains largely theoretical at present, growing evidence and experi-
mental progress suggest that quantum computation could revolutionize the current approach
to complex problems across various scientific and technological fields, including finance.
Significant challenges remain, however, and here | highlight two: (1) the difficulty of preserving
the quantum properties of qubits and quantum gates and (2) the challenge of constructing
larger, more complex quantum circuits.

If a qubit or quantum gate unpredictably changes its quantum properties, the theoretical predic-
tions will no longer align with the experimental results. This discrepancy can compromise the
entire quantum computation. Such unpredictability is referred to as an error. Fortunately, some
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errors can be corrected. This challenge is not entirely new. In the early days of classical
computing, digital components were also imperfect, and error correction methods were essen-
tial. Over time, classical hardware became so reliable that such corrections became largely
unnecessary. In contrast, quantum systems remain highly sensitive and difficult to isolate from
their environments. Even minor interactions—collectively known as noise—can disrupt quantum
behavior. To tackle this problem, engineers work on techniques to shield quantum circuits from
environmental noise, and theorists develop procedures to detect and correct various types

of errors.

A common example is a bit-flip error, where the state of a qubit flips unexpectedly during trans-
mission or processing. In classical computing, such errors are corrected by duplicating the bit
and using majority voting; for example, instead of using 0, we use 000. If one copy is flipped,
the system can identify and fix the mistake by comparing the values. This method assumes
that the probability of an error occurring is extremely low; if multiple errors occur, the correc-
tion fails. Quantum computing applies a similar idea but with important differences. Instead of
copying qubits directly (impossible because of quantum rules), the information is spread across
multiple qubits in a way that allows for error detection and correction. These groups of qubits
are called logical qubits, and each individual qubit in the group is referred to as a physical qubit.

Detecting errors in quantum systems is more delicate than in classical ones because directly
measuring a qubit destroys its state. Instead, quantum computers use indirect methods—such
as parity checks—to detect errors without collapsing the quantum information. Once an error
is identified, correction techniques are applied to restore the original state. Beyond simple bit
flips, other types of errors can affect qubits, including those caused by faulty gates. If a qubit
enters a faulty gate, the error may propagate throughout the quantum circuit. Worse still, the
process of correcting errors also involves quantum components—which means it can introduce
new errors. This dynamic creates a paradox: Fixing errors can sometimes cause more of them.
As a result, building reliable quantum computers requires scaling up the system, which further
increases the chances of something going wrong. Fortunately, researchers have proven that

if certain conditions are met, error correction codes can reduce error rates to very low levels.
A fault-tolerant quantum computer is one that continually detects and corrects errors in its
logical qubits throughout the computation, ensuring the final result is reliable.

In recent years, however, scientists have come to accept that fault-tolerant quantum computers
will not be available anytime soon. As a result, they began looking for more realistic algorithms
that could be implemented on near-term quantum computers, which are characterized by

a moderate amount of noise and a relatively small number of qubits and gates. We are cur-
rently in this stage, known as the noisy intermediate-scale quantum (NISQ) era. According to
experts, we will likely remain in this phase for several years (even decades) before achieving
fault tolerance.

The algorithms expected to be implemented in the near term are known as hybrid quantum-
classical algorithms. These combine quantum and classical parts: The quantum subroutines
address problems that are hard for classical computers, while the classical computer handles
tasks where its efficiency is well established. For example, variational quantum algorithms
(VQAs) are NISQ algorithms designed to demonstrate quantum advantage (practical quantum
supremacy) in the near future. Because many problems—not only in physics and chemistry
but also in finance—share a common underlying structure, the techniques used in VQAs can
be applied to a wide variety of situations. VQAs are considered heuristic, which means that
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although there is currently no rigorous proof that they outperform known classical algorithms,
there are theoretical reasons for optimism. The hope is that future results will demonstrate
their advantage.

Machine Learning for Finance

As mentioned in several chapters of this book, artificial intelligence (Al) is transforming many
industries, including finance. Banks and public institutions are using Al to detect fraud, assess
credit risk, and identify investment opportunities. This section focuses on machine learning
(ML)—a subfield of Al concerned with algorithms that seek to uncover patterns in data. In
finance, where data such as stock movements and customer behavior are abundant, ML models
are used to analyze this information and generate actionable insights. In this section, | will
review several ML algorithms currently used in finance—especially those seen as promising
candidates for enhancement through quantum computing. But first, it is essential to clarify
what is meant by “data.”

The term data refers to information associated with physical objects or abstract concepts.

In ML, such information comes in various forms and is often classified into two major types.
Structured data are organized and easily represented in tabular formats, such as matrices.

In contrast, unstructured data lack this inherent organization; examples include raw text,
images, and audio recordings. Despite being more prevalent in the real world, unstructured data
must first undergo cleaning and formatting before they can be used in ML models. If the data
are incomplete, inconsistent, or poorly selected, models built on such foundations may yield
inaccurate or misleading predictions. Therefore, the preprocessing stage is not a peripheral step
but a foundational component of the machine learning pipeline.

