
92    © 2025 CFA Institute Research Foundation. All rights reserved.

REINFORCEMENT LEARNING AND
INVERSE REINFORCEMENT LEARNING:
A PRACTITIONER’S GUIDE FOR
INVESTMENT MANAGEMENT
Igor Halperin, PhD
Group Data Science Leader, GenAI Asset Management Technology, Fidelity Investments

Petter N. Kolm, PhD
Clinical Professor, Director of the MS in Mathematics in Finance Program,
Courant Institute of Mathematical Sciences, New York University

Gordon Ritter, PhD
Adjunct Professor, Courant Institute of Mathematical Sciences and
Tandon School of Engineering, New York University
Partner, Ritter Alpha, LP

Introduction
Traditional quantitative finance relies heavily on predictive models: forecasting returns, estimat-
ing volatilities, predicting default probabilities. These supervised learning approaches excel at
pattern recognition but fall short when the goal is to determine what actions to take in dynamic,
uncertain environments where decisions have lasting consequences.

Consider a portfolio manager deciding how to rebalance a multiasset portfolio. Traditional
approaches might forecast expected returns and use mean–variance optimization. This static
approach ignores several crucial factors, however:

	● Transaction costs and market impact that depend on order size and timing

	● The dynamic nature of markets where today’s trades affect tomorrow’s opportunities

	● The need to adapt strategies as market conditions evolve

	● Risk considerations that go beyond simple variance measures

Reinforcement learning (RL) is a branch of machine learning capable of addressing these
issues. RL is concerned with how intelligent agents should take actions in an environment to
maximize some notion of cumulative reward, as we will explain in more detail later. Unlike super-
vised learning, where an agent is given explicit “correct answers,” an RL agent learns through
experience—by trying out actions and observing the consequences.

Inverse reinforcement learning addresses the complementary problem: Given observed
behavior from an expert (successful trader, market participant, or even the market itself),
what underlying objectives or preferences explain that behavior? This approach is particularly

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    93

valuable in finance, where true utility functions are rarely known explicitly but observed
behavior is abundant.

Why RL and IRL Matter for Finance
The relevance of RL to finance stems from several key characteristics:

Sequential decision making: Most financial problems involve sequences of interdependent deci-
sions. A trade execution strategy unfolds over time, with each trade affecting market condi-
tions for subsequent trades. Portfolio rebalancing decisions today influence the risk–return
profile tomorrow.

Uncertainty and adaptation: Financial markets are inherently uncertain and nonstationary.
Successful strategies must adapt to changing conditions. RL agents can learn to recognize
different market regimes and adjust their behavior accordingly.

Delayed and complex rewards: The consequences of financial decisions often manifest with sig-
nificant delays and through complex causal chains. A hedging decision today may prove its
worth only during a market crisis months later.

Market impact and feedback loops: In many financial contexts, an agent’s actions influence the
environment itself. Large trades move prices, which affects subsequent trading opportuni-
ties. This dynamic creates feedback loops that traditional static optimization cannot capture.

A Practitioner’s Guide to RL Fundamentals

The RL Framework: Key Components
Understanding RL begins with its core components (Sutton and Barto 2018).

Agent

The agent is a decision maker that represents a market participant, such as a risk taker, liquidity
provider, market maker, or institutional or retail trader. The agent operates (acts) over a time
interval [0, T], where T is the planning/acting time horizon. Most RL algorithms are formulated
for discrete time steps. With a slight abuse of notation, which is quite common in the RL litera-
ture, we use the symbol t to denote both the discrete-value time and the index on the time grid,
so that we can write t = 0,1,…,T. Depending on the specific setting, T can vary between millisec-
onds and months or even years.

Environment

The environment is the market structure or venue where the agent operates and takes actions.
In finance, this includes the following:

	● Electronic limit order books (exchanges, such as NYSE and Nasdaq)

	● Over-the-counter (OTC) markets for bonds and derivatives

	● Alternative trading systems (dark pools, crossing networks)

	● Auction mechanisms (opening/closing auctions)

AI in Asset Management: Tools, Applications, and Frontiers

94    CFA Institute Research Foundation

	● Bilateral negotiation markets (institutional block trading)

	● Market-maker networks and dealer markets

State (S)

The state is a snapshot of all relevant information available to the agent at a given time.
Examples include the following:

	● Current portfolio positions and cash holdings

	● Market data: prices, volumes, spreads, volatility measures

	● Order book depth and imbalance (if observable)

	● Recent price movements and technical indicators

	● Time of day, calendar effects, and time to market close

	● Macroeconomic indicators and news sentiment

	● Risk metrics: value at risk (VaR), exposure concentrations, correlation estimates

Action (A)

Action consists of the choices available to the agent:

	● Trade quantities and directions (buy/sell/hold)

	● Order types and timing

	● Portfolio allocation adjustments

	● Risk management decisions (hedging, position sizing)

Reward (R)

Reward is the feedback signal that guides learning. The reward in RL is typically assumed to
be received at each time step t ∈[0,T] over the course of action of the agent, where T is a time
horizon. The reward at time step t is usually defined to be a function of action At taken at this
step, as well as the current-step and next-step values of the state variable—respectively, St and
St+1, so it is usually written as R(St,At,St+1). In finance, rewards typically reflect the following:

	● Profit and loss (P&L)

	● Risk-adjusted returns (Sharpe ratio, information ratio)

	● Transaction costs and market impact

	● Risk penalties (VaR, conditional value at risk, drawdown measures)

Policy (π)

The policy is the agent’s strategy—a mapping from states to actions. This is what the RL algo-
rithm learns and optimizes. Depending on the type of the specific RL algorithm, the policy can
be deterministic, when the same current state always produces the same action, or it can be
stochastic. In the latter case, instead of being a function, the policy is given by a probability

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    95

distribution, such that for a given state, only the probabilities of different actions, rather than
actions themselves, are fixed.

