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Introduction
This chapter aims to illustrate how quantum computing is expected to transform the future 
of finance. It provides a concise overview of the fundamental concepts underlying quantum 
computing, along with several of its most prominent applications in finance, such as portfolio 
optimization and quantum-enhanced machine learning.

Quantum computing encompasses three related but distinct quantum technologies: quantum  
computation, quantum communication, and quantum sensing. In this chapter, I primarily 
focus on quantum computation—the idea that quantum computers can solve certain problems 
more efficiently and accurately than classical computers. Quantum communication, although 
currently of interest to financial organizations, will be mentioned briefly. Quantum sensing, 
which has no application in finance, will not be discussed.

The chapter is organized as follows: First, I provide an overview of quantum computing, 
emphasizing current capabilities in light of the present state of hardware development. Next, 
I review applications of machine learning in finance and present the fundamental ideas behind 
applying quantum computing to financial problems. Then, I discuss quantum communication, 
and I conclude with a summary and a brief discussion of other topics of interest.

Quantum Computation
Quantum computation is a quantum-mechanical approach to solving computational problems. 
Instead of relying on traditional Boolean algebra, where information is represented in binary 
form—either 0 or 1—quantum computation uses the principles and mathematical formalism of 
quantum mechanics, such as state vectors, unitary operators, and measurements, to arrive at 
logical solutions to computational problems. A quantum computer is the physical device that 
implements the quantum computational processes of interest.

Quantum mechanics describes nature in a fundamentally different way from classical physics, 
which relies on such concepts as force, mass, velocity, and electrical currents. With this caveat 
in mind, however, drawing an analogy between classical and quantum circuits can still be useful.

A standard electronic circuit consists of electrical currents and a series of electronic compo-
nents known as logic gates. A circuit can be designed specifically to solve a given problem. This 
arrangement of currents and gates—that is, the circuit—constitutes an algorithm. These circuits 
are deterministic in the sense that, given a set of input currents and a sequence of gates, the 
output is uniquely determined. The efficiency of the algorithm is evaluated on the basis of the 
number of gates and layers it uses—a field known as circuit complexity.
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The basic elements of a quantum circuit are the quantum analogues of electric currents and 
electronic components. The “quantum electric currents” are called qubits, and the “quantum 
electronic components” are called quantum gates. An arrangement of quantum gates forms 
a quantum circuit. When a quantum circuit is designed to solve a particular computational 
problem, it is referred to as a quantum algorithm. In contrast to classical circuits, quantum 
circuits are generally nondeterministic because the measurement process—an integral part of a 
quantum circuit—typically produces a probabilistic output. For example, in a classical circuit, one 
always measures either the presence or absence of a current in a predictable way. In contrast, 
in a quantum circuit, measuring the same qubit can yield different outcomes—sometimes 
indicating the presence of a current and other times indicating its absence—even if the circuit 
is unchanged.

In mathematical terms, qubits are represented by vectors in a normed complex vector space, 
and quantum gates are realized by unitary transformations. The most basic qubit is a 1-qubit. 
This quantum state is represented by a complex linear combination of two nonparallel vectors 
(usually taken as orthogonal). Quantum gates acting on single qubits change the configuration 
of the qubit by modifying the complex coefficients. For example, a quantum gate can exchange 
one of the basis vectors for the other or simply make it vanish. The measurement process at 
the end provides a probabilistic result based on the new combination created by the quantum 
gate, or gates, depending on the complexity of the problem. For more general qubits, we use 
the term n-qubit. The vector describing this quantum state is more complicated: It involves 
2n nonparallel vectors, usually orthogonal, and 2n complex coefficients. Quantum gates are 
unitary transformations that change the coefficients of the input qubit. Quantum gates and 
circuits more generally leverage the entanglement property of quantum mechanics, which 
involves creating an output qubit that contains more information than the individual input 
qubits used to create it.

A final word about quantum circuits: It has been known since the early days of modern com-
puting that any classical circuit can be constructed using a small set of electronic components. 
Such a set is known as a universal gate set. Similarly, any quantum operation can, in theory, be 
approximated using a finite set of basic gates—known as a universal quantum gate set.

