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Introduction
Natural language processing (NLP) has become a foundational technology in financial analysis 
and investment decision making. As modern financial markets are increasingly shaped by the 
flow of unstructured textual information—from earnings calls and regulatory filings to news 
articles and social media—investors and analysts face growing pressure to systematically 
process, interpret, and act on these data.

At the same time, large language models (LLMs) have ushered in a paradigm shift in how textual 
data can be analyzed. These models—trained on vast corpora of text—can perform a wide range 
of tasks with minimal supervision, including question answering, summarization, classification, 
and entity extraction. Their ability to generalize across tasks and domains has made them par-
ticularly attractive for financial applications, where bespoke data and limited training labels 
often hinder the use of conventional supervised learning approaches.

This chapter explores the evolving role of NLP in finance, with a particular emphasis on the 
transformative impact of LLMs. I argue that the flexibility, scalability, and adaptability of LLMs 
have opened up new frontiers for analyzing financial text, enabling both discretionary and sys-
tematic investors to extract insights that were previously inaccessible. The integration of these 
models into financial workflows, however, also introduces new challenges related to trust, 
evaluation, infrastructure, and regulation. The sections that follow trace the technical evolution 
of NLP methods, examine the capabilities and limitations of generative models, and highlight 
the most relevant applications, risks, and future directions for financial professionals.

Evolution of NLP Techniques
Although today’s LLMs offer flexible and high-performing solutions for a wide range of text-
based tasks, their development has been built upon decades of progress in the field of NLP. 
Understanding the historical evolution of NLP methods is valuable not only for appreciat-
ing how the field arrived at its current capabilities but also for identifying use cases where 
simpler, more computationally efficient techniques may still be appropriate. In many financial 
applications, classical NLP tools remain relevant and cost-effective when high predictive 
accuracy or linguistic nuance is not essential.

Computers cannot naturally interpret language in the same way they handle structured, numer-
ical data. As a result, early NLP efforts focused on converting textual information into numerical 
representations suitable for modeling. Over time, methods have evolved from treating language 
as unordered collections of words to more sophisticated approaches capable of capturing 
syntax, semantics, and even pragmatic meaning.
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Rule-Based and Dictionary Approaches
The earliest NLP techniques, dating back to the 1950s, were based on rule-based systems and 
hand-crafted dictionaries. These approaches involved predefined word lists associated with 
particular categories, such as sentiment, emotion, or subject matter. For example, a senti-
ment dictionary might classify “excellent,” “profit,” or “growth” as positive terms, while “loss,” 
“decline,” or “risk” would be labeled negative. An analyst could then quantify the sentiment 
of a document by counting the number of positive and negative words it contained.

To illustrate, consider a simple example. Suppose a sentence reads, “The company reported 
strong revenue growth but noted increased supply chain risks.” Using a basic sentiment 
dictionary, this sentence might register both positive (e.g., “strong,” “growth”) and neg-
ative (e.g., “risks”) words, with the final classification depending on their relative counts. 
These methods were intuitive and easy to implement, but they came with substantial 
limitations:

	● Lack of context: Dictionary methods ignore the surrounding context of words. 
For instance, they typically fail to account for negations (“not profitable”) or modifiers 
(“barely profitable”), leading to misclassification.

	● Polysemy and ambiguity: Words with multiple meanings, such as “interest” (loan interest 
versus personal interest), are treated uniformly, often introducing noise into analysis.

	● Equal weighting: All words in the dictionary are treated as equally informative, failing to 
capture intensity differences—for example, “good” and “great” may both be classified as 
positive, despite differing in strength.

	● Subjectivity in word selection: Manually assigning words to categories can reflect human 
bias and domain insensitivity.

These limitations became particularly apparent in financial applications. General-purpose sen-
timent dictionaries developed for consumer product reviews or news articles often performed 
poorly when applied to financial documents. For instance, the word “liability” may be negative 
in everyday language, but in accounting, it is a neutral technical term. Recognizing this issue, 
Loughran and McDonald (2011) analyzed common financial texts and found that approximately 
two-thirds of words classified as negative by standard dictionaries were not actually negative in 
a financial context. To address this, they introduced the “Loughran–McDonald Master Dictionary 
w/Sentiment Word Lists,” specifically tailored for financial analysis. This development marked a 
turning point in domain-specific NLP and highlighted the importance of context-aware tools.

Statistical and Count-Based Methods
To address the limitations of rule-based and dictionary approaches, the next phase in NLP 
involved representing textual data in structured, statistical formats that could be analyzed using 
traditional machine learning models. This approach centers on the document–term matrix, 
where each row represents a document (such as a news article or earnings call) and each 
column corresponds to a unique word, or term, in the corpus. The entries in this matrix indicate 
the frequency with which each word appears in each document.

This representation enables words to be assigned weights by a statistical model, rather than 
relying on predefined dictionary labels. In effect, the model learns the relationship between 
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words and an outcome variable—such as stock returns or sentiment labels—based on observed 
co-occurrence patterns, allowing for a more data-driven understanding of language.

To illustrate, consider two documents:

	● Document A: “The company reported strong earnings.”

	● Document B: “The company faced weak earnings.”

A document–term matrix would represent these as follows (simplified for clarity):

 Company Reported Strong Earnings Faced Weak

Document A 1 1 1 1 0 0

Document B 1 0 0 1 1 1

These count vectors can then be used as inputs to standard classifiers, such as logistic regres-
sion or naive Bayes, enabling empirical estimation of which words are associated with positive 
or negative outcomes.

This approach introduces new challenges, however, including dimensionality and sparsity: 
As the vocabulary size increases—particularly in financial text where domain-specific terminol-
ogy is abundant—the document–term matrix becomes high-dimensional and sparse. That is, 
most entries are zero because any given document contains only a small subset of the total 
vocabulary. This sparsity can reduce model performance and increase computational burden.

To mitigate this drawback, practitioners often apply text preprocessing techniques, including 
the following:

	● Stopword removal: Common, noninformative words, such as “the,” “and,” and “of,” 
are removed.

	● Stemming and lemmatization: Words are reduced to their base or root forms. For example, 
“running,” “ran,” and “runs” may all be reduced to “run,” improving consistency and reducing 
dimensionality.