By definition, the optimal policy is a policy that maximizes the total expected reward from
taking actions.1 The latter quantity is often written as follows:

	 π −γ
+

=

 
 
 
∑ 1

0

(, ,) .
T

t
t t t

t

E e R S A S �

Here, Ep[⋅] stands for the expected value assuming that policy p will be used to pick all future
actions At. Furthermore, g ∈[0,1] is a discount factor that specifies how much immediate
rewards are more preferred over rewards received in the future. The meaning of the discount
factor, g, in RL is quite similar to the meaning of the discount factor in finance. The expected
total reward defined in Equation 1 is often referred to as the return in the RL literature.

Example: Optimal Trade Execution
To help contextualize the foregoing information, consider an optimal execution problem in
which you need to sell 100,000 shares of a stock over the next hour:

State: Remaining shares to sell (100,000 → 0), current stock price, bid–ask spread, order book
depth, time remaining (60 minutes → 0), recent volatility

Actions: Number of shares to sell in the current time period (0 to remaining quantity)

Rewards: Execution price received minus a penalty for price impact and inventory risk—for
example,

	 Rt = Price received – l1 × Market impact – l2 × Inventory risk.�

Policy: A function that determines how many shares to sell given the current state

The RL agent learns through trial and error, experimenting with different execution rates under
various market conditions, gradually improving its strategy based on the rewards received.

Mathematical Foundations: MDPs and Beyond

Markov Decision Processes
The mathematical foundation for many RL problems is the Markov decision process (MDP),
defined by the tuple (S,A,P,R,g):

	● S = Set of possible states. States can be continuous or discrete.

	● A = Set of possible actions. Actions can be continuous or discrete.

	● P(St+1 | St,At) = State transition probabilities.

	● R(St,At,St+1) = Reward function.

	● g ∈ [0,1] = Discount factor for future rewards.

1This definition applies to the most commonly used version of RL, called the risk-neutral RL. Other modeling choices will
be described later.

AI in Asset Management: Tools, Applications, and Frontiers

96    CFA Institute Research Foundation

The key assumption is the Markov property: The future depends on only the current state, not
the history of how we arrived there. This assumption allows one to define the state dynamics
in terms of single-step transition probabilities P(St+1 | St,At) that reference only the current-step
and next-step values of the state variable. Although the Markovian assumption may appear
somewhat restrictive for financial applications, it can often be satisfied by including sufficient
information in the state representation.

Partially Observable Environments
In practice, financial environments are often partially observable. Traders do not have access
to all relevant information—such as other participants’ intentions, unrevealed news, central bank
decisions, and so on. This situation leads to partially observable MDPs (POMDPs), where agents
receive observations Ot that provide only partial information about the true state, St.

Financial POMDP Example: Trading with Hidden Liquidity

Consider a trader executing a large order in a market with hidden liquidity (e.g., dark pools
or iceberg orders):

	● True state St: Total available liquidity at each price level (including hidden orders)

	● Observation Ot: Only visible order book depth

	● Belief state bt: Probability distribution over possible hidden liquidity levels

	● Action At: Order size and aggressiveness

The agent must maintain a belief state bt = P(St | O1:t,A1:t–1) and update it using Bayesian inference:

	 +
+

+

′
′ ′= ∑1

1
1

(|)
() (| ,) ().

(|)
t

t t t
st t

P � s
b s P s A � b s

P � b
�

POMDPs are significantly more complex to solve, often requiring agents to maintain belief
states (probability distributions over possible true states). However, they provide a more
realistic model of financial decision making under uncertainty.

Bellman Equations: The Optimization Principle
Historically, RL grew out of dynamic programming, developed by Richard Bellman in the 1960s.
Dynamic programming offers a systematic approach to the problem of sequential control that
essentially relies on additivity of the RL return defined in Equation 1. With dynamic program-
ming, the total return is viewed as a function of either the current state or a combination of
the current state and the first action taken. In the former case, the total return (Equation 1) is
referred to as the value function (or V-function), while in the latter case, it is referred to as the
value-action function (or Q-function). The policy optimization amounts to finding an optimal
policy p* that maximizes the V-function or the Q-function. The optimal V- and Q-functions are
denoted, respectively, as V *(St) and Q*(St,At). These functions satisfy recursive relations known
as Bellman optimality equations:

	 +
′

′ ′= = = +
 
 
 

γ∑E* *
1 .() max [| ,] (| ,) ()a t t t

s

V � R S s A a P s s a V � �

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    97

	 ′+
′

′ ′ ′= = = + γ∑E* *
1(,) [| ,] (| ,)max (,).t t t a

s

Q s a R S s A a P s s a Q s a �

These equations state that the optimal value of a state (or state-action pair) equals the
expected immediate reward plus the discounted expected value of the best possible next state.

The classical dynamic programming typically focuses on solution of the first Bellman optimality
equation for the V-function for low-dimensional and discrete sets of states and action, while
assuming that the dynamics of the transitions between states are known. Such constraints on
the dimensionality of a state-action space and the need for an explicit model of the environ-
ment presented severe limitations for the use of dynamic programming for many real-life appli-
cations where the dimensionality of the state-action space is high and where the explicit model
of the world is typically not available or hard to estimate.

Respectively, one approach of RL extends the dynamic programming formulation of sequential
decision-making problems to models with a high-dimensional continuous or discrete state-action
space, without assuming that dynamics of the world are known. Instead, this approach, known
as the value-based RL, relies on samples from data obtained from interactions of an agent with
its environment, giving rise to sample-based solutions of Bellman optimality equations.

Value-Based RL vs. Policy-Gradient vs. Actor-Critic Methods
The value-based RL that uses value or action-value functions together with Bellman equations is
not the only available approach to RL. Other approaches exist that do not rely on Bellman equa-
tions but, rather, directly optimize a parameterized policy to maximize the total return defined
in Equation 1. These methods are collectively known as policy-gradient methods. The most
basic policy-gradient method, REINFORCE, is very simple to implement but has the drawback
of producing high variance for total returns (Sutton and Barto 2018). Finally, with actor-critic
RL methods, two different parameterized functions are used to represent the value function
and the policy function. Actor-critic methods produce lower variance of total returns than pure
policy-gradient methods.