The motivation for developing quantum computers stems from two central beliefs:

	● They may significantly outperform classical devices on certain tasks, providing exponential 
or polynomial increases in speed.

	● Quantum machines might be able to solve problems deemed intractable for classical 
computers—offering not only faster computation but also fundamentally new capabilities.

Although this potential remains largely theoretical at present, growing evidence and experi-
mental progress suggest that quantum computation could revolutionize the current approach 
to complex problems across various scientific and technological fields, including finance. 
Significant challenges remain, however, and here I highlight two: (1) the difficulty of preserving 
the quantum properties of qubits and quantum gates and (2) the challenge of constructing 
larger, more complex quantum circuits.

If a qubit or quantum gate unpredictably changes its quantum properties, the theoretical predic-
tions will no longer align with the experimental results. This discrepancy can compromise the 
entire quantum computation. Such unpredictability is referred to as an error. Fortunately, some 
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errors can be corrected. This challenge is not entirely new. In the early days of classical 
computing, digital components were also imperfect, and error correction methods were essen-
tial. Over time, classical hardware became so reliable that such corrections became largely 
unnecessary. In contrast, quantum systems remain highly sensitive and difficult to isolate from 
their environments. Even minor interactions—collectively known as noise—can disrupt quantum 
behavior. To tackle this problem, engineers work on techniques to shield quantum circuits from 
environmental noise, and theorists develop procedures to detect and correct various types 
of errors.

A common example is a bit-flip error, where the state of a qubit flips unexpectedly during trans-
mission or processing. In classical computing, such errors are corrected by duplicating the bit 
and using majority voting; for example, instead of using 0, we use 000. If one copy is flipped, 
the system can identify and fix the mistake by comparing the values. This method assumes 
that the probability of an error occurring is extremely low; if multiple errors occur, the correc-
tion fails. Quantum computing applies a similar idea but with important differences. Instead of 
copying qubits directly (impossible because of quantum rules), the information is spread across 
multiple qubits in a way that allows for error detection and correction. These groups of qubits 
are called logical qubits, and each individual qubit in the group is referred to as a physical qubit.

Detecting errors in quantum systems is more delicate than in classical ones because directly 
measuring a qubit destroys its state. Instead, quantum computers use indirect methods—such 
as parity checks—to detect errors without collapsing the quantum information. Once an error 
is identified, correction techniques are applied to restore the original state. Beyond simple bit 
flips, other types of errors can affect qubits, including those caused by faulty gates. If a qubit 
enters a faulty gate, the error may propagate throughout the quantum circuit. Worse still, the 
process of correcting errors also involves quantum components—which means it can introduce 
new errors. This dynamic creates a paradox: Fixing errors can sometimes cause more of them. 
As a result, building reliable quantum computers requires scaling up the system, which further 
increases the chances of something going wrong. Fortunately, researchers have proven that 
if certain conditions are met, error correction codes can reduce error rates to very low levels. 
A fault-tolerant quantum computer is one that continually detects and corrects errors in its 
logical qubits throughout the computation, ensuring the final result is reliable.

In recent years, however, scientists have come to accept that fault-tolerant quantum computers 
will not be available anytime soon. As a result, they began looking for more realistic algorithms 
that could be implemented on near-term quantum computers, which are characterized by 
a moderate amount of noise and a relatively small number of qubits and gates. We are cur-
rently in this stage, known as the noisy intermediate-scale quantum (NISQ) era. According to 
experts, we will likely remain in this phase for several years (even decades) before achieving 
fault tolerance.

The algorithms expected to be implemented in the near term are known as hybrid quantum–
classical algorithms. These combine quantum and classical parts: The quantum subroutines 
address problems that are hard for classical computers, while the classical computer handles 
tasks where its efficiency is well established. For example, variational quantum algorithms 
(VQAs) are NISQ algorithms designed to demonstrate quantum advantage (practical quantum 
supremacy) in the near future. Because many problems—not only in physics and chemistry 
but also in finance—share a common underlying structure, the techniques used in VQAs can 
be applied to a wide variety of situations. VQAs are considered heuristic, which means that 
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although there is currently no rigorous proof that they outperform known classical algorithms, 
there are theoretical reasons for optimism. The hope is that future results will demonstrate 
their advantage.