	● TF–IDF weighting: In raw count-based matrices, common words dominate. To address this 
problem, term frequency–inverse document frequency (TF–IDF) weighting is used. TF–IDF 
downweights words that appear frequently across all documents (such as “company”) and 
upweights words that are more unique to a specific document, helping highlight discrimina-
tive terms.

Despite these refinements, count vector–based methods still have significant limitations:

	● No context or ordering: Word order is ignored, making it impossible to distinguish between 
“not profitable” and “profitable.” This feature limits the model’s ability to capture negation 
and other contextual modifiers.

	● No semantic relationships: Each word is treated as an independent token, with no recog-
nition of synonymy or antonymy. For instance, “good” and “great” are no more similar than 
“good” and “terrible” in this representation.
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These drawbacks motivated the development of more-advanced models that can capture con-
textual and semantic meaning in language, which are discussed in the following sections.

Neural Models and Word Embeddings
The techniques discussed thus far focus on representing text in structured formats that can 
be used as inputs to traditional machine learning models. These representations—whether 
based on word counts or term frequency weighting—treat words as independent and do not 
attempt to capture the underlying relationships among them. Although useful for many tasks, 
these models fall short in their ability to understand language in a deeper, semantic sense.

As machine learning models and computational power advanced, NLP shifted from merely 
representing text to learning from text. Rather than manually crafting features or counting word 
occurrences, models began using neural networks to learn relationships between words directly 
from large corpora of text. This process is typically done through semisupervised learning: 
The model is trained on a simple prediction task, such as predicting a missing word based on 
its surrounding context. In doing so, the model develops an internal representation of word 
meaning—referred to as word embeddings.

A word embedding is a high-dimensional vector that encodes semantic information about a 
word. Words that appear in similar contexts tend to have similar embeddings. One of the most 
well-known approaches for generating word embeddings is Word2Vec, introduced by Mikolov, 
Sutskever, Chen, Corrado, and Dean (2013). Word2Vec is trained on such tasks as the following:

	● Continuous bag of words: Predict a word based on its surrounding context 
(e.g., given “The company […] strong earnings,” predict “reported”).

	● Skip-gram: Predict surrounding words given a central word.

Through training, the model learns to associate each word in the vocabulary with a dense vector  
of real numbers. These vectors capture meaningful linguistic relationships. For example, 
consider the famous analogy from Mikolov et al. (2013):

vector(“king”) – vector(“man”) + vector(“woman”) ≈ vector(“queen”).

It demonstrates how arithmetic operations on word embeddings can reveal latent semantic 
structure. What this says is that if we take the word embedding from “king,” subtract that vector 
with the vector of the word embedding of “man,” and add the vector for “woman,” it will be 
more similar to the word embedding for “queen,” illustrating the semantic meaning embedded 
in these word vectors.

The output of a model such as Word2Vec is an embedding matrix, where each row corresponds 
to a word in the vocabulary and each column represents a learned feature of the word. 
These embeddings can then be used as inputs to downstream models (i.e., models specializ-
ing in a specific task) for classification, clustering, or regression tasks—offering a more com-
pact and semantically rich representation relative to the sparse count vectors discussed in 
the previous section.

These methods still have limitations, however, such as static embeddings: Once trained, 
each word has a single fixed embedding, regardless of context. This situation creates 
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problems for words with multiple meanings. For instance, consider the word “position” 
in two financial contexts:

	● “The fund increased its position in Apple.”

	● “The trader accepted a new position at the firm.”

In both cases, the same word vector would be used, even though “position” refers to an 
investment in one case and a job title in the other.

To address this issue, researchers introduced recurrent neural networks (RNNs) that process 
sequences of words in order, allowing models to generate contextual embeddings—word rep-
resentations that change depending on surrounding words. Two widely used architectures 
in this family are the long short-term memory (LSTM) network and the gated recurrent unit. 
These models read a sentence one word at a time and retain a memory of the preceding words, 
enabling them to generate richer, context-aware representations.

Although sequential models such as LSTM networks improved performance on many NLP tasks, 
they also introduced new challenges:

	● Computational inefficiency: Processing words one at a time limits parallelization and 
increases inference time (i.e., how long it takes a model to output predictions or 
embeddings).

	● Unidirectional context: Standard LSTM networks typically read text in one direction—usually 
left to right—so they can condition only on previous words and not on future context.

These limitations paved the way for the next major breakthrough in NLP: the transformer archi-
tecture, which enables more efficient and flexible modeling of text with full context awareness. 
This development is explored in the following section.

The Transformer Revolution
The introduction of the transformer architecture, proposed by Vaswani, Shazeer, Parmar, 
Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin (2017), in the landmark paper “Attention Is 
All You Need,” marked a turning point in NLP development. The transformer not only outper-
formed prior models across a wide range of NLP benchmarks but also became the foundational 
architecture for all modern LLMs, including BERT, GPT, and their successors.

Although the transformer is a neural network like those discussed in the previous section, 
it departs significantly from earlier sequential models such as RNNs and LSTM networks. 
To understand its impact and how it differs from past architectures, this section presents a 
high-level conceptual overview of the transformer architecture and its two key innovations: 
self-attention and encoder–decoder separation.

Self-Attention: Capturing Relationships Across Text

At the core of the transformer is the self-attention mechanism, which allows the model to con-
sider the relationship between all words (or tokens) in a given input sequence, regardless of 
their position. In contrast to LSTM networks, which process sequences word by word and typi-
cally look only at previous words (i.e., left to right), self-attention enables the model to compute 
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relevance scores across the entire sequence in parallel. This approach means that each word 
can attend to every other word, with the model weighting them based on learned relevance.

For example, in the sentence, “The investor sold the stock because it was overvalued,” the word 
“it” could plausibly refer to either “stock” or “investor.” A model equipped with self-attention 
can learn to focus on the correct referent—”stock”—by assigning higher attention weight to it. 
This capability to model long-range dependencies and ambiguity is one of the reasons why 
transformer-based models have proven so effective in capturing the complexity of human 
language.