RL Algorithm Landscape

Classical Algorithms
Perhaps the most famous RL algorithm is the value-based RL algorithm called Q-learning.
It learns the optimal action-value function, Q*(s,a), through temporal difference updates:

	 ′+ +
′ ← + α + γ − 1 1(,) (,) max (,) (,) .t a tQ � a Q � a R Q � a Q � a �

The Q-learning algorithm can be interpreted as a sample-based solution of the Bellman opti-
mality equation for the Q-function. For discrete state-action systems, values of the Q-functions
for different combinations of the state and action can be stored in a table in which rows and
columns correspond to different values of the state and action, while the Q-update equa-
tion shown here is used to update the values in the table upon observing a new state and
rewards from taking a certain action in the current state. This process is referred to as tabular
Q-learning. Q-learning is considered “off-policy,” meaning it can learn the optimal policy while

AI in Asset Management: Tools, Applications, and Frontiers

98    CFA Institute Research Foundation

following a different (exploratory) policy. A different form of tabular learning is presented by the
SARSA algorithm, an “on-policy” alternative that updates according to the action actually taken:

	 Q(s,a) ← Q(s,a) + a[Rt+1 + gQ(st+1,at+1) - Q(s,a)].�

From Tabular to Deep Learning: Function Approximation
and Deep RL
Financial state spaces are typically enormous or continuous (asset prices, portfolio weights,
market indicators). Function approximation addresses this situation by learning parame-
terized functions that approximate value functions (for value-based RL methods), policies
(for policy-gradient methods), or both (for actor-critic methods). Although many machine
learning approaches (e.g., trees) are able to produce universal function approximation meth-
ods, today, various versions of artificial neural networks serve as the most popular function
approximation approach.

Among value-based deep RL methods, deep Q-networks (DQNs) are most widely known. DQNs
combine Q-learning with deep neural networks, enabling RL to handle high-dimensional state
spaces. In addition to using deep neural networks for value function approximation, DQNs
introduce other innovations that improve their training. In particular, they use experience replay,
which amounts to storing and randomly sampling past experiences for training. The other
innovations are target networks: separate networks for stability during training.

With policy-gradient methods, function approximations are used to approximate policies
(for pure policy-based approaches, such as REINFORCE) or both value and policy functions
(for actor-critic methods). Function approximations for both functions are also used in proximal
policy optimization (PPO) algorithms—a policy-gradient method that uses a clipped objective
function to ensure that policy updates stay within a certain “trust region,” which makes training
more stable.

Model-Based vs. Model-Free RL
One of the main paradigms of RL is its reliance on learning directly from experience, without
modeling environment dynamics. This is commonly referred to as model-free RL. Examples of
model-free RL methods include Q-learning and policy gradients, outlined previously. Model-free
RL approaches have both pros and cons:

	● Pros: Simple to implement, effective when dynamics are unknown/complex

	● Cons: Sample inefficient, requires many interactions

An alternative to model-free RL is model-based RL. With this approach, one first learns a model
of environment dynamics and then uses this model for planning. In a sense, model-based RL
takes us one step back to the setting of dynamic programming, which likewise assumes that
the dynamics of the environment are known. Model-based RL methods have their own pros
and cons:

	● Pros: More sample efficient, enables planning and scenario analysis

	● Cons: Possibility of model errors compounding, more complex to implement

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    99

For financial applications, the choice between model-free and model-based RL depends
on the specific problem. High-frequency trading with complex, fast-changing dynamics
might favor model-free approaches, whereas strategic asset allocation could benefit from
model-based methods.

Online vs. Offline RL
Another important distinction between different RL algorithms concerns how they are trained.
In online RL methods, an agent learns by taking actions and observing rewards received from its
environment. Such settings are very common in applications of RL in robotics. The important
question faced by the agent is how to optimally combine taking actions that have previously
shown good reward versus trying new actions whose rewards will be observed only after
trying them. This problem is known as the exploration–exploitation dilemma of RL (Sutton
and Barto 2018).

A different setting is provided by offline RL. In this formulation, the agent learns the optimal
policy without a direct interaction with its environment but, rather, using historical data col-
lected from previous interactions of another (or the same) agent with the same environment.
In this setting, the agent can no longer rely on trial-and-error methods to find optimal actions:
The exploration–exploitation dilemma was already addressed (potentially not optimally!) by the
previous agent. As a result of its inability to explore different actions in interaction with its envi-
ronment, offline RL is generally harder than online RL. However, the setting of offline RL closely
matches the setting of classical financial models that are typically fit to fixed datasets consist-
ing some historical data.

Risk-Aware RL: Beyond Expected Returns
The total return given by the sum of all future reward is clearly a random quantity as seen at the
start of agent’s action (at time 0) because it depends on future states and actions that are not
yet known at time 0. This situation is quite similar to how the future return of an investment
portfolio is a random quantity at the initial time of portfolio initiation. However, the standard
RL optimizes only the expected cumulative reward (i.e., the mean of this distribution) and
does not try to control its higher moments, such as variance, kurtosis, or tail risk measures.
Again similar to classical financial settings, this condition is often not sufficient for the practical
purposes of using RL for financial applications, where we want to control not only the mean
future total reward but also risk, or variability around this mean, as expressed, for example, by
the variance of the total reward. Because standard RL does not address risk/uncertainty around
the mean expected total reward, it is sometimes referred to as risk-neutral RL.

Because financial decision making is inherently risk sensitive, risk-neutral RL is often inadequate
for this task, especially if pure P&L (or return) is taken as the reward for RL. Several extensions
address this limitation.

Risk-Sensitive RL
Mean–variance RL incorporates both expected return and variance into the reward:

	 Reward = E[Return] – l × var[Return].�

AI in Asset Management: Tools, Applications, and Frontiers

100    CFA Institute Research Foundation

In this approach, one uses a risk-adjusted return as a reward function, very much in the spirit of
the classical Markowitz portfolio theory. The attractive property of this approach is that it still
can use the risk-neutral RL formulation, where the variance penalty is simply added to the defi-
nition of the reward such that we still optimize its expected (mean) value. The other attractive
feature of this specification is that the reward defined by this relation is a quadratic function of
actions, which tremendously simplifies the RL algorithm and in fact enables its implementation
without using any neural networks altogether (Dixon, Halperin, and Bilokon 2020). The known
drawback of using variance as a risk measure is that it penalizes both negative and positive
returns, while ideally we may want to penalize only negative returns.