Machine Learning for Finance
As mentioned in several chapters of this book, artificial intelligence (AI) is transforming many 
industries, including finance. Banks and public institutions are using AI to detect fraud, assess 
credit risk, and identify investment opportunities. This section focuses on machine learning 
(ML)—a subfield of AI concerned with algorithms that seek to uncover patterns in data. In 
finance, where data such as stock movements and customer behavior are abundant, ML models 
are used to analyze this information and generate actionable insights. In this section, I will 
review several ML algorithms currently used in finance—especially those seen as promising 
candidates for enhancement through quantum computing. But first, it is essential to clarify 
what is meant by “data.”

The term data refers to information associated with physical objects or abstract concepts. 
In ML, such information comes in various forms and is often classified into two major types. 
Structured data are organized and easily represented in tabular formats, such as matrices. 
In contrast, unstructured data lack this inherent organization; examples include raw text, 
images, and audio recordings. Despite being more prevalent in the real world, unstructured data 
must first undergo cleaning and formatting before they can be used in ML models. If the data 
are incomplete, inconsistent, or poorly selected, models built on such foundations may yield 
inaccurate or misleading predictions. Therefore, the preprocessing stage is not a peripheral step 
but a foundational component of the machine learning pipeline.

Supervised learning is among the most widely used ML paradigms. In this approach, models 
are trained on labeled data, where the inputs and their corresponding outputs are known in 
advance. The objective is to learn a mapping from inputs to outputs that generalizes well to 
new, unseen data. During the training phase, the model iteratively adjusts itself to minimize the 
discrepancy between its predictions and the actual labels. This adjustment process is typically 
achieved by minimizing a loss function, and the model’s ability to generalize is then evaluated 
using a separate test set. Supervised learning tasks are commonly divided into regression and 
classification problems. In regression, the model predicts continuous outcomes. Classification 
tasks, in contrast, involve assigning discrete labels to data points.

Unsupervised learning diverges from supervised learning in a fundamental way: It operates 
on datasets that lack labeled outputs. The aim of unsupervised learning algorithms is to 
uncover hidden structures or patterns in the data without the aid of explicit guidance. In these 
cases, the input consists solely of features, and the algorithm is tasked with identifying 
intrinsic relationships among them. One common challenge in such scenarios is managing 
high-dimensional data, where the number of features is large. Reducing the dimensional-
ity of the feature space becomes an essential step—not only to simplify the data but also to 
enhance the efficiency of subsequent analysis. One systematic method to perform such feature 
reduction is principal component analysis (PCA), a key technique under the broader category of 
dimensionality reduction.

Neural networks represent a class of ML models that can be supervised or unsupervised. 
Inspired by the structure of the human brain, these models consist of layers of interconnected 
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nodes, or neurons. Each neuron performs a computation based on its inputs and transmits 
the result to the next layer. The network is trained by adjusting internal parameters, such as 
weights and biases, to optimize an objective function—often using such algorithms as gradient 
descent. For tasks involving sequential data, recurrent neural networks are often used. These 
networks differ from traditional feed-forward models in that they maintain a hidden state, 
enabling them to incorporate information from previous inputs. However, recurrent networks 
are prone to such issues as the vanishing gradient problem, which hinders their ability to 
capture long-term dependencies. Long short-term memory networks address this limitation by 
introducing gating mechanisms that preserve important information over extended sequences.

ML applications in finance are vast and span various domains, such as credit scoring, fraud 
detection, portfolio management, and market analysis. Some explicit examples are covered 
next. The improvement of these ML methods with quantum computers is expected to enhance 
financial performance and services.