Supervised learning is among the most widely used ML paradigms. In this approach, models
are trained on labeled data, where the inputs and their corresponding outputs are known in
advance. The objective is to learn a mapping from inputs to outputs that generalizes well to
new, unseen data. During the training phase, the model iteratively adjusts itself to minimize the
discrepancy between its predictions and the actual labels. This adjustment process is typically
achieved by minimizing a loss function, and the model’s ability to generalize is then evaluated
using a separate test set. Supervised learning tasks are commonly divided into regression and
classification problems. In regression, the model predicts continuous outcomes. Classification
tasks, in contrast, involve assigning discrete labels to data points.

Unsupervised learning diverges from supervised learning in a fundamental way: It operates

on datasets that lack labeled outputs. The aim of unsupervised learning algorithms is to
uncover hidden structures or patterns in the data without the aid of explicit guidance. In these
cases, the input consists solely of features, and the algorithm is tasked with identifying

intrinsic relationships among them. One common challenge in such scenarios is managing
high-dimensional data, where the number of features is large. Reducing the dimensional-

ity of the feature space becomes an essential step—not only to simplify the data but also to
enhance the efficiency of subsequent analysis. One systematic method to perform such feature
reduction is principal component analysis (PCA), a key technique under the broader category of
dimensionality reduction.

Neural networks represent a class of ML models that can be supervised or unsupervised.
Inspired by the structure of the human brain, these models consist of layers of interconnected
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nodes, or neurons. Each neuron performs a computation based on its inputs and transmits

the result to the next layer. The network is trained by adjusting internal parameters, such as
weights and biases, to optimize an objective function—often using such algorithms as gradient
descent. For tasks involving sequential data, recurrent neural networks are often used. These
networks differ from traditional feed-forward models in that they maintain a hidden state,
enabling them to incorporate information from previous inputs. However, recurrent networks
are prone to such issues as the vanishing gradient problem, which hinders their ability to
capture long-term dependencies. Long short-term memory networks address this limitation by
introducing gating mechanisms that preserve important information over extended sequences.

ML applications in finance are vast and span various domains, such as credit scoring, fraud
detection, portfolio management, and market analysis. Some explicit examples are covered
next. The improvement of these ML methods with quantum computers is expected to enhance
financial performance and services.

Supervised models, both regression and classification, are particularly useful in credit scoring,
where they predict the probability of a borrower repaying a loan or defaulting. The dataset
typically includes personal information about borrowers—such as their age, gender, and finan-
cial data, including loan amount, credit history, and repayment records. Once the model is
trained on this enriched dataset, it can predict the likelihood of loan repayment for new appli-
cants. Financial institutions can then use this prediction to decide whether to approve a loan or
set credit limits based on the applicant’s perceived creditworthiness. Risk assessment in finance
is a more comprehensive task than credit risk evaluation alone. In this context, risk assessment
involves predicting both the probability and potential cost of adverse events that could impact
a company's financial health. The specific dataset and features used depend on the type of risk
being assessed, which could include market risk, credit risk, operational risk, or country risk. If
the goal is to assess the risk an event poses to a company's market valuation, relevant data are
gathered and the supervised model is trained to uncover patterns. By analyzing the relation-
ships between the input features and target variables (such as changes in market valuation or
earnings volatility), financial institutions and corporations can make more-informed decisions
to mitigate risks.

The k-nearest neighbors (kNN) algorithm is a classification method that is particularly well
suited for such tasks as credit risk assessment and fraud detection. In credit risk assessment,
for example, kNN can predict whether a potential borrower will repay a loan or default. The
algorithm works by training on data from previous borrowers, where each data point con-
sists of personal and financial information along with a repayment history. Once trained, the
model compares a new applicant’s data to the k-nearest neighbors in the training dataset and,
through majority voting, predicts whether the applicant is likely to repay or default. Similarly,
in transaction fraud detection, kNN compares new transactions with past ones, determining
whether new transactions appear fraudulent based on their similarity to previous fraudulent
or legitimate transactions. The kNN algorithm can also be used to identify money laundering
patterns, although money laundering detection often requires more complex feature engineer-
ing and domain-specific knowledge.

PCA is another powerful tool used in finance, particularly for such tasks as credit risk assess-
ment and portfolio management. In credit risk assessment, many features in the dataset are
highly correlated, such as income, debt-to-income ratio, and credit utilization. PCA helps by
reducing the dimensionality of the dataset while preserving the most important variance
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in the data. This process allows risk analysts to focus on the most significant factors influ-
encing credit risk, such as identifying borrower clusters with similar risk profiles or spotting
outliers that may represent unique risks. PCA can also be applied to portfolio management,
where it helps in reducing data complexity, focusing on the most relevant risk factors for asset
allocation. By simplifying the covariance matrix of assets, PCA identifies and removes highly
correlated assets, allowing portfolio managers to maintain diversification without unnecessarily
complicating the portfolio. The efficiency improvements brought by PCA make it a valuable tool
in market analysis as well, where it can help focus on key market drivers while discarding less
relevant factors.