By using conditional value at risk (CVaR) as the risk penalty component of the reward function,
RL methods with such rewards directly optimize tail risk measures, which is crucial for downside
protection. Unlike mean–variance RL, which can proceed without using neural nets, RL methods
that use CVAR typically need to use deep neural networks as function approximation tools.

Risk-constrained RL methods are similar to CVAR-based approaches. They maximize expected
returns subject to risk constraints, such as maximum drawdown or VaR limits.

Distributional RL
Instead of learning expected values, distributional RL learns the full probability distribution of
cumulative future rewards. Having access to the full distribution of the total reward allows one
to compute any risk measure (e.g., VaR, CVaR, skewness) for the ultimate decision making.
Such algorithms as quantile regression DQN (QR-DQN) and implicit quantile networks (IQNs)
represent the return distribution using quantiles, making them particularly suitable for financial
applications focused on tail risks. Distributional RL can also be constructed with the continuous
time formulation. With this approach, policy optimization amounts to a numerical solution of
certain partial differential equations (Halperin 2024).

Use Cases for RL Applications in Finance
Here, we provide a brief outlook for various use cases for RL in financial applications. Without
attempting a detailed presentation, we focus here on the few key elements, including specifica-
tions of state, action, and reward, as well as outlining implementation consideration.

Optimal Trade Execution

Problem Setting

A fundamental problem for any large institutional investor is how to execute a large order
with minimal price disruption. Standard benchmarks such as time-weighted average price or
volume-weighted average price provide simple, static schedules but fail to adapt to changing
market conditions during the execution horizon. An RL agent, in contrast, can learn a dynamic
policy that breaks a large “parent” order into a sequence of smaller “child” orders, adapting
the pace of trading to minimize costs. The core challenge is to balance the trade-off between
the market impact cost of trading aggressively and the timing risk of trading slowly in a
volatile market.

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    101

RL Formulation

The problem is naturally framed as a finite-horizon MDP. The state space typically includes the
remaining quantity to be traded, the time left in the execution window, current asset price,
and potentially microstructure features, such as order book imbalance or recent volatility. The
action is the size of the child order to submit in the current time slice. The reward function is
crucial and must encapsulate the trade-off: It is often formulated as the negative of implemen-
tation shortfall or, more explicitly, the execution price achieved, penalized by terms representing
price slippage resulting from market impact and the risk exposure of the remaining inventory.

Implementation Considerations

A significant challenge is developing a realistic market impact model, which can be either
estimated offline from historical data or learned online as part of the RL agent’s interaction.
Furthermore, a robust execution agent must be able to generalize across different market
volatility regimes and asset-specific behaviors. For training and validation, a high-fidelity market
simulator that can accurately model price dynamics and market impact is indispensable because
training in a live market is impractical and costly. Finally, the learned policy must operate within
the constraints of regulatory requirements, such as “best execution” mandates.

Dynamic Portfolio Optimization

Problem Setting

Classical single-period portfolio optimization, such as Markowitz’s mean–variance framework, is
static and highly sensitive to estimation errors in its inputs (expected returns and covariances).
Its static nature prevents optimal portfolio allocation decisions in terms of minimization of trans-
action costs or optimal use of multihorizon predictive signals. Dynamic portfolio optimization
extends the static mean–variance framework to a multiperiod setting, where an RL agent learns a
rebalancing policy over a long horizon. This approach aims to maximize cumulative risk-adjusted
returns while accounting for real-world frictions, such as transaction costs and market impact.

RL Formulation

The state space for a dynamic portfolio agent includes the current portfolio weights, recent asset
returns, market regime indicators (e.g., from a hidden Markov model), and predictive macroeco-
nomic factors. The action space is the set of target portfolio weights for the next period. Because
weights are continuous variables, this problem is ill suited for tabular RL methods and requires
function approximation. The reward is typically a risk-adjusted return metric, such as the period’s
Sharpe ratio or a utility function of the portfolio’s return, net of transaction and holding costs.

Implementation Considerations

The continuous and high-dimensional nature of the state and action spaces makes this applica-
tion of RL challenging in practice. Advanced techniques are often used in this setting. In particu-
lar, with hierarchical RL approaches, the problem can be decomposed into a high-level strategic
allocation agent that sets broad targets over long horizons (e.g., quarterly) and a low-level tac-
tical agent that makes finer adjustments (e.g., monthly) to achieve those targets. Alternatively,
multi-objective RL can be considered to navigate the complex trade-offs between competing

AI in Asset Management: Tools, Applications, and Frontiers

102    CFA Institute Research Foundation

goals, such as maximizing returns, minimizing volatility, and reducing portfolio turnover to limit
transaction costs. Lastly, a computationally efficient and noise-robust approach particularly
helpful for financial portfolio optimization tasks is provided by G-learning, a probabilistic exten-
sion of Q-learning. This method was applied to goal-based wealth management by Dixon and
Halperin (2020).

Option Pricing and Hedging

Problem Setting

The classical Black–Scholes–Merton model (Black and Scholes 1973; Merton 1974) provides a
cornerstone for derivative pricing but relies on idealized assumptions, such as continuous and
costless hedging, that do not hold in practice. When hedging is discrete and involves transaction
costs, the problem of pricing and hedging a derivative becomes a sequential decision-making
problem under uncertainty. The goal is to design a dynamic hedging strategy that minimizes
a risk-adjusted measure of the total hedging cost. Several RL-inspired frameworks have been
developed to address this problem, moving beyond the classical risk-neutral paradigm.

RL Formulation and Approaches

Two main classes of methods have emerged, which can be broadly understood as value-based
and policy-based approaches to the hedging problem.

Value-Based RL

The QLBS Model proposed by Halperin (2020) directly applies the principles of value-based RL.
The problem is framed as an MDP where the agent (an option seller) seeks to learn an optimal
hedging policy. The state is defined by the underlying asset price and time to expiration. The
action is the hedge adjustment (the amount of the underlying to hold). The reward function is
defined as the negative of a risk-adjusted hedging cost. For tractability, this cost takes a qua-
dratic form (mean–variance utility), including a penalty for the variance of the hedge portfolio’s
value, which directly incorporates the hedger’s risk aversion. The agent learns an optimal action-
value function (Q-function), from which both the optimal hedge policy and the corresponding
option price (the negative of the Q-value) are derived simultaneously.