The Encoder–Decoder Architecture

The original transformer architecture consists of two major components:

	● Encoder: processes the input text and converts it into a contextualized vector 
representation

	● Decoder: uses this representation to generate an output sequence, such as translated text, 
a summary, or a response

This encoder–decoder configuration was designed for such tasks as machine translation, 
summarization, and question answering—where the model must first understand the full input 
before producing a meaningful output. The encoder portion of the model captures the semantic 
content of the source text, while the decoder portion generates new text conditioned on that 
information captured by the encoder.

In practice, however, encoder and decoder components are often used independently, 
depending on the task:

	● Encoder-only models (e.g., BERT)1 are designed to create high-quality, contextualized 
embeddings of the input text. These embeddings can then be used as features for down-
stream tasks, such as sentiment analysis, classification, or information retrieval. Encoder-
only models are especially valuable in settings where the goal is to interpret or score a piece 
of text rather than generate new text.

	● Decoder-only models (e.g., GPT)2 are optimized for language generation. These models 
predict the next token in a sequence given all previous tokens—a formulation known as 
causal or autoregressive language modeling. This approach enables the model to generate 
coherent text, answer questions, and engage in dialogue. Decoder-only models form the 
backbone of modern chat-based systems and instruction-following agents.

The transformer architecture introduced two breakthroughs: the ability to process all tokens in 
parallel through self-attention and the modular encoder–decoder framework that enables both 
understanding and generation of new text. These innovations not only improved performance 

1BERT refers to the bidirectional encoder representations from transformers model introduced by Devlin, Chang, Lee, 
and Toutanova (2019).
2GPT refers to the generative pretrained transformer model introduced by OpenAI through a series of breakthrough 
papers (Radford, Narasimhan, Salimans, and Sutskever 2018; Radford, Wu, Child, Luan, Amodei, and Sutskever 2019; 
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, et al. 2020). GPT also refers to the class of decoder-only 
models popularized through modern LLMs.
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across a wide range of NLP tasks but also made it feasible to scale models to unprecedented 
size, giving rise to today’s LLMs.

The next section explores how these architectural advances, coupled with massive pretraining, 
have enabled a new paradigm of generative modeling that can solve a broad range of tasks with 
little or no task-specific data.

Pretraining, Fine-Tuning, and the Modular Nature 
of LLMs
To understand how LLMs work—and why they have become so powerful—it is helpful to break 
down their training into distinct phases: pretraining and fine-tuning. These phases reflect 
a modular and scalable approach to training LLMs that separates the acquisition of general 
linguistic and world knowledge from the adaptation of the model to specific tasks. Although 
the underlying model architecture (encoder, decoder, or both) plays an important role in shaping 
the model’s capabilities, it is ultimately the training process that determines what the model 
can do in practice.

Pretraining: Building General Linguistic and World Knowledge
Pretraining is the foundational phase of LLM development. In this stage, the model is 
exposed to a massive corpus of raw textbooks, articles, websites, and other publicly available 
documents—and trained to predict missing or future words. This process does not require 
labeled data, making it highly scalable. The goal is to instill the model with a statistical under-
standing of language and a broad (though implicit) knowledge of the world.

The specific training objective depends on the architecture:

	● Masked language modeling (MLM): Used primarily for training encoder-only models 
(e.g., BERT), MLM involves hiding or “masking” certain words in a sentence and training 
the model to predict the masked word(s) based on surrounding context. For example, 
given the input “The company reported a [MASK] gain in profits,” the model learns to infer 
that “strong” might be an appropriate word. Because encoder models attend to the entire 
input at once, they generate rich contextual embeddings useful for classification and 
retrieval tasks.

	● Causal language modeling (CLM): Used to train decoder-only models (e.g., GPT), 
CLM trains the model to predict the next word in a sequence given all previous words. 
For instance, given “The company reported a strong gain in,” the model learns to predict 
“profits.” This autoregressive objective aligns naturally with generative tasks and enables 
the model to produce coherent, fluent text. Radford, Narasimhan, Salimans, and Sutskever 
(2018) demonstrated that performance improves substantially with model scale, leading 
to the development of highly parameterized models capable of general-purpose text 
generation.

This pretraining phase is computationally intensive and typically carried out by large technology 
firms with access to significant compute infrastructure and massive datasets. The resulting pre-
trained models can be distributed and reused, however, providing a strong foundation for down-
stream customization.
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Fine-Tuning: Adapting Models to Tasks and Domains
Although pretraining equips LLMs with general capabilities, it does not tailor them to specific 
tasks. Pretrained models may be able to generate fluent text or encode sentences into embed-
dings, but they often lack the domain-specific behavior needed for practical applications in such 
areas as finance. This is where fine-tuning comes in.

Fine-tuning involves continuing the training of a pretrained model on a smaller, domain-specific 
or task-specific dataset. This process allows users to adapt general-purpose models for their 
own use cases without starting from scratch.

For encoder-only models, fine-tuning typically involves supervised learning. For example, 
to build a sentiment classifier, a practitioner would start with a pretrained BERT model 
and fine-tune it on labeled data consisting of text samples paired with sentiment labels. 
The resulting model becomes highly specialized for sentiment classification. The resulting 
model will be able to produce meaningful outputs only for that specific task, however, which is 
why fine-tuned encoder-only models are also referred to as “narrow” or “task-specific” models.

For decoder-only models, fine-tuning can be more general. After pretraining on internet-scale 
data, these models are often fine-tuned on curated datasets of human interactions—such as 
question-and-answer pairs or chat logs—to teach the model how to be helpful, safe, and respon-
sive in a conversational setting. Without this additional tuning, a model might respond to a 
prompt such as “What is your name?” with a story or unrelated prose. With fine-tuning, it learns 
to respond appropriately to user queries.

One of the reasons decoder-only models have become so widely used is their flexibility. Rather than 
needing a new model for each task (e.g., sentiment classification, summarization, ESG scoring), 
a single decoder-only model can be fine-tuned to perform a wide range of tasks simply by changing 
the prompt—the input instruction or context provided to the model. For instance:

	● “Classify the sentiment of this text: ‘Markets rallied after the rate cut.’”

	● “Summarize the following earnings report.”

	● “List three ESG risks mentioned in this document.”