The k-means clustering algorithm is an unsupervised learning technique useful in detecting
previously unseen patterns or suspicious behaviors in data. Unlike supervised learning algo-
rithms, k-means does not rely on labeled data, making it more flexible in uncovering unexpected
trends. This ability is particularly valuable in evolving scenarios, such as fraud detection and
anti-money-laundering, where fraudsters continuously adapt their tactics. By grouping simi-

lar data points together and identifying outliers that do not fit well into any cluster, k-means

can reveal unusual or fraudulent behaviors that might otherwise go unnoticed. Although not
explicitly designed as an anomaly detection algorithm, k-means’ ability to highlight atypical data
points makes it an important tool for detecting fraud and preventing money laundering.

Quantum Algorithms for Finance

In the dynamic environment of the modern financial industry—characterized by intense
competition and evolving regulations—quantum computing holds great promise because it

is expected to surpass classical systems in both efficiency and security. Some experts predict
that finance may be one of the first industries to undergo a transformation driven by quantum
computing. The timeline for the availability of fully functional quantum computers remains
uncertain, however.

Remember that fully reliable, fault-tolerant quantum computers are still many years from being
realized. We are in the so-called NISQ era, characterized by quantum devices that are rela-
tively noisy and support only a limited number of quantum gates. As a result, researchers have
focused on hybrid quantum-classical algorithms, which combine the strengths of both classical
and quantum computing. In these hybrid models, quantum computers tackle the most compu-
tationally demanding parts of a problem, while classical computers handle the remaining tasks.
This approach offers practical advantages: The quantum subroutines require only a limited
number of coherent qubits and shallow circuits, making them feasible with today's quantum
technology.

Quantum Portfolio Optimization

One of the key areas where quantum computing can improve on classical methods is portfolio
optimization. Traditional portfolio optimization techniques can struggle with large datasets,
particularly when the portfolios are vast and require the processing of complex data. Variational
quantum algorithms, such as the variational quantum eigensolver (VQE) and the quantum
approximate optimization algorithm (QAOA), are believed to offer improvements by processing
large datasets more efficiently than classical algorithms.
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The VQE is an algorithm that leverages the variational principle of quantum mechanics to
approximate solutions to the time-independent Schrédinger equation. This equation describes
the behavior of complex quantum systems, such as molecules or the electronic configura-
tions of materials. The VQE was originally developed for quantum chemistry applications, but
researchers have explored adapting it to represent the quantized version of certain classical
problems, including portfolio optimization, by reformulating them as Hamiltonian minimization
tasks. The QAOA is another variational algorithm, specifically designed to solve classical com-
binatorial optimization problems, such as portfolio optimization. What makes VQAs particularly
compelling is that they are designed for hybrid classical-quantum computers. The quantum
subroutine prepares quantum states and computes the Hamiltonian expectation values, while
the classical computer performs the optimization process.

This hybrid approach makes VQAs suitable for solving complex problems that are challenging
for purely classical systems, especially in such domains as portfolio optimization. Although it is
still uncertain whether VQAs will outperform classical algorithms, the potential for significant
improvements in processing massive datasets and performing optimization tasks at a faster
rate could open up new avenues in financial modeling and analysis.

Quantum Machine Learning

In this section, | briefly address the main challenges quantum computing faces in enhancing
and potentially revolutionizing classical ML techniques.

The primary challenge in quantum machine learning today lies in effectively encoding classical
data into qubits so that the quantum computer can process the data efficiently. Several meth-
ods have been developed to facilitate this encoding process, enabling quantum computers to

perform computations on classical data.

| will illustrate this challenge with the simplest example. Suppose you have two classical data
points—for example, two positive numbers—and you want to insert this information into a
quantum computer to process them using the quantum algorithm you have designed. These
classical data points must be transformed into quantum information that the quantum com-
puter can understand. Perhaps the simplest way to encode these classical data points into a
quantum state is by using the angles of a single qubit, a process known as angle encoding.

As previously mentioned, a 1-qubit generally requires two complex numbers, which corre-
sponds to four real numbers, to fully specify it. By the principles of quantum mechanics,
however, these four real numbers can be reduced to only two. The single qubit can thus be
represented as a vector on the surface of a unit sphere. Because the position of any point on
the sphere is completely determined by two angles, the azimuthal and polar angles, the 1-qubit
is determined by these two angles. By properly rescaling if necessary, the original two classical
data points can be encoded in the 1-qubit by rotating it accordingly. That is, the two data points
can be encoded in the rotation angles of the 1-qubit. For more complex situations with many
more classical data points, general n-qubits are necessary, but the principle remains the same.
The real challenge lies in implementing these ideas in real-world scenarios.

In quantum ML, several algorithms have been developed to speed up learning tasks by pro-
cessing vast amounts of data more efficiently than classical systems. These algorithms can be
applied to a variety of ML problems, ranging from classification and regression to clustering
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and optimization. In the context of finance, quantum ML holds the potential to improve financial
applications, as discussed earlier.

Note that ML is a technology that was only recently incorporated into the financial sector, and
quantum ML is still in the early stages of research. As quantum technology progresses, quan-
tum algorithms are expected to become increasingly capable of handling more complex data
and providing substantial advantages over classical approaches.

Quantum Cryptography

As mentioned previously, quantum computing is much more than the acceleration of computa-
tionally expensive problems. It also encompasses secure communication.