Deep value-based RL for option hedging is a more end-to-end approach that has been explored.
Du, Jin, Kolm, Ritter, Wang, and Zhang (2020) applied state-of-the-art DRL algorithms, such as
proximal policy optimization (PPO), to learn hedging strategies directly from market simula-
tions. A key advantage of their framework is its ability to handle practical market frictions, such
as discrete trading times and nonlinear transaction costs. Furthermore, their approach is highly
efficient because a single trained DRL agent can learn to hedge a whole range of option strikes
simultaneously, eliminating the need for retraining on a per-strike basis. The authors demon-
strated that the DRL agent can learn strategies that match or outperform traditional delta
hedging in terms of profit and loss.

Direct Policy Optimization

An alternative framework is deep hedging, pioneered by Buehler, Gonon, Teichmann, and Wood
(2019). This approach can be seen as a form of direct policy optimization. Instead of solving

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    103

the recursive Bellman equation, it frames the entire hedging problem as a single end-to-end
optimization. A neural network is used to directly represent the hedging policy, taking the
current market state as input and outputting the hedge position. The training process involves
the following:

	● Simulating a large number of market scenarios (paths) for the underlying asset(s)

	● For each path, applying the hedging strategy defined by the current neural network

	● Calculating the final P&L distribution of the fully hedged portfolio across all paths

	● Using backpropagation to update the neural network’s weights to minimize a chosen
risk measure of this final P&L distribution (e.g., CVaR, mean–variance utility, or expected
shortfall)

Implementation Considerations

All RL approaches directly address the limitations of the classical model by embedding real-
world frictions, such as discrete hedging and transaction costs. However, they differ in their
philosophy and implementation. The QLBS approach aligns closely with traditional RL theory
(MDPs, Bellman equations, Q-functions) and can be computationally efficient when its qua-
dratic reward assumption leads to semi-analytical solutions, as explored in fitted Q-iteration
(Ernst, Geurts, and Wehenkel 2005). Also, because Q-learning is a model-independent method,
the QLBS approach amounts to a model-independent and data-driven option hedging and pric-
ing method. Deep hedging, while conceptually related, is implemented as a global optimization
that is very flexible; changing the risk objective simply means changing the final loss function. It
is inherently a model-based approach because it learns the optimal policy for a given simulation
model of the market (e.g., Heston, SABR). The power of neural networks also allows it to handle
very complex and non-Markovian state representations.

End-to-End Deep RL for Asset Allocation

Problem Setting

Traditional quantitative asset allocation involves a two-step process: First, predict expected
returns and covariances, and second, use these predictions in an optimization framework (e.g.,
mean–variance). This process is fragile because performance is highly sensitive to errors in the
initial prediction step. A more robust approach would be to learn the mapping from market data
to portfolio weights in an end-to-end fashion.

RL Formulation and Approaches

Noguer i Alonso and Srivastava (2020) proposed a model-free, end-to-end deep reinforcement
learning approach that bypasses the explicit forecasting step. The RL agent learns a direct
mapping from raw market data to optimal portfolio weights.

	● State: The state is represented as a tensor of recent price history (e.g., 50 days of high, low,
and close prices for a universe of stocks).

	● Agent: The agent is a deep neural network (the authors tested various architectures, such as
CNNs, RNNs, and LSTMs) that learns the allocation policy.

AI in Asset Management: Tools, Applications, and Frontiers

104    CFA Institute Research Foundation

	● Action: The action is an output vector of portfolio weights for the next period.

	● Reward: The reward is a simple and direct financial objective, such as the portfolio’s aver-
age logarithmic return, adjusted for transaction costs. To encourage stable portfolios, the
architecture incorporates a “portfolio vector memory,” which considers past weights when
determining new ones and implicitly penalizes high turnover.

Implementation Considerations

This end-to-end framework learns to predict and optimize simultaneously. Noguer i Alonso and
Srivastava (2020) showed it can construct portfolios that outperform traditional methods, such
as mean–variance optimization and risk parity, even when only given raw price series as input.
The use of a portfolio memory is a key architectural choice to control for turnover, which is a
critical practical consideration.

Algorithmic Trading

Problem Setting

Algorithmic trading seeks to automate trading decisions to capitalize on market opportunities
more efficiently than human traders can. The core challenge is to develop a strategy that can
adapt to changing market conditions and dynamically balance the trade-off between expected
returns and various forms of risk.

RL Formulation and Approaches

The problem is naturally framed as an MDP where an agent learns an optimal trading policy.

	● State space: This includes such features as historical price data, technical indicators (e.g.,
moving averages), market volatility, and the agent’s current portfolio state (cash and asset
holdings).

	● Action space: This consists of such actions as buying, selling, and holding assets. The action
can be discrete (e.g., buy one unit) or continuous (e.g., allocate 15% of capital).

	● Reward function: The reward function is typically defined to reflect a risk-adjusted return
measure. A simple profit-and-loss reward can be augmented with risk measures, such
as a penalty for high portfolio variance, large drawdowns, or a direct optimization of the
Sharpe ratio.

A comprehensive review by Pricope (2021) considered the application of deep RL to this
problem, noting that many studies show statistically significant outperformance over simpler
baselines in simulated environments.

Implementation Considerations

A key challenge highlighted in the literature is the gap between simulated performance and
real-world applicability. Many studies are proofs of concept conducted in environments that
do not fully capture real-time market frictions, latency, and data imperfections. Successful
implementation requires careful consideration of transaction costs, market impact, and robust
out-of-sample validation.

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    105

Market Making

Problem Setting

Market making is a high-frequency strategy in which a trader provides liquidity by simultane-
ously placing bid and ask limit orders, aiming to profit from the spread. The main challenge is
to set optimal quotes that balance maximizing spread capture against managing two key risks:
inventory risk (holding a large, undiversified position) and adverse selection risk (trading against
an informed counterparty who knows where the price is headed).