This ability makes decoder-only models attractive in such domains as finance, where labeled 
data are often scarce but a wide range of tasks need to be performed on unstructured text. 
By shifting the complexity to the prompt design, practitioners can avoid the costly process of 
training narrow models for every new application.

Prompting vs. Fine-Tuning
Although prompting allows users to extract useful behavior from a pretrained or 
instruction-tuned model without any additional training, it has its limits. In cases where the 
model fails to follow instructions, struggles with domain-specific jargon, or underperforms 
on niche tasks, fine-tuning can still play an important role.

Fine-tuning can be used for the following:

	● Task-specific adaptation: training the model for a narrow task, such as legal clause 
extraction or credit rating prediction



Natural Language Processing

CFA Institute Research Foundation    135

	● Domain adaptation: exposing the model to domain-specific data (e.g., financial filings, 
regulatory texts) to improve its familiarity with specialized vocabulary and formats

	● Knowledge injection: teaching the model facts or behaviors that are underrepresented in the 
pretraining corpus

In practice, many financial workflows now combine these approaches, using off-the-shelf 
LLMs where prompt engineering suffices and fine-tuning smaller versions of the model when 
reliability and domain expertise are critical.

Computational Efficiency and Fine-tuning
Although LLMs with billions of parameters tend to exhibit superior performance across a range 
of tasks, this ability comes at a significant computational cost. Both training and deploying 
such models require high-end hardware—typically graphics processing units (GPUs) or tensor 
processing units (TPUs)—and scale roughly with model size. As a result, the use of very large 
models can be prohibitive in environments with limited compute resources or strict latency 
constraints, such as real-time financial systems.

One solution is to fine-tune smaller models to replicate the behavior of larger ones, commonly 
done through a process known as knowledge distillation. In this setup, a high-performing, 
large model (the teacher) generates high-quality outputs for a given task and a smaller model 
(the student) is trained to imitate these outputs. For instance, if a large model excels at sum-
marizing long financial documents, its summaries can serve as labeled training data to fine-
tune a smaller model to perform the same task. This process allows practitioners to deploy a 
compact model that behaves similarly to a much larger one but with far lower computational 
requirements.

In addition to distillation, another strategy for improving efficiency is quantization. Quantization 
reduces the numerical precision of a model’s parameters—from 32-bit floating point numbers 
(FP32) to lower-precision formats, such as 8-bit integers (INT8) or 4-bit floats. Although this 
approach can slightly reduce model performance, it dramatically reduces the memory footprint 
and speeds up inference, particularly on GPU hardware. Because inference cost is one of the 
most significant factors in large-scale deployment, quantization plays a key role in bringing LLM 
capabilities to environments with limited resources.

Taken together, these techniques—fine-tuning, distillation, and quantization—offer powerful 
levers for balancing performance and efficiency. They enable organizations to deploy LLMs 
that are adapted to specific tasks and constraints, without bearing the full costs of operating 
state-of-the-art, billion-parameter models. In the context of finance, where tasks are often 
repeated at scale and latency can be critical, these efficiency gains are not just convenient; 
they are essential.

Fine-Tuning Techniques
The specific strategy used to fine-tune a language model depends largely on its architecture—
whether the model is encoder only or decoder only. These two types of models serve 
different purposes and therefore require distinct approaches when adapting them to 
downstream tasks.
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Fine-Tuning Encoder-Only Models

Encoder-only models, such as BERT, are designed to generate rich, contextual embeddings 
of input text sequences. These embeddings are high-dimensional vectors that capture the 
semantic meaning of the text, incorporating the full context of surrounding words through 
self-attention.

Fine-tuning these models generally involves one of two approaches:

	● Feature extraction: In this setup, the pretrained model is used to generate embeddings for 
each input document, and these embeddings are then used as input features to a separate, 
downstream machine learning model (e.g., logistic regression, random forest). The weights 
of the language model itself remain fixed.

	● End-to-end fine-tuning: A classification or regression head (i.e., an additional fully connected 
feedforward layer) is added on top of the encoder model, and the entire architecture—
including the weights of the pretrained model—is trained jointly on labeled data. For 
example, if a BERT model outputs a 768-dimensional embedding vector, a single-layer 
neural network can be added to map this vector to a three-class output for sentiment classi-
fication (e.g., positive, neutral, negative). This process fine-tunes the entire network for the 
target task.

End-to-end fine-tuning often leads to better performance but is more computationally 
demanding. Variants of this approach include partial fine-tuning, where only the top few layers 
of the model are updated while the rest are frozen (i.e., unchanged), and layer-wise freezing, 
where layers are gradually unfrozen during training. These techniques reduce computational 
cost and help prevent overfitting, especially when labeled data are scarce.

Fine-Tuning Decoder-Only Models

Decoder-only models, such as GPT, are designed for text generation and contain significantly 
more parameters than encoder-only models. Fine-tuning these models in a traditional end-
to-end fashion is often prohibitively expensive in terms of memory and compute resources, 
especially when dealing with billions of parameters. To address this problem, researchers 
have developed more efficient fine-tuning methods, the most prominent of which is low-rank 
adaptation (LoRA).

LoRA was introduced by Hu, Shen, Wallis, Allen-Zhu, Li, Wang, and Chen (2021) as a 
parameter-efficient fine-tuning method for large models. Instead of updating all weights of the 
pretrained model, LoRA inserts small, trainable weight matrices into the existing architecture 
while freezing the original weights. These low-rank matrices capture the necessary task-specific 
adjustments without needing to train the entire model. As a result, LoRA significantly reduces 
the number of trainable parameters, lowers GPU memory usage, and allows for faster training.

Importantly, LoRA also helps mitigate catastrophic forgetting—a phenomenon where a model 
forgets previously learned knowledge when fine-tuned on a narrow task—because the original 
pretrained weights remain intact. This feature offers a form of regularization when training 
highly parameterized models and makes LoRA particularly attractive for adapting general- 
purpose LLMs to specialized domains, such as finance, without compromising their broader 
language capabilities.
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Deployment Strategies and Infrastructure 
Considerations for LLMs in Finance

The Challenge of Real-Time Information in Finance
One of the most significant challenges in applying LLMs in financial contexts is the pace at 
which information changes. News articles, social media posts, SEC filings, and earnings call 
transcripts can alter the investment landscape in real time. Traditional LLMs, however, are static 
once trained; they can make use only of the information available at the time of their pretraining 
or fine-tuning. In high-stakes, time-sensitive domains, such as finance, this fact poses a fun-
damental limitation: Retraining a large model every time new information becomes available is 
both impractical and cost prohibitive.