The issue is that sufficiently powerful quantum computers could break the current encryption
methods used by most public institutions and private organizations, potentially gaining access
to sensitive data, such as military and financial information. The threat posed by quantum
computers is a reality that governments and financial institutions are taking very seriously.

A discussion of these concepts follows.

An encryption standard is a method used to transform information into a form that is not
easily related to the original. The original form is referred to as plaintext, and the transformed
version is known as ciphertext. Most contemporary digital encryption standards are based

on mathematical problems that are difficult for classical computers to solve. Quantum algo-
rithms, however, have the potential to solve some of these problems efficiently. For example,
RSA, widely used to secure digital data over the internet, relies on the difficulty of integer fac-
torization, and ECC (elliptic curve cryptography) is based on the discrete logarithm problem.
The concern is that Shor’s algorithm, a quantum algorithm, can efficiently solve both of these
problems. Once sufficiently large quantum computers become available—potentially in the
next 5-10 years—these encryption systems could be broken in a relatively short period of time.
These two examples represent some of the most vulnerable standards in the quantum era.

In response, governments worldwide are enacting laws to secure sensitive data.

Post-quantum cryptography (PQC) offers one potential solution. It involves the development
and, increasingly, the implementation of a set of encryption methods based on mathematical
problems designed to remain secure against both classical computers and, more importantly,
quantum algorithms running on quantum computers. These algorithms are based on mathe-
matical problems that are not known to be efficiently solvable by quantum algorithms, such

as Shor's and Grover's. Examples of such problems include lattice problems, multivariate poly-
nomials, code-based schemes, and hash-based signatures. In the United States, the National
Institute of Standards and Technology (NIST) is currently in the process of standardizing several
PQC algorithms to either supplement or completely replace existing cryptographic systems.
NIST has determined that by 2030, US federal agencies should treat current standard encryption
methods as vulnerable, and by 2035, these methods are expected to be phased out. US finan-
cial institutions, however, have not yet established a timeline for transitioning to post-quantum

cryptography.

Quantum key distribution (QKD) is regarded as one of the most secure encryption methods
because it relies not on complex mathematical problems but on the fundamental laws of
physics. Information exchange is protected by principles of quantum mechanics—most notably,
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the no-cloning theorem and the fact that measurement inherently disturbs the system being
observed. Although QKD provides strong theoretical security, its practical implementation is
currently constrained by high costs, the need for specialized hardware, and distance limitations.
As a result, QKD is best suited for niche applications—such as government or high-security
financial sectors—that can support dedicated infrastructure.

Transitioning to a fully quantum-safe infrastructure—particularly for such institutions as banks—
is costly and may take many years to complete. To initiate this transition, experts recommend
adopting hybrid cryptosystems that combine traditional (classical) encryption algorithms,
which are less expensive and faster to implement, with quantum-resistant algorithms that may
require new types of technology and infrastructure. This combination offers protection against
both classical and potential future quantum attacks and is especially valuable during the transi-
tion phase.

Conclusion

Quantum computing is a technology still in the research phase, awaiting widespread adoption.
Although its practical advantages remain limited at this time, it holds the promise of improv-
ing the most computationally demanding calculations in such industries as pharmaceuticals,
logistics, and finance. In the case of finance, it could help in the process of portfolio optimi-
zation, as well as in many services currently tackled by ML techniques. Another active area of
research in the finance community is quantum-enhanced Monte Carlo simulation. Unlike with
variational quantum algorithms and quantum ML, there is mathematical evidence that the
quantum version of classical Monte Carlo can enhance parts of the process. Challenges persist,
however: Noise still affects quantum systems, and errors remain significant.

Quantum computation and quantum communication are active areas of research, not only in
hardware and software but also in real-world applications. The coming years will bring more
powerful quantum hardware and a growing interest in applications such as those in finance.
The future is certainly exciting for quantum computing and its role in the financial sector.
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Introduction

Recent technological progress and greater computational power have significantly boosted
the adoption of artificial intelligence (Al) by financial institutions and regulators. Al delivers
numerous benefits, including streamlined operations, improved regulatory adherence, tailored
financial solutions, and advanced data analysis. The introduction of generative Al (GenAl) and
large language models has further broadened its range of applications.

Al has significantly shaped financial markets, improving efficiency, returns, and analytical
capabilities. Generative Al marks the latest advancement, driving productivity through automa-
tion and enhancing such activities as trading and data analysis. Companies that invest heavily in
Al experience significant growth, with research showing that a one standard deviation increase
in Al investment is associated with a 19.5% rise in sales, an 18.1% increase in employment, and
a 22.3% boost in market value over eight years. These trends are consistently observed across
such industries as manufacturing, finance, and retail (Babina, Fedyk, He, and Hodson 2024).

Investment professionals heavily use machine learning tools for managing investment
processes, benefiting from increased efficiency, automation, timely insights, and enhanced risk
management. Although only 29% of systematic investors currently use Al to develop and test
investment strategies, more than three-quarters anticipate doing so in the future. Al contin-
ues to revolutionize the financial industry by extending capabilities in data analysis, predictive
modeling, and automation, enabling the rapid processing of vast datasets (CFA Institute 2024).