Supervised models, both regression and classification, are particularly useful in credit scoring, 
where they predict the probability of a borrower repaying a loan or defaulting. The dataset 
typically includes personal information about borrowers—such as their age, gender, and finan-
cial data, including loan amount, credit history, and repayment records. Once the model is 
trained on this enriched dataset, it can predict the likelihood of loan repayment for new appli-
cants. Financial institutions can then use this prediction to decide whether to approve a loan or 
set credit limits based on the applicant’s perceived creditworthiness. Risk assessment in finance 
is a more comprehensive task than credit risk evaluation alone. In this context, risk assessment 
involves predicting both the probability and potential cost of adverse events that could impact 
a company’s financial health. The specific dataset and features used depend on the type of risk 
being assessed, which could include market risk, credit risk, operational risk, or country risk. If 
the goal is to assess the risk an event poses to a company’s market valuation, relevant data are 
gathered and the supervised model is trained to uncover patterns. By analyzing the relation-
ships between the input features and target variables (such as changes in market valuation or 
earnings volatility), financial institutions and corporations can make more-informed decisions 
to mitigate risks.

The k-nearest neighbors (kNN) algorithm is a classification method that is particularly well 
suited for such tasks as credit risk assessment and fraud detection. In credit risk assessment, 
for example, kNN can predict whether a potential borrower will repay a loan or default. The 
algorithm works by training on data from previous borrowers, where each data point con-
sists of personal and financial information along with a repayment history. Once trained, the 
model compares a new applicant’s data to the k-nearest neighbors in the training dataset and, 
through majority voting, predicts whether the applicant is likely to repay or default. Similarly, 
in transaction fraud detection, kNN compares new transactions with past ones, determining 
whether new transactions appear fraudulent based on their similarity to previous fraudulent 
or legitimate transactions. The kNN algorithm can also be used to identify money laundering 
patterns, although money laundering detection often requires more complex feature engineer-
ing and domain-specific knowledge.

PCA is another powerful tool used in finance, particularly for such tasks as credit risk assess-
ment and portfolio management. In credit risk assessment, many features in the dataset are 
highly correlated, such as income, debt-to-income ratio, and credit utilization. PCA helps by 
reducing the dimensionality of the dataset while preserving the most important variance 
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in the data. This process allows risk analysts to focus on the most significant factors influ-
encing credit risk, such as identifying borrower clusters with similar risk profiles or spotting 
outliers that may represent unique risks. PCA can also be applied to portfolio management, 
where it helps in reducing data complexity, focusing on the most relevant risk factors for asset 
allocation. By simplifying the covariance matrix of assets, PCA identifies and removes highly 
correlated assets, allowing portfolio managers to maintain diversification without unnecessarily 
complicating the portfolio. The efficiency improvements brought by PCA make it a valuable tool 
in market analysis as well, where it can help focus on key market drivers while discarding less 
relevant factors.

The k-means clustering algorithm is an unsupervised learning technique useful in detecting 
previously unseen patterns or suspicious behaviors in data. Unlike supervised learning algo-
rithms, k-means does not rely on labeled data, making it more flexible in uncovering unexpected 
trends. This ability is particularly valuable in evolving scenarios, such as fraud detection and 
anti-money-laundering, where fraudsters continuously adapt their tactics. By grouping simi-
lar data points together and identifying outliers that do not fit well into any cluster, k-means 
can reveal unusual or fraudulent behaviors that might otherwise go unnoticed. Although not 
explicitly designed as an anomaly detection algorithm, k-means’ ability to highlight atypical data 
points makes it an important tool for detecting fraud and preventing money laundering.

Quantum Algorithms for Finance
In the dynamic environment of the modern financial industry—characterized by intense 
competition and evolving regulations—quantum computing holds great promise because it 
is expected to surpass classical systems in both efficiency and security. Some experts predict 
that finance may be one of the first industries to undergo a transformation driven by quantum 
computing. The timeline for the availability of fully functional quantum computers remains 
uncertain, however.