To overcome this constraint, many LLM-based systems now use a design pattern known as 
retrieval-augmented generation (RAG). RAG is not a model itself but an architectural framework 
that allows LLMs to dynamically incorporate external information at inference time. This ability 
enables a form of real-time updating without retraining the model.

RAG systems typically consist of two main components:

	● An encoder-based retriever processes the user’s query and searches an external document 
repository (such as a database of recent filings or news articles) for relevant information. 
This component is typically built using an encoder-only model, which generates 
embeddings for both the query and the documents and then identifies the most seman-
tically similar content through measuring cosine similarity of the embedding of the user’s 
query and embeddings of the document repository.

	● A decoder-only language model receives the retrieved documents as context and generates 
a coherent answer to the user’s query. This model does not need to have seen the docu-
ments during training—it uses the retrieved information as context provided via the prompt.

This modular approach solves a key problem in financial NLP: incorporating new and proprietary 
data on the fly. Rather than training the model to “know everything,” encoders are used to 
structure and fetch the relevant information, and decoders are used to synthesize and reason 
over that information. This process is particularly powerful in such workflows as

	● summarizing recent earnings call transcripts,

	● responding to ESG-related inquiries with up-to-date regulatory documents, and

	● generating investment commentary based on newly filed 10-Ks or 8-Ks.

By separating retrieval from generation, RAG frameworks enable dynamic, domain-aware 
responses without compromising latency or requiring model retraining.

Agentic Frameworks and Autonomous Systems
Although retrieval-augmented systems allow LLMs to access up-to-date information, 
many real-world financial workflows require more than just a single question-and-answer 
interaction. Such tasks as portfolio monitoring, document triage, regulatory surveillance, 
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and risk assessment often require multistep reasoning, conditional execution, and coordination 
across multiple tools or models. This is where agentic frameworks come into play.

Agentic Frameworks

An agentic framework refers to an architectural approach in which LLMs are embedded within 
a broader decision-making system that can sequence multiple steps to achieve a complex 
objective. Rather than providing a single response to a single prompt, the LLM acts as a 
“thinking component” that can

	● break down a goal into sub-tasks,

	● decide what action to take at each step,

	● retrieve or generate intermediate information,

	● use external tools (e.g., calculators, databases, search APIs), and

	● determine when the task is complete.

In financial applications, this might involve chaining together such tasks as

	● reading and extracting risk factors from a 10-K filing,

	● identifying which factors are new or material relative to prior filings,

	● summarizing their potential impact on valuation, and

	● flagging the result for human review if certain thresholds are exceeded.

Rather than relying on a single LLM to do all this, the system orchestrates multiple steps, 
often using different models or tools tailored to the specific subtasks. This modular and 
compositional approach enables more interpretable, reliable, and extensible pipelines—
crucial attributes in high-stakes domains such as finance.

Autonomous Agents

Agentic systems can be taken a step further with autonomous agents: LLM-based systems 
that are goal directed and capable of operating with minimal human oversight. These agents 
maintain a persistent objective (e.g., “monitor the top 500 firms for changes in litigation risk”), 
autonomously initiate actions to gather information, and adapt their behavior according to 
the results.

What distinguishes autonomous agents from simpler pipelines is their ability to

	● formulate plans based on their objective,

	● monitor their own progress and iterate,

	● communicate with multiple systems or data sources, and

	● run continuously or on demand.

Examples in finance might include

	● an autonomous compliance monitor that scans regulatory filings, compares them with 
internal policies, and flags discrepancies;
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	● a market intelligence agent that compiles real-time information across sources to maintain 
an up-to-date dashboard for analysts; or

	● a due diligence assistant that autonomously reads through multiple data sources and 
summarizes potential red flags during deal evaluation.

These systems remain experimental in many financial institutions, but early results suggest that 
autonomy can reduce human workload on repetitive tasks while increasing responsiveness 
to new developments. They also introduce new risks, however, particularly around reliability, 
traceability, and control. Because the system is capable of executing its own plan, rigorous 
evaluation and monitoring infrastructure are needed to ensure safety, especially in regulated 
environments.

Deployment Models: API Access vs. Self-Hosting
As LLMs become increasingly integral to financial workflows, institutions must carefully 
consider how these models are deployed. Deployment choices involve trade-offs across cost, 
control, compliance, performance, and security—particularly when dealing with sensitive or 
proprietary data. Broadly, there are two primary approaches to deploying LLMs: commercial 
API access and self-hosting open-source models.

Commercial API Access

The most accessible way to use LLMs is through cloud-based APIs provided by such com-
panies as OpenAI, Anthropic, Google, or Cohere. These models are hosted on proprietary 
infrastructure and accessed via subscription or usage-based pricing. They offer the following 
advantages:

	● Ease of integration: These models allow for quick setup with standard APIs.

	● Performance: They provide access to state-of-the-art models trained on massive 
datasets and enhancing models with additional tools, such as internet search or code 
execution.

	● Scalability: Providers manage infrastructure, allowing dynamic scaling of workloads.

The models have limitations as well, however:

	● Data privacy concerns: Sensitive or proprietary information must be transmitted to third-
party servers, raising concerns about confidentiality, data retention, and compliance with 
data protection regulations.

	● Lack of control: The model architecture, parameters, training data, and update schedule 
are fully managed by the provider, limiting transparency and customization.

	● Ongoing cost exposure: Pay-as-you-go pricing can become expensive at scale, especially 
for high-frequency or latency-sensitive applications.