Machine learning and large language models enable better price discovery and lower barriers
for quantitative investors, potentially improving liquidity but raising financial stability concerns.
Despite progress, fully autonomous Al-driven financial agents remain limited as concerns
persist about “black box" strategies and regulatory, ethical, and liability issues (Adrian 2024).

Although Al drives advancements in fraud detection, credit risk assessment, and algorithmic
trading, it also presents critical ethical challenges regarding bias, transparency, and
accountability that must be addressed to ensure responsible and equitable implementation.

This chapter explores the intersection of machine learning and finance through the lens

of ethical Al considerations. | will examine ethical challenges, regulatory frameworks, and
mitigation strategies while emphasizing adherence to ethical norms to achieve sustainable
outcomes. The chapter concludes with actionable recommendations to guide the responsible
implementation of Al in finance.

Understanding Ethical Al

Ethical Al refers to the responsible development and deployment of Al systems based on
foundational principles, such as transparency, fairness, accountability, privacy, nonmaleficence,
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and justice (Jobin, lenca, and Vayena 2019). These principles aim to guide Al developmentin a
way that aligns with societal values and minimizes harm. However, their interpretation, scope,
and implementation vary significantly across cultures, domains, and stakeholders. This diversity
necessitates a cross-cultural approach to Al ethics that reflects the plurality of global perspec-
tives (Goffi 2023).

Key Ethical Frameworks

Al ethics frameworks are structured sets of principles designed to ensure fairness, transparency,
and accountability in Al systems. With the rapid growth of Al adoption, expected to increase at
a compound annual growth rate of over 37% through 2030 (Grand View Research 2024), these
frameworks are essential to mitigating risks and fostering trust.

Three prominent frameworks have been introduced by the Institute of Electrical and Electronics
Engineers (IEEE), the EU, and the OECD:

e IEEE's Ethical Al Framework: Focuses on embedding human values into Al design and
fostering accountability and transparency (Peters, Vold, Robinson, and Calvo 2020)

e The EU Al Act: A risk-based regulatory framework that categorizes Al systems by risk level,
imposing stricter requirements on high-risk applications to ensure safety, transparency, and
alignment with human rights’

e The OECD Al Principles: Center on promoting trustworthy Al by addressing inclusivity,
fairness, transparency, and safety while ensuring societal benefit?

These frameworks share common goals while addressing different priorities, such as risk
mitigation, regulatory compliance, and societal alignment. UNESCO further supports these
efforts through its Global Al Ethics and Governance Observatory, which fosters international
cooperation, provides resources, and promotes ethical Al practices globally (UNESCO 2024).

Ethical Dilemmas in Al

Despite these efforts, ethical challenges persist in Al's application. Key concerns include the
following:

e Bias: Technical and human biases arise from such issues as data deficiencies, demographic
homogeneity, spurious correlations, and cognitive biases. These biases can lead to
discriminatory outcomes, particularly in sensitive domains, such as auditing and hiring
(Murikah, Nthenge, and Musyoka 2024).

e Privacy: Al systems often rely on large datasets, raising concerns about how personal data
are collected, stored, and used.

e Transparency: Many Al systems, especially those powered by deep learning, function as
"black boxes,” making their decision-making processes difficult to interpret or explain.

"The latest details on the EU Artificial Intelligence Act can be found online at https://artificialintelligenceact.eu/.

2Further details are on the OECD website at www.oecd.org/en/topics/sub-issues/ai-principles.html.
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By aligning global efforts and fostering international collaboration, the future of Al can be both
innovative and ethically responsible, ensuring its benefits are equitably distributed across
societies.

Applications of Al in Finance

Artificial intelligence is revolutionizing the financial services sector, offering transformative
applications in fraud detection, risk management, algorithmic trading, and credit scoring. By
using advanced techniques such as machine learning (ML), deep learning (DL), and natural
language processing, financial institutions are enhancing their capabilities to detect anomalies,
mitigate risks, and optimize decision-making processes. Despite its potential, however, Al's
adoption in finance faces challenges, including concerns around data quality, model transpar-
ency, and regulatory compliance (Pattyam 2019).

Fraud detection has emerged as one of the most impactful applications of Al in finance. Al has
been shown to improve audit efficiency, minimize financial losses, and bolster stakeholder trust
(Kamuangu 2024). Algorithms such as random forest are particularly effective at identifying
fraudulent transactions with high precision, as noted by Lin (2024). These advancements not
only enhance security but also enable financial institutions to proactively safeguard their oper-
ations against financial crimes. To address concerns about the opaque nature of Al systems,
explainable Al (XAl) techniques, such as feature importance analysis and LIME (local interpreta-
ble model-agnostic explanations), have been used (Gayam 2021). These approaches demystify
Al's decision-making processes, fostering greater trust in its applications.

Risk management is another area where Al has shown remarkable promise. With the ability to
analyze vast datasets in real time, Al systems can identify emerging threats and adapt to new
challenges. Javaid (2024) emphasized the transformative potential of Al in recognizing patterns,
detecting anomalies, and responding to risks dynamically. This adaptability not only reduces
financial risks but also strengthens consumer trust, ultimately enhancing the resilience of
financial ecosystems.