RL Formulation and Approaches

The market making problem is well suited to an MDP formulation where the agent learns an
optimal quoting strategy.

	● State space: This encompasses the agent’s current inventory, features of the limit order
book (e.g., bid–ask spread, volume imbalance), and market indicators, such as volatility.

	● Action space: This includes setting the bid and ask quotes relative to the market midpoint
and deciding the size of the orders to be placed.

	● Reward function: Carefully designed, this function rewards captured spreads while penaliz-
ing inventory risk and losses from adverse selection.

Spooner, Fearnley, Savani, and Koukorinis (2018) presented a foundational example in which a
deep RL agent learns to perform market making. Their agent learns a value function to optimize
quotes, demonstrating that an RL approach can outperform traditional stochastic control-based
strategies in simulated environments.

Implementation Considerations

The primary challenge in applying RL to live market making is latency. High-frequency environ-
ments require decisions on microsecond timescales, which can be difficult for complex neural
network models to meet. Furthermore, creating a high-fidelity market simulator that accurately
captures order flow dynamics and adverse selection is a significant undertaking yet is crucial for
training a robust agent.

Inverse Reinforcement Learning: Inferring
Hidden Objectives
Reinforcement learning learns optimal policies given known objectives, as codified by rewards.
The reward in RL is observable, as a result of online interaction of an agent with its environment
or for offline RL, as a part of historical data. In many real-world problems, however, we observe
only agents’ actions—not their reward. Arguably, in real life, such scenarios are encountered
more often relative to scenarios where rewards are observed. The ultimate objective of learn-
ing in this setting is still the same as in the RL scenario—that is, to learn the optimal policy
by observing the agent’s behavior. In contrast to the standard RL scenario, however, we now
observe only the states of the environment and actions taken by the agent and do not observe
rewards received by the agent.

AI in Asset Management: Tools, Applications, and Frontiers

106    CFA Institute Research Foundation

Clearly, without additional assumptions, such problems do not have a solution. For example, if
an agent’s actions are purely random, not much (if anything) can be learned from such obser-
vations. If we assume that the agent’s actions were supposed to achieve some objectives,
however, then we can address the inverse problem: Given observed behavior, what objectives
explain that behavior?

If the objective is to maximize the total expected reward, this inverse problem formulation gives
rise to inverse reinforcement learning (IRL). IRL uses the observed behavior of an agent and
infers the reward function that is assumed to be optimized by the agent. Note that in most IRL
applications, such inference of the reward function is not the end goal. The end goal is rather the
same as in conventional (direct) RL, which is to find the optimal policy that maximizes the total
expected reward. Unlike the task of RL, however, where rewards are a part of the inputs, in IRL
we first have to infer them from the behavior, and then we use them to find the optimal policy.

The Challenge of IRL: An Ill-Posed Problem

As with many inverse problems, IRL is an ill-posed problem: For any given set of observed
behaviors, an infinite number of reward functions could explain that behavior. For instance,
a policy of doing nothing is optimal for a reward of zero but also for any reward function that
depends only on the state, not the action. This is the issue of reward shaping invariance: an
optimal policy is unchanged if we transform the reward function by adding a potential-based
term (Ng, Harada, and Russell 1999).

In order to have a solution, one needs to make additional assumptions about the agent in order
to select the “best” or most plausible reward function from the many possibilities. One such
assumption can be that the agent’s behavior is optimal or close to optimal. Although such
assumptions may be reasonable in some applications (e.g., robotics), it is hardly appropriate in
finance, where optimality does not even exist in absolute terms and can be defined only relative
to some benchmark.

IRL vs. Imitation Learning

The other question that can be asked in relation to the declared objective of IRL is, Why do
we need to first infer the reward, as long as we assume that the observed behavior is already
optimal? Can we simply build a supervised learning–type model that would simply mimic the
observed behavior of an agent in different states of the world, without even asking a question
about the agent’s reward function? It turns out that such strategies are indeed feasible in certain
circumstances, and the subfield of machine learning that studies these methods is known as
imitation learning (IL). Although IL and IRL have the shared final goal of finding optimal policy
from the observed behavior, they differ in the intermediate steps. IRL infers the reward function
as the intermediate step, while IL proceeds without it. In general, IRL methods often work better
than IL methods, and they offer more flexible and portable solutions because a reward function
offers a succinct description of agents’ goals that is portable across different environments
(Dixon et al. 2020). Therefore, we will mostly focus on IRL methods for financial applications.

Key IRL Approaches
To deal with its ill-posed nature, IRL methods impose additional principles to find a unique
reward function.

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    107

Maximum Entropy IRL
The maximum entropy (MaxEnt) IRL principle is a popular approach to regularize the problem
(Ziebart, Maas, Bagnell, and Dey 2008).

	● Principle: Among all reward functions that explain the expert’s behavior, choose the one that
makes the expert’s policy as random as possible (i.e., maximizes its entropy). The intuition is
to match the observed behavior while being maximally non-committal about behavior that
hasn’t been observed.

	● Probabilistic policy: This principle naturally leads to a stochastic policy in which the prob-
ability of taking an action is exponentially proportional to its value. This is often called a
Boltzmann or softmax policy.

	● Implementation: This approach turns IRL into a maximum likelihood problem on the
observed expert trajectories. The main computational challenge is often calculating the nor-
malization constant (partition function) for this policy distribution, which requires summing
or integrating over all possible actions at each step.

Bayesian and Gaussian Process IRL
Another way to handle the ill-posed nature of IRL is through a Bayesian lens. Instead of seeking
a single best-fit reward function, Bayesian IRL aims to find a posterior distribution over all plausi-
ble reward functions, given the observed expert data.

Gaussian process IRL (GPIRL) is a specific and powerful nonparametric implementation of this
idea (Levine, Popović, and Koltun 2011).

	● Principle: A Gaussian process (GP) is placed as a prior over the unknown reward function.
A GP can be thought of as a “distribution over functions.” It provides a flexible way to repre-
sent the belief that the reward function is likely to be smooth, without having to specify its
exact functional form (e.g., linear or quadratic).