API-based access is suitable for exploratory research, public-facing applications, and tasks that 
do not involve proprietary financial data. It is often insufficient, however, for enterprise-grade 
use cases that require full data custody and customized model behavior.
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Self-Hosting and Open-Source Models

An alternative is to deploy open-source LLMs, such as LLaMA, Mistral, Falcon, or GPT-J, 
on private infrastructure. This approach allows organizations to run inference and fine-tuning 
on their own servers—either on premises or in private cloud environments—and provides the 
following advantages:

	● Data security and compliance: No data can leave the organization’s environment, which is 
critical when handling client information, trading strategies, or internal documents.

	● Customizability: Models can be fine-tuned, distilled, or augmented to meet domain-specific 
requirements or to improve performance on financial texts.

	● Cost control over time: Although upfront compute and staffing costs are high, long-term 
operational costs may be lower than continued API usage at scale.

This approach has two main limitations:

	● Infrastructure complexity: Running large models requires specialized hardware (e.g., GPUs), 
as well as specialized human capital for deployment, scaling, and monitoring.

	● Lag behind frontier models: Open-source models often trail commercial models in absolute 
performance, although the gap has narrowed considerably in recent releases.

Hybrid and Strategic Considerations

Many institutions adopt hybrid strategies, using commercial APIs for low-risk or generic 
use cases and deploying internal models for high-sensitivity or proprietary tasks. 
Two examples follow:

	● Use ChatGPT to summarize public market news.

	● Use an in-house model to analyze internal credit memos or regulatory filings.

Ultimately, the choice of deployment model must align with the organization’s data governance 
policies, use-case sensitivity, latency requirements, and long-term cost structure. In finance—
where intellectual property, compliance, and risk management are paramount—these 
considerations are not peripheral but central to the successful deployment of LLMs.

Applications of LLMs in Finance
Sentiment analysis and topic modeling have long been central to the application of NLP in 
finance. Seminal works, such as Tetlock’s (2007) study on the predictive power of media pessi-
mism and Loughran and McDonald’s (2011) research on domain-specific sentiment dictionaries, 
showed that textual sentiment contains information relevant to returns, volatility, and trading 
behavior. Early methods relied on lexicons, dictionaries, or simple machine learning classifiers, 
but these techniques have evolved alongside the growing sophistication of NLP models, 
as discussed previously.

In this section, I outline how LLMs have opened new frontiers in financial NLP—moving 
beyond traditional tasks toward applications in compliance, ESG monitoring, risk surveillance, 
and financial summarization. I then present a practical tutorial demonstrating how LLMs 
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can be implemented for sentiment analysis, focusing on open-source models accessible to 
practitioners and researchers. Although LLM applications extend much further, this hands-on 
example provides a foundational approach for integrating LLM techniques into financial 
workflows.

Classic NLP Tasks and How LLMs Changed Them
Before the rise of LLMs, many core financial NLP tasks—such as named entity recognition 
(NER), event extraction, and relation extraction—were tackled using rule-based methods, 
feature engineering, or early machine learning models, such as conditional random fields 
(CRFs). For example, Wang, Xu, Liu, Gui, and Zhou (2014) applied CRFs augmented with 
domain-specific dictionaries to identify company names, tickers, and monetary amounts in 
financial news, and Yang, Chen, Liu, Xiao, and Zhao (2018) developed document-level event 
extraction systems for the Chinese stock market.

With the advent of LLMs, many of these tasks have become almost trivial: Modern models can 
perform zero-shot or few-shot NER, relation extraction, or event detection without task-specific 
architectures or large, labeled datasets. Recent evaluations (e.g., Lu and Huo 2025) have 
shown, however, that although general-purpose LLMs perform reasonably well, fine-tuned 
domain-specific models still outperform them in precision-critical extraction tasks, especially 
when dealing with subtle distinctions in entity types or regulatory language.

New Frontiers Enabled by LLMs
LLMs have significantly expanded the scope of NLP applications in finance.

	● Compliance monitoring and regulatory reporting: Hillebrand, Berger, Deußer, Dilmaghani, 
Khaled, Kliem, Loitz, et al. (2023) introduced ZeroShotALI, demonstrating that LLMs can 
match financial documents against complex regulatory requirements in a zero-shot setting, 
potentially automating parts of compliance checks and audits.

	● ESG analysis: Mehra, Louka, and Zhang (2022) fine-tuned BERT to develop ESGBERT, 
a model capable of classifying and extracting ESG-related content from sustainability and 
CSR reports, improving the automated detection of environmental, social, and governance 
themes.

	● Risk monitoring via news and events: Guo, Jamet, Betrix, Piquet, and Hauptmann (2020) 
built ESG2Risk, a pipeline using LLM-based models to track ESG-related news and predict 
abnormal stock volatility, illustrating how LLMs can detect material nonfinancial risks from 
unstructured text.

	● Financial document summarization: Kim, Muhn, and Nikolaev (2023) showed that ChatGPT 
can effectively summarize long, complex 10-K filings, helping investors distill key risks and 
opportunities. Their results suggest that LLM summarization improves market efficiency by 
reducing information asymmetry.

These examples illustrate that LLMs are no longer limited to traditional classification or 
extraction. They now support more complex workflows involving multistep reasoning, 
summarization, and regulatory interpretation.
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Sentiment Analysis, Topic Modeling, and Quantitative Investing
Sentiment analysis has historically been one of the most widely used NLP applications in 
quantitative finance. Early approaches, such as FinBERT (Araci 2019), fine-tuned BERT models 
on financial news and earnings calls, offering more accurate sentiment classifications than 
traditional dictionary-based methods. These sentiment signals became important features 
in quantitative models, helping improve predictions of stock returns or volatility.

Recent advances in LLMs have expanded how text-derived signals are used in investing—moving 
beyond simple sentiment scores to richer representations that directly predict returns or 
explain price movements. For example, Lopez-Lira and Tang (2023) tested whether prompting 
generative LLMs, such as GPT-4, on company news headlines could predict next-day stock 
returns. They found that even without fine-tuning, the model’s outputs contained predictive 
signals, suggesting that LLMs implicitly capture financial sentiment and context well enough 
to inform trading strategies. This line of research connects closely with the work of Chen, Kelly, 
and Xiu (2024), who used LLM-derived embeddings as features for predicting returns across 
16 international equity markets. They found that these embedding-based features, paired with 
a simple penalized linear model, improve the risk-adjusted returns of the resulting portfolios 
over traditional approaches.