In the realm of algorithmic trading, Al is reshaping market dynamics by processing extensive
data and executing trades at unparalleled speed and accuracy. Cohen (2022) highlighted how
ML and DL techniques can uncover hidden correlations and predict market trends, allowing

Al systems to outperform human traders in efficiency and effectiveness. Similarly, Beverungen
(2019) noted that Al is redefining the so-called cognitive ecology of financial markets, enabling
smarter and faster trading strategies that challenge traditional human capabilities.

Al also plays a pivotal role in credit scoring by improving the accuracy and fairness of risk
assessments. By analyzing nontraditional data sources, such as social media behavior and
transaction histories, Al systems reduce reliance on conventional metrics, thereby increasing
financial inclusivity for underserved populations. This shift enables financial institutions to make
more informed and equitable lending decisions.

ML underpins these advancements by driving predictive analytics, data-driven insights, and
automation across financial services. For example, ML models enhance fraud detection by ana-
lyzing historical and real-time data for suspicious activities, and self-learning algorithms in risk
management adapt to emerging threats to ensure dynamic mitigation. In trading, DL models
identify complex patterns in financial data, optimizing strategies and maximizing returns.
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Additionally, ML-powered credit scoring systems use diverse data sources to deliver more accu-
rate and less biased assessments of creditworthiness.

The integration of Al into financial accounting and management further demonstrates its
potential to drive efficiency and innovation. Al, combined with robotic process automation,
extends traditional accounting capabilities, enabling comprehensive data analysis and adapt-
ability to evolving business processes (Zhan, Ling, Xu, Guo, and Zhuang 2024). These technol-
ogies contribute to an integrated system that enhances enterprise management, ensuring that
financial institutions can respond effectively to complex decision-making challenges.

Investment management firms are also turning to Al to relieve the burden of regulatory
compliance, allowing human resources to be deployed in more productive, client-focused
endeavors. Firms can streamline compliance processes by automating regulatory compliance
with Al applications that, for instance, complete mandatory reporting forms by extracting data
from internal systems in a timely and accurate manner. Tools track and interpret applicable
regulatory changes by monitoring the rule-making activity of regulatory bodies to scan and
interpret new guidance, enforcement actions, and rule updates. These tools then apply those
changes to firm processes and practices and suggest updates to compliance policies and proce-
dures. Enhanced transaction monitoring can detect unethical and illegal activity, such as insider
trading, market manipulation, front running, or money laundering. ML can distinguish normal
customer activity from suspicious activity more accurately than rule-based systems, learn from
historical trading violations, and adapt to evolving marketing behavior. In sum, using Al for com-
pliance helps enhance monitoring of financial activities and changes in the regulatory landscape
to reduce operational risk.

Despite its vast potential, the adoption of Al in finance is not without obstacles. Such issues
as model interpretability, data quality, and compliance with regulatory frameworks must be
addressed to fully harness Al's capabilities. Nevertheless, the advancements in fraud detec-
tion, risk management, algorithmic trading, and credit scoring illustrate how Al is fundamen-
tally transforming the financial sector, offering unprecedented opportunities for innovation
and growth.

Ethical Challenges in Financial Al

The integration of big data analytics, Al, and blockchain technologies into financial services has
marked the beginning of a new era of enhanced inclusivity and accessibility. As highlighted by
Giudici (2018), however, these innovations also bring significant ethical and operational risks.
Such issues as underestimation of creditworthiness, market risk noncompliance, fraud, and
cyberattacks are becoming increasingly prevalent as financial institutions rely on automated
systems. These concerns necessitate the adoption of robust ethical and regulatory frameworks
to safeguard the financial ecosystem (Financial Stability Board 2024).

Data privacy and security emerge as critical considerations in financial Al systems. Protecting
sensitive customer data and adhering to regulatory requirements are essential during auto-
mated data processing (Zhan et al. 2024). Without strict data governance practices, financial

Al systems risk compromising customer trust and violating privacy laws. As Al continues to
evolve and integrate with other technologies, such as blockchain, maintaining secure and trans-
parent data practices will remain paramount to building trust and ensuring compliance.
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One of the most pressing ethical challenges in financial Al is algorithmic bias and fairness.
Biased Al decisions, particularly in such areas as loan approvals and credit scoring, can reinforce
societal inequalities and lead to discriminatory outcomes. For instance, improperly trained

Al systems may deny loans to specific demographic groups because of biased historical data.
Addressing this issue requires responsible Al practices, including diversifying training datasets,
implementing fairness metrics, and conducting regular audits to detect and mitigate bias.

Transparency and explainability are equally critical, especially as financial institutions increas-
ingly rely on complex Al models, such as convolutional neural networks and recurrent neural
networks. Although these models excel in pattern recognition and time-series predictions,
their "black box" nature often makes it difficult for stakeholders to understand how deci-
sions are made. The lack of interpretability not only poses ethical risks but also undermines
trust in Al systems. Such strategies as data pretreatment, regularization, and the adoption

of explainable Al techniques are essential for improving model interpretability (Karanam,
Natakam, Boinapalli, Sridharlakshmi, Allam, Gade, Venkata, Kommineni, and Manikyala 2018).
These measures are essential to ensure that financial decisions are transparent, equitable,
and accountable.