	● Learning process: Starting with this GP prior, the algorithm observes the expert’s state-
action trajectories. It then uses Bayesian inference to update the prior, resulting in a poste-
rior distribution over reward functions that are consistent with the observed behavior.

	● Benefits: The main advantage is flexibility. GPIRL can capture complex, nonlinear reward
functions without manual feature engineering. This ability makes it particularly suitable
for financial applications for which the relationship between market states and a trader’s
implicit rewards can be highly nuanced. This method was notably used in the financial
applications discussed later.

Adversarial Imitation Learning
A different and powerful class of methods frames imitation learning as a two-player game.

	● Generative adversarial imitation learning (GAIL): Ho and Ermon (2016) proposed GAIL,
which does not explicitly recover a reward function. It trains a generator (the agent’s policy)
to produce state-action trajectories that are indistinguishable from an expert’s trajectories,
as judged by a discriminator. The discriminator is trained simultaneously to tell the differ-
ence between the agent’s and the expert’s behavior. GAIL is pure imitation learning.

AI in Asset Management: Tools, Applications, and Frontiers

108    CFA Institute Research Foundation

	● Adversarial inverse reinforcement learning (AIRL): Finn, Christiano, Abbeel, and Levine
(2016) extended this framework by structuring the discriminator in a specific way. In AIRL,
the discriminator’s output can be decomposed to recover not only a policy but also a reward
function. This approach elegantly connects adversarial learning back to the original goal
of IRL.

T-REX: Learning from Ranked Demonstrations
Standard IRL often assumes expert demonstrations are (nearly) optimal. This can be a strong
and often incorrect assumption. Trajectory-ranked reward extrapolation (T-REX) offers a power-
ful alternative by learning from demonstrations of varying quality (Brown, Goo, Nagarajan, and
Niekum 2019).

	● Principle: Instead of a set of optimal demonstrations, T-REX uses a set of trajectories that
have been ranked by preference (e.g., “trajectory A is better than B”). It does not require
knowing the absolute quality, only the relative ranking.

	● Learning intent: The objective is to learn a reward function such that the total reward
assigned to each trajectory is consistent with the given ranking. By learning what
makes one trajectory better than another, T-REX can infer the underlying intent of the
demonstrator.

	● Surpassing the teacher: Because it learns an underlying reward function rather than simply
mimicking actions, the learned reward can be used with a standard RL algorithm to find a
policy that is even better than the best demonstration provided. This is a crucial step toward
building agents that can learn from and improve on human behavior.

Inverse Reinforcement Learning in Action:
Financial Use Cases
IRL opens up new avenues for analyzing financial behavior and markets. In this section,
we present a short and nonexhaustive overview of applications of IRL in the financial domain.

Algorithmic Trading Strategy Identification
	● Problem: High-frequency trading (HFT) firms use a diverse set of strategies. Regulators

and market operators are interested in identifying and clustering these strategies from
observable order data to monitor market health and detect manipulative behavior. Standard
clustering based on statistical features of trading activity (e.g., order-to-trade ratio) can be
crude and may not capture the underlying objectives.

	● IRL approach: Yang, Qiao, Beling, Scherer, and Kirilenko (2015) pioneered an approach using
Bayesian IRL (specifically, Gaussian process IRL). Their approach treats HFT strategies as
“experts” and uses their observed order placements (actions) in the limit order book (state)
to infer the reward function each strategy is optimizing. By clustering strategies based on
the parameters of their learned reward functions, they achieved more meaningful and inter-
pretable groupings of behavior than by using simple statistical features. The reward func-
tion captures the agent’s implicit trade-offs between, for instance, aggressive execution and
inventory risk.

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    109

Sentiment-Based Trading Strategies
	● Problem: Build a trading system that systematically exploits the relationship between

investor sentiment and market dynamics.

	● IRL approach: Yang, Yu, and Almahdi (2018) framed the problem using GPIRL. Their
approach treats aggregate news sentiment as the “action” of a single, collective market
agent. The market state is defined by recent price dynamics, and GPIRL is used to infer the
reward function that this collective agent is maximizing. This learned reward function, which
implicitly captures how the “market” values taking bullish or bearish actions given certain
conditions, can then be used by a direct RL agent to make its own trading decisions.

Inferring Customer Preferences in Consumer Finance
	● Problem: Businesses offering subscription or recurring utility services (e.g., mobile data

plans, cloud computing, energy) need to understand customer behavior to design better
products and pricing plans. Customer decisions, such as daily consumption, are sequential
and depend on the current state (e.g., remaining quota, days left in the billing cycle).

	● IRL approach: This problem can be framed as inferring a customer’s latent utility (reward)
function from their observed consumption patterns. A MaxEnt IRL algorithm for this prob-
lem was proposed by Dixon et al. (2020). It uses a parametric reward function that captures
the trade-offs a customer makes, including the utility of consumption, a penalty for exceed-
ing a quota (and paying an overage price), and a potential reward for forgoing consumption.
By observing a customer’s consumption history, the MaxEnt IRL algorithm finds the utility
parameters that make the observed behavior most probable.

Once this customer-specific utility function is learned, the firm can perform powerful counter-
factual simulations. For example, it can predict how that customer’s consumption would change
if the monthly price were lowered or the data quota were increased. This ability provides a
principled, data-driven method for product design and targeted marketing that goes far beyond
simple statistical analysis.

Goal-Based Wealth Management and Robo-Advising
	● Problem: A core challenge in wealth management is optimizing a client’s portfolio over a

long horizon to meet a specific goal, such as funding retirement. This problem differs from
standard portfolio optimization because it involves periodic cash flows (contributions during
the accumulation phase, withdrawals during decumulation) in addition to asset rebalancing.
The objective is often to reach a target wealth level, a more intuitive goal for retail investors
than maximizing a Sharpe ratio or tracking a mean–variance-efficient frontier.

	● IRL–RL approach: Dixon and Halperin (2020) proposed a two-part framework to tackle this
problem.

1.	 G-learner (the RL agent): First, they define a direct RL agent, the G-learner, which solves
the goal-based wealth management problem. The G-learner uses a specific quadratic
reward function that penalizes underperformance relative to a target wealth path and
accounts for transaction costs. By defining actions as absolute dollar changes in asset
positions, it handles cash flows naturally and scales to high-dimensional portfolios.