Remember that fully reliable, fault-tolerant quantum computers are still many years from being 
realized. We are in the so-called NISQ era, characterized by quantum devices that are rela-
tively noisy and support only a limited number of quantum gates. As a result, researchers have 
focused on hybrid quantum–classical algorithms, which combine the strengths of both classical 
and quantum computing. In these hybrid models, quantum computers tackle the most compu-
tationally demanding parts of a problem, while classical computers handle the remaining tasks. 
This approach offers practical advantages: The quantum subroutines require only a limited 
number of coherent qubits and shallow circuits, making them feasible with today’s quantum 
technology.

Quantum Portfolio Optimization
One of the key areas where quantum computing can improve on classical methods is portfolio 
optimization. Traditional portfolio optimization techniques can struggle with large datasets, 
particularly when the portfolios are vast and require the processing of complex data. Variational 
quantum algorithms, such as the variational quantum eigensolver (VQE) and the quantum 
approximate optimization algorithm (QAOA), are believed to offer improvements by processing 
large datasets more efficiently than classical algorithms.
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The VQE is an algorithm that leverages the variational principle of quantum mechanics to 
approximate solutions to the time-independent Schrödinger equation. This equation describes 
the behavior of complex quantum systems, such as molecules or the electronic configura-
tions of materials. The VQE was originally developed for quantum chemistry applications, but 
researchers have explored adapting it to represent the quantized version of certain classical 
problems, including portfolio optimization, by reformulating them as Hamiltonian minimization 
tasks. The QAOA is another variational algorithm, specifically designed to solve classical com-
binatorial optimization problems, such as portfolio optimization. What makes VQAs particularly 
compelling is that they are designed for hybrid classical–quantum computers. The quantum 
subroutine prepares quantum states and computes the Hamiltonian expectation values, while 
the classical computer performs the optimization process.

This hybrid approach makes VQAs suitable for solving complex problems that are challenging 
for purely classical systems, especially in such domains as portfolio optimization. Although it is 
still uncertain whether VQAs will outperform classical algorithms, the potential for significant 
improvements in processing massive datasets and performing optimization tasks at a faster 
rate could open up new avenues in financial modeling and analysis.

Quantum Machine Learning
In this section, I briefly address the main challenges quantum computing faces in enhancing 
and potentially revolutionizing classical ML techniques.

The primary challenge in quantum machine learning today lies in effectively encoding classical 
data into qubits so that the quantum computer can process the data efficiently. Several meth-
ods have been developed to facilitate this encoding process, enabling quantum computers to 
perform computations on classical data.

I will illustrate this challenge with the simplest example. Suppose you have two classical data 
points—for example, two positive numbers—and you want to insert this information into a 
quantum computer to process them using the quantum algorithm you have designed. These 
classical data points must be transformed into quantum information that the quantum com-
puter can understand. Perhaps the simplest way to encode these classical data points into a 
quantum state is by using the angles of a single qubit, a process known as angle encoding. 
As previously mentioned, a 1-qubit generally requires two complex numbers, which corre-
sponds to four real numbers, to fully specify it. By the principles of quantum mechanics, 
however, these four real numbers can be reduced to only two. The single qubit can thus be 
represented as a vector on the surface of a unit sphere. Because the position of any point on 
the sphere is completely determined by two angles, the azimuthal and polar angles, the 1-qubit 
is determined by these two angles. By properly rescaling if necessary, the original two classical 
data points can be encoded in the 1-qubit by rotating it accordingly. That is, the two data points 
can be encoded in the rotation angles of the 1-qubit. For more complex situations with many 
more classical data points, general n-qubits are necessary, but the principle remains the same. 
The real challenge lies in implementing these ideas in real-world scenarios.

In quantum ML, several algorithms have been developed to speed up learning tasks by pro-
cessing vast amounts of data more efficiently than classical systems. These algorithms can be 
applied to a variety of ML problems, ranging from classification and regression to clustering 
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and optimization. In the context of finance, quantum ML holds the potential to improve financial 
applications, as discussed earlier.

Note that ML is a technology that was only recently incorporated into the financial sector, and 
quantum ML is still in the early stages of research. As quantum technology progresses, quan-
tum algorithms are expected to become increasingly capable of handling more complex data 
and providing substantial advantages over classical approaches.