Another emerging approach focuses on organizing and clustering the patterns found in textual 
data. Cong, Liang, Zhang, and Zhu (2024) introduced the idea of textual factors—interpretable 
clusters of themes or topics identified by applying clustering techniques to LLM-derived 
embeddings. These textual factors can be incorporated into economic and financial models, 
providing scalable, data-driven ways to analyze large sets of unstructured information, 
from macroeconomic news to corporate filings.

Wang, Izumi, and Sakaji (2024) combined generative prompting and quantitative modeling by 
using LLMs to produce explainable summaries of news, corporate events, or leadership tone, 
which were then transformed into structured factors for predicting stock movements. Together, 
these advances highlight the versatility of modern LLMs: They can be used to generate direct 
predictions, to build structured thematic clusters, or to extract interpretable features through 
carefully designed prompts.

LLMs in Practice
In this section, I demonstrate how to apply LLMs for sentiment classification using Python. 
To follow along with this tutorial, I recommend using Google Colab because it provides easy 
access to GPUs (i.e., speeding up model outputs) and a reproducible environment for testing.

When working with LLMs, it is important to be familiar with Hugging Face,3 the platform where 
open-source datasets and language models are shared. The models here range from pretrained 
LLMs to models fine-tuned from those pretrained LLMs. Hugging Face has two Python 
packages that can be used to easily load models and datasets: transformers and datasets.

In this exercise, we will use the Financial Phrasebank dataset introduced by Malo, Sinha, 
Korhonen, Wallenius, and Takala (2014). This dataset consists of 4,840 sentences randomly 

3For more information, visit https://huggingface.co/.

https://huggingface.co/
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sampled from financial news, with each sentence being labeled by a set of annotators as 
“positive,” “negative,” or “neutral.”

I will demonstrate two methods for sentiment analysis using LLMs: (1) a fine-tuned feature 
extraction model using SBERT4 and (2) a pretrained language model using OpenAI’s API.

SBERT Feature Extraction Model

SBERT (Reimers and Gurevych 2019) is a BERT-based model that specializes in sentence-level 
embeddings. That is, text is input to the model and a vector is returned. Because sentiment 
scores are not directly output by the model, we need to train the model to predict sentiment 
scores. To do so, we create a training and test set (in practice, we would use a validation set 
for hyperparameter tuning).

>> !pip install -U datasets

>> from datasets import load_dataset

>> data = load_dataset("financial_phrasebank","sentences_50agree")

>> data = data['train'].to_pandas()

>> train = data.sample(frac=0.8, random_state=200)

>> test = data.drop(train.index)

SBERT can be loaded through the sentence-transformers Python package, which handles much 
of the preprocessing required to extract vector embeddings. Next, I show how to install the 
package, load the model, and extract embeddings for each sentence in the training and test 
datasets. Note that it is necessary to split the text into chunks or “batches” because computa-
tional restraints prohibit evaluating all sentences at once.

>> !pip install sentence-transformers

>> from sentence_transformers import SentenceTransformer

>> model = SentenceTransformer('all-MiniLM-L6-v2')

>> def batch_sentences(sentences,batch_size=100):

    batch_sentences = []

    for i in range(0,len(sentences),batch_size):

        batch_sentences.append(sentences[i:i+batch_size])

    return batch_sentences

train_batches = batch_sentences(train['sentence'].tolist())

test_batches = batch_sentences(test['sentence'].tolist())

X_train = [model.encode(batch) for batch in train_batches]

X_test = [model.encode(batch) for batch in test_batches]

4Available at https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Once the embeddings are loaded, they can be concatenated to formulate a matrix of size 
n × 384. You can then fit a ridge classification model on those embeddings to create a mapping 
between embedding vectors to sentiment labels. Predictions on the test set are obtained by 
passing the test embeddings through the fitted model.

>> import numpy as np

>> from sklearn.linear_model import RidgeClassifier

>> # Train model

>> clf = RidgeClassifier()

>> clf.fit(np.vstack(X_train),train['label'])

>> # Predictions: 0 = Neg, 1 = Neut, 2 = Pos

>> preds = clf.predict(np.vstack(X_test))

In practice, you would want to create a validation set to fit the model with different penalization 
terms (i.e., alpha terms) in the ridge regression to determine the parameter that produces 
the best fit. For this example, I simply demonstrate obtaining predictions.

OpenAI ChatGPT

Although open-source LLMs can be run using the transformers package in Python, I will focus 
on an easy-to-implement pipeline using OpenAI’s API. Instead of sourcing computational 
resources or getting caught up in the technical aspects of running LLMs, you can instead rely on 
an API-based approach to do this for you. The idea is that you can send your prompted text to 
the API, and the output from the model will be returned.

Because I am using a sophisticated, pretrained LLM like GPT-3.5, I do not need to train the 
model but instead simply prompt the text for the model to respond with a sentiment score:

>> prompt = """Evaluate the sentence below and determine the sentiment 
score.

Respond with either positive, neutral, or negative.

Sentence: %sentence

Response:"""

>> prompted_sentences = [

prompt.replace("%sentence",i) for i in data.sentence

]

I use this prompt because it assists in (1) reducing the number of output tokens that I need to 
obtain from the model (i.e., output tokens are more expensive to produce) and (2) easy parsing 
of the response because the model will respond immediately with solely “positive,” “neutral,” or 
“negative.” If you do not prompt it to provide a “Response:” at the end, the model typically 
provides some preamble to its actual response, making the response more costly as well as 
harder to parse.
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To obtain responses from the API, the openai Python package can be used. To obtain responses 
from the API, go to OpenAI’s API platform5 and generate an API key, which associates your input 
with your account for billing. Then, obtaining sentiment scores is as easy as looping through 
the list of prompted sentences and parsing the response.