AI in Asset Management: Tools, Applications, and Frontiers

110    CFA Institute Research Foundation

This G-learner serves as a powerful, computationally tractable solver for the direct
RL problem.

2.	 GIRL (the IRL method): The second part, GIRL (G-learning IRL), addresses the inverse
problem. Many investors cannot explicitly define their reward function parameters (e.g.,
their exact risk aversion or how they weigh tracking a benchmark versus growth). GIRL
takes the observed trading history of an investor (or a human portfolio manager) and
infers the most likely reward function parameters that the investor was implicitly opti-
mizing. It assumes the investor behaves like a G-learner and uses maximum likelihood
to find the reward parameters that best explain the observed actions.

	● Application to robo-advising: The combination of these two algorithms creates a power-
ful tool for robo-advising. GIRL can be used to learn the implicit reward functions (i.e., the
investment “styles” and risk preferences) of successful human portfolio managers. This
learned “best-in-class” reward function can then be given to the G-learner, which computes
a new, enhanced optimal policy. This process creates a system that can learn from human
expertise, formalize it, and then use AI to find an even better strategy, providing superior,
data-driven recommendations.

Learning Optimal Asset Allocation from Collective Behavior
of Fund Managers

	● Problem: How can we learn from the collective behavior of a group of active fund manag-
ers to provide improved asset allocation recommendations? Although individual managers
are experts, their decisions can contain noise or suboptimal biases. A method is needed to
distill their collective wisdom while filtering out individual errors.

	● IRL–RL approach: Halperin, Liu, and Zhang (2022) proposed a practical two-step framework
that combines IRL and RL to learn from and improve on the investment practices of a group
of fund managers.
	 Step 1: Infer collective intent (IRL): The framework first takes the historical trading data

from a group of fund managers with similar investment mandates (e.g., large-cap
growth funds). The historical performance of these funds is used to rank their trajec-
tories. Using the T-REX algorithm, the system learns a single, shared reward function
whose parameters are optimized to be consistent with these performance rankings.
This step infers the collective intent of the group—what objectives, on average, lead
to better performance within this peer group.

	 Step 2: Optimize policy (RL): The collective reward function learned in the IRL step is
then passed to a direct RL agent (the G-learner). This agent solves for the optimal asset
allocation policy that maximizes this reward function. Because the reward function is
based on the distilled wisdom of the entire group, the resulting policy is often superior
to the strategies of the individual managers it learned from.

	● Application as an assistant: This framework is designed not to replace portfolio managers
but to assist them. The output of the RL step is a set of recommended asset allocation
changes (e.g., reweighting portfolio exposure across industry sectors). Managers can use
these recommendations as a data-driven input to refine their own decisions, leveraging the
collective intelligence of their peers to improve performance. This demonstrates a practical

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    111

human–machine interaction loop, where IRL learns from human experts and RL provides
optimized suggestions to them.

High-Frequency Market Making with Imitation Learning
	● Problem: Traditional HFT models for market making, such as the Avellaneda–Stoikov model,

are often calibrated on historical data and make strict assumptions about market dynamics
(e.g., stable order flow, specific price processes). These models struggle to adapt when real-
world market conditions diverge from these assumptions. Standard RL approaches, on the
other hand, can be sample-inefficient and often optimize myopically for single-step actions,
which can lead to compounding errors and poor inventory management in HFT.

	● Imitation learning approach (FlowHFT): To address these challenges, Li, Chen, and Yang
(2025) proposed FlowHFT, a novel framework based on imitation learning. Instead of
assuming a single expert model is best for all conditions, FlowHFT learns from a diverse set
of expert demonstrations. It simulates various market scenarios (e.g., high/low volatility,
trending/mean-reverting) and identifies the best-performing traditional model (e.g., AS,
GLFT) for each specific scenario.

	● Flow-matching policy: The core of the framework is a flow-matching policy. This is a sophis-
ticated generative model that learns to map a market state to a sequence of optimal trading
actions. It does so by learning a “flow” that transforms a simple noise distribution into the
complex distribution of expert actions observed across all market scenarios. This process
allows a single, adaptive model to integrate the knowledge of many specialized experts.
Crucially, it learns to generate entire action sequences over a planning horizon, which inher-
ently considers the near-term consequences of actions and helps mitigate the compound-
ing errors seen in single-step RL.

	● Application: The trained FlowHFT model can adaptively generate trading decisions suitable
for the prevailing market state, effectively leveraging the best strategy from its library of
learned experts. Li et al. (2025) showed that their single framework can consistently out-
perform the best individual expert model in each tested market condition, demonstrating
a powerful application of imitation learning to build robust, adaptive HFT agents.

Computational Requirements and Infrastructure:
Hardware and Software Ecosystem
Implementing RL for financial applications requires careful consideration of computational
infrastructure:

Hardware requirements

	● Development phase: GPU-enabled workstations (NVIDIA RTX 3090 or better) for deep RL
algorithms

	● Production phase: Low-latency inference servers for real-time decision making

	● Memory requirements: 32GB+ RAM for experience replay buffers in high-frequency
applications

AI in Asset Management: Tools, Applications, and Frontiers

112    CFA Institute Research Foundation

Software stack

	● RL frameworks:
■	 Stable Baselines3: Production-ready implementations of standard algorithms
■	 RLlib: Distributed training for large-scale applications
■	 TF-Agents/PyTorch RL: For custom algorithm development

	● Market simulators:
■	 ABIDES: Agent-based market simulator for microstructure research
■	 FinRL: Integrated environment for financial RL applications
■	 Custom simulators using historical tick data

Challenges and Frontiers
Although RL and IRL hold immense promise for finance, practitioners must navigate a set of
significant challenges before these methods can be widely and reliably deployed.

Key Challenges
The following are some of the main challenges for RL and IRL:

	● Sample efficiency and data requirements: RL agents, particularly model-free ones, often
learn through extensive trial and error. Financial data, although vast, can be noisy, and the
number of truly independent historical scenarios is