The ethical challenges of Al extend beyond decision making to include risks associated with
algorithmic trading. Although Al systems have revolutionized trading strategies by forecasting
trends and optimizing trades, they also raise concerns about market manipulation, systemic
bias, and a lack of human oversight. The ethical risks associated with algorithmic trading
include the potential for unethical practices and unintended market distortions (Cohen 2022).
To address these challenges, a balanced approach combining automation with regulatory
oversight and human intervention is crucial.

Finally, the reliance of Al systems on vast amounts of data and computational resources intro-
duces disparities in access to these technologies. Ensuring equitable distribution of compu-
tational resources and prioritizing data quality are vital for fostering an ethical and inclusive
financial Al ecosystem. Although neural networks have significant potential to enhance trading
strategies, their sensitivity to market volatility and dependence on extensive datasets limit their
flexibility. As such, ongoing research and policy development are required to mitigate these
limitations and maximize the effectiveness of Al in finance.

Regulatory and Governance Considerations

Regulatory and governance frameworks for Al in finance are essential for mitigating the ethical
risks associated with its rapid adoption across industries. Considering increasing cyberattacks
and data protection vulnerabilities, financial institutions are compelled to implement proactive
measures. These include strengthening cybersecurity defenses, ensuring data traceability, and
protecting sensitive information.

Such strategic actions are not merely risk averse; they also promote sustainable growth

and facilitate the responsible adoption of Al technologies in financial systems. Data man-
agement stands as a cornerstone of effective Al governance. Research conducted by Ernst

& Young (2020) highlights the need for enhanced data governance, strengthened cybersecu-
rity measures, and privacy-centric strategies. These priorities align with the European Union's
broader efforts to build trust and ensure compliance through such initiatives as the European
Approach to Excellence and Trust (European Commission 2020).
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Globally, the regulatory landscape for Al in finance remains multifaceted and dynamic. Research
by A&O Shearman (2024) highlights the EU's leadership with the EU Al Act, a comprehensive
framework categorizing Al systems by risk and imposing corresponding obligations. This frame-
work balances innovation with ethical compliance. In contrast, the United States has adopted a
state-level regulatory approach focusing on risk management and impact assessments, while
the United Kingdom has taken a sector-specific route, assigning regulatory bodies to address
gaps in oversight.

Across regions, data governance remains a universal priority. The EU and the United Kingdom
emphasize protections similar to those in the General Data Protection Regulation (GDPR) for
data, meaning they provide individuals with similar rights and require businesses to adhere to
similar principles of data privacy. The United States focuses on Al-specific risk management
frameworks. Extraterritoriality also plays a significant role because regulations frequently apply
to Al systems used within a jurisdiction, regardless of their origin.

The handling of third-party providers presents additional regional variation. In the United
States, risk management frameworks are promoted, while the EU enforces information and
communications technology security through its Digital Operational Resilience Act, and the
United Kingdom has developed a dedicated regime for critical third-party providers. These
differing approaches underline the challenge of achieving regulatory harmonization across
global markets.

In financial services, such regulators as Financial Industry Regulatory Authority (FINRA) in

the United States are clarifying the application of existing laws to Al technologies. FINRA's
Regulatory Notice 24-09 emphasizes the need for firms to comply with securities laws when
leveraging Al, including generative Al, for such activities as data analysis and investor education.
Such risks as accuracy, privacy violations, and bias are highlighted, alongside the importance

of human oversight and robust supervisory systems. FINRA emphasizes that traditional regula-
tions, such as those governing public communications, apply equally to Al-generated content.
As Al adoption accelerates, FINRA advises firms to carefully assess Al applications and ensure
compliance with existing regulatory standards (Complex Discovery 2024).

Robust Al policy and governance frameworks are essential for managing the ethical and opera-
tional risks posed by Al.2 Such frameworks are essential for ensuring transparency, accountabil-
ity, and fairness while balancing innovation with the protection of individual rights, public safety,
and societal values. Key governance practices include setting clear objectives for Al systems,
ensuring robust data governance, encouraging cross-functional collaboration, conducting
regular audits, and investing in education. As Al technologies evolve, governance frameworks
must also adapt, incorporating ethical considerations, fostering international collaboration, and
remaining responsive to emerging risks and opportunities.

In the future, dynamic and collaborative governance approaches will become ever more essen-
tial to manage the challenges posed by rapidly advancing Al technologies. By refining ethical
principles, fostering global cooperation, and adapting to technological shifts, regulators and
industry stakeholders can harness Al's transformative potential while mitigating its ethical and
operational pitfalls. Through such efforts, the financial sector can achieve a balance between

3See Scytale's "Al Policy and Governance: Shaping the Future of Artificial Intelligence” webpage: https://scytale.ai/
center/grc/ai-policy-and-governance-shaping-the-future-of-artificial-intelligence/.
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innovation and responsibility, ensuring that Al adoption aligns with societal and regulatory
expectations.

Mitigating Ethical Risks

The increasing reliance on Al in finance brings immense opportunities but also profound eth-
ical challenges. Addressing these risks requires a balanced approach that integrates technical
measures, organizational culture, and robust governance, while also embracing a cross-cultural
perspective.