Quantum Cryptography
As mentioned previously, quantum computing is much more than the acceleration of computa-
tionally expensive problems. It also encompasses secure communication.

The issue is that sufficiently powerful quantum computers could break the current encryption 
methods used by most public institutions and private organizations, potentially gaining access 
to sensitive data, such as military and financial information. The threat posed by quantum 
computers is a reality that governments and financial institutions are taking very seriously. 
A discussion of these concepts follows.

An encryption standard is a method used to transform information into a form that is not 
easily related to the original. The original form is referred to as plaintext, and the transformed 
version is known as ciphertext. Most contemporary digital encryption standards are based 
on mathematical problems that are difficult for classical computers to solve. Quantum algo-
rithms, however, have the potential to solve some of these problems efficiently. For example, 
RSA, widely used to secure digital data over the internet, relies on the difficulty of integer fac-
torization, and ECC (elliptic curve cryptography) is based on the discrete logarithm problem. 
The concern is that Shor’s algorithm, a quantum algorithm, can efficiently solve both of these 
problems. Once sufficiently large quantum computers become available—potentially in the 
next 5–10 years—these encryption systems could be broken in a relatively short period of time. 
These two examples represent some of the most vulnerable standards in the quantum era. 
In response, governments worldwide are enacting laws to secure sensitive data.

Post-quantum cryptography (PQC) offers one potential solution. It involves the development 
and, increasingly, the implementation of a set of encryption methods based on mathematical 
problems designed to remain secure against both classical computers and, more importantly, 
quantum algorithms running on quantum computers. These algorithms are based on mathe-
matical problems that are not known to be efficiently solvable by quantum algorithms, such 
as Shor’s and Grover’s. Examples of such problems include lattice problems, multivariate poly-
nomials, code-based schemes, and hash-based signatures. In the United States, the National 
Institute of Standards and Technology (NIST) is currently in the process of standardizing several 
PQC algorithms to either supplement or completely replace existing cryptographic systems. 
NIST has determined that by 2030, US federal agencies should treat current standard encryption 
methods as vulnerable, and by 2035, these methods are expected to be phased out. US finan-
cial institutions, however, have not yet established a timeline for transitioning to post-quantum 
cryptography.

Quantum key distribution (QKD) is regarded as one of the most secure encryption methods 
because it relies not on complex mathematical problems but on the fundamental laws of 
physics. Information exchange is protected by principles of quantum mechanics—most notably, 
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the no-cloning theorem and the fact that measurement inherently disturbs the system being 
observed. Although QKD provides strong theoretical security, its practical implementation is 
currently constrained by high costs, the need for specialized hardware, and distance limitations. 
As a result, QKD is best suited for niche applications—such as government or high-security 
financial sectors—that can support dedicated infrastructure.

Transitioning to a fully quantum-safe infrastructure—particularly for such institutions as banks—
is costly and may take many years to complete. To initiate this transition, experts recommend 
adopting hybrid cryptosystems that combine traditional (classical) encryption algorithms, 
which are less expensive and faster to implement, with quantum-resistant algorithms that may 
require new types of technology and infrastructure. This combination offers protection against 
both classical and potential future quantum attacks and is especially valuable during the transi-
tion phase.

Conclusion
Quantum computing is a technology still in the research phase, awaiting widespread adoption. 
Although its practical advantages remain limited at this time, it holds the promise of improv-
ing the most computationally demanding calculations in such industries as pharmaceuticals, 
logistics, and finance. In the case of finance, it could help in the process of portfolio optimi-
zation, as well as in many services currently tackled by ML techniques. Another active area of 
research in the finance community is quantum-enhanced Monte Carlo simulation. Unlike with 
variational quantum algorithms and quantum ML, there is mathematical evidence that the 
quantum version of classical Monte Carlo can enhance parts of the process. Challenges persist, 
however: Noise still affects quantum systems, and errors remain significant.

Quantum computation and quantum communication are active areas of research, not only in 
hardware and software but also in real-world applications. The coming years will bring more 
powerful quantum hardware and a growing interest in applications such as those in finance. 
The future is certainly exciting for quantum computing and its role in the financial sector.