>> !pip install openai

>> from openai import OpenAI

>> client = OpenAI(api_key="ENTER_API_KEY_HERE")

>> # Define function to query model

>> def get_gpt_sentiment(sentence,model_name="gpt-3.5-turbo"):

      response = client.responses.create(

          model="gpt-3.5-turbo",

          input=sentence

      )

      return response.output_text

>> responses = [get_gpt_sentiment(i) for i in prompted_sentences]

>> responses[0] # = “Neutral”

Risks, Challenges, and Considerations
As financial institutions adopt LLMs into their workflows, it is important to be aware of 
the risks and challenges of doing so. This section outlines several of the most pressing 
challenges: output reliability, evaluation standards, model leakage over time, and legal 
uncertainty.

Hallucinations and Output Reliability
LLMs are probabilistic models designed to predict the next most likely word given the previous 
sequence of words. Although this ability makes them flexible and powerful, it also means they 
are prone to producing hallucinations—text that is fluent, plausible, and confidently stated 
but factually incorrect or fabricated.

A now-famous example involves a lawyer who used ChatGPT to draft a legal filing. 
The model generated convincing citations to court cases that, upon inspection, did not 
exist. This episode underscores the difficulty in relying on LLMs in domains where factual 
precision is essential—such as regulatory interpretation, earnings analysis, or compliance 
reporting.

One solution is the use of RAG frameworks, discussed earlier, which allow the model to con-
sult an external knowledge base and leverage the relevant information in the knowledge base 

5Visit https://openai.com/api/.

https://openai.com/api/
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in crafting its response. Even with RAG, however, verifying that the model used the information 
appropriately remains a challenge.

In practice, evaluating output reliability often requires secondary evaluation mechanisms 
such as the following:

	● Human review, particularly for complex or high-impact use cases

	● Secondary LLMs, which can be prompted to judge whether the model or workflow being 
evaluated is generating the expected output and/or sourcing the correct information based 
on the prompt

Evaluating output becomes even more challenging in multi-agent pipelines—systems where 
different LLMs or modules hand off intermediate outputs. If one model produces a hallucinated 
output, that output may silently propagate through the system, breaking task logic or triggering 
unintended behaviors. Thus, output validation and fallback systems are essential components 
in production-grade deployments.

Evaluation in Domain-Specific Contexts
In general NLP research, model capabilities are evaluated using benchmark datasets, 
which are labeled datasets used to determine LLM performance in different contexts or tasks. 
Domain-specific evaluation in finance remains an underdeveloped area, however. Most financial 
tasks—such as interpreting a 10-K filing, generating risk summaries, or classifying ESG 
disclosures—lack standardized ground truth labels.

This situation creates several challenges:

	● No universal “correct” answer exists for such tasks as summarization or narrative analysis.

	● Crafting an evaluation metric is not as straightforward as evaluating classification 
performance. Often, one must be creative in constructing a single metric to determine 
performance or reliability in a pipeline.

	● Task-specific benchmarks must often be constructed in house, with significant human 
effort.

For such applications as return prediction or sentiment classification, evaluation may be 
grounded in market response (e.g., future returns). But for more qualitative tasks—such as 
policy interpretation or stock recommendations—quantifying model performance requires 
human expertise and domain fluency. Without rigorous evaluation, firms risk deploying models 
whose performance may degrade silently under new conditions or inputs.

Forward-Looking Contamination in Backtests
Another risk in using LLMs for alpha signal generation is the issue of forward-looking bias. 
Most large LLMs have been pretrained on internet-scale text up to a certain cutoff date. If that 
training corpus includes data from the backtest period, then the model may “know” future 
outcomes during historical simulations, even if inadvertently.
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For instance, if a model is used to predict the sentiment or return of stocks using news head-
lines from 2010, the model may implicitly encode information that was not available at the time. 
That is, if a news article has the headline “NVIDIA Introduces X Chip” and the model implicitly 
knows that this chip was very popular from forward-looking training data, this will inherently 
bias the model’s response to be more positive.

Some studies have noted, however, that this forward-looking information can sometimes 
negatively influence out-of-sample performance because the model is distracted by the future 
narratives and information, not focusing on the current information available. Glasserman 
and Lin (2024) referred to this phenomenon as the distraction effect.

Compliance, Data Security, and IP Risk
As discussed earlier in the context of deployment models, the use of third-party APIs for LLM 
inference raises serious compliance concerns. But beyond data privacy, a new class of legal 
and intellectual property (IP) issues is emerging around ownership and liability.

Key concerns include the following:

	● Ownership of model outputs: Does the firm own the generated text? What if that text 
closely resembles a copyrighted source seen during pretraining?

	● Liability for misinformation: If a model generates a misleading investment recommendation 
or incorrect regulatory interpretation, who is responsible?

	● Internal data leakage: If proprietary data are used in prompts or fine-tuning and processed 
by a third-party model, the data may be inadvertently retained or exposed, depending 
on provider policies.

These concerns are amplified in finance, where data governance and regulatory compliance 
are not optional. Firms should establish clear policies around

	● internal versus external LLM usage,

	● data anonymization and minimization practices, and

	● logging, audit trails, and human-in-the-loop reviews.

Conclusion
The advances in NLP have revolutionized financial workflows through the development of 
LLMs. Although traditional, task-specific NLP models found their way into earlier quantita-
tive models, the flexibility granted by conversational models has made LLMs accessible to 
nearly every facet of the investment process. As the technology continues to advance, it is 
important to understand the different types of models, their applications, and implementation 
frameworks.

The power of these models comes with important caveats, however. Effective deployment 
requires an understanding of their architectural foundations, training processes, and the 
trade-offs involved in different implementation strategies. Moreover, issues of reliability, 



AI in Asset Management: Tools, Applications, and Frontiers

148    CFA Institute Research Foundation

interpretability, computational cost, compliance, and domain-specific evaluation demand 
careful consideration, particularly in high-stakes financial contexts.

The future of NLP in finance will likely be shaped by hybrid approaches that combine the 
generative power of LLMs with structured data pipelines and traditional time-series models. 
As models continue to evolve—integrating multimodal inputs, improving reasoning abilities, 
and adapting to specialized domains—success will depend not only on technical sophistica-
tion but also on rigorous evaluation, sound governance, and a deep understanding of the 
financial domain.

In short, LLMs are a powerful technology that will make information assimilation in financial 
markets much faster and efficient. Like any powerful tool, however, their value lies not in 
raw capability but in careful, context-aware application.
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