Bias Mitigation Techniques

Bias in Al systems can lead to inequitable outcomes, especially in finance, where decisions
significantly impact individuals and economies. Effective bias mitigation starts with careful
curation of data. Training datasets must be diverse and representative, reflecting a broad range
of demographics, socioeconomic factors, and global perspectives. This approach helps reduce
the risk of perpetuating systemic biases and fosters greater inclusion of marginalized groups.

In addition, features in Al models must be scrutinized to avoid correlations with protected char-
acteristics, such as race, gender, or age. Regular audits—both internal and external—are vital
for continuously evaluating Al systems for fairness and discrimination. These efforts must be
complemented by debiasing techniques, including reweighting training data, modifying learn-
ing algorithms, and postprocessing adjustments. Bias detection software provides additional
assurance, offering specific insights into algorithmic fairness.

A cross-cultural approach further enhances bias mitigation by incorporating diverse ethical
perspectives. This ensures Al systems align with global values and reflect the plurality of the
world's viewpoints, reducing ethical risks. As Goffi (2023) asserted, diversity enriches our world
and must be translated into Al ethics to represent and honor a variety of perspectives.

Enhancing Transparency with Explainable Al

Transparency is foundational to ethical Al. XAl tools make Al decisions understandable, enabling
stakeholders to detect and address biases and fostering trust in the technology. XAl not only
enhances accountability but also supports compliance with ethical and regulatory standards.

Transparency also involves clear communication about methodologies, data sources, and
system limitations. Engaging regularly with stakeholders—including customers, regulators, and
advocacy groups—ensures alignment with societal and ethical expectations. Such openness
strengthens trust and fosters collaboration in addressing ethical concerns.

Building an Ethical Al Culture

Ethical Al requires more than technical solutions; it demands an organizational culture grounded
in fairness, accountability, and transparency. An ethical Al charter can serve as a guiding
framework, embedding these principles into every decision-making process.

Continuous learning through workshops, conferences, and ethical simulations equips employ-
ees with the skills to navigate complex ethical challenges related to Al use. Implementing
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whistleblower protections allows employees to report unethical Al practices or biased outputs
safely, fostering accountability. Recognizing and rewarding ethical behavior further strengthens
the organizational commitment to ethical Al, encouraging responsible use of Al in generating
outputs that reflect fairness, transparency, and inclusivity.

Conclusion and Recommendations

Summary of Key Points

Al has emerged as a transformative force in finance, enhancing efficiencies, improving decision
making, and offering innovative solutions to long-standing challenges. Its rapid adoption
introduces ethical complexities, however, including bias, lack of transparency, and accountabil-
ity. This chapter underscores the importance of embedding ethical Al principles—transparency,
fairness, nonmaleficence, accountability, and privacy—into Al systems to create a sustain-

able, trustworthy, and equitable financial ecosystem. Effective governance, transparency, and
proactive regulation are crucial to addressing such risks as algorithmic bias, privacy violations,
and the balance between automation and human oversight. Moreover, the cross-disciplinary
training of regulators is essential to bridge the gap between Al technology and domain-specific
ethical standards.

Practical Recommendations
To implement ethical Al in financial institutions, the following actions are recommended:

e Transparency and accountability: Ensure that Al systems are explainable and transparent,
enabling stakeholders to understand decision-making processes. Regular audits and the use
of explainable Al tools are key to detecting biases and enhancing trust.

e Bias mitigation: Pursue strategies to reduce bias in Al, such as using diverse datasets,
conducting regular audits, and applying debiasing techniques to ensure fairness and equity.

e Data privacy and security: Prioritize cybersecurity and data governance practices to
safeguard sensitive financial data, ensuring compliance with privacy regulations, such as
GDPR, and mitigating data breach risks.

e Human oversight: Ensure that human oversight remains central to Al decision making,
particularly in high-stakes financial situations, to complement and guide Al’s capabilities.

e Regulatory engagement: Collaborate with regulators to ensure that Al adoption aligns with
evolving ethical standards and legal requirements. Cross-disciplinary training for regulators,
provided by industry groups, such as the Montreal Al Ethics Institute or the Al Now Institute,
will help bridge the knowledge gap (Montreal Al Ethics Institute 2020).

The role of Al ethics in finance will continue to evolve as Al technologies advance and become
further embedded in financial services. The increasing complexity of Al decision making will
require adaptive governance frameworks to address new ethical challenges. As Al systems
become more integrated into financial ecosystems, collaboration among policymakers,
developers, and financial institutions will be crucial to ensure Al's transformative power is
harnessed ethically (Huriye 2023).
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Although Al holds tremendous potential to revolutionize financial services, its adoption must be
guided by a commitment to ethical principles. Prioritizing transparency, fairness, and account-
ability while maintaining a balance between automation and human oversight will enable the
financial sector to use Al responsibly and sustainably. Embedding ethical Al principles into

Al systems will build a trustworthy and equitable financial ecosystem, ensuring Al's benefits

are realized without compromising ethical standards. Future developments in Al will bring

new ethical considerations, and ongoing dialogue and innovation will be essential to creating a
fair, sustainable, and accountable financial ecosystem.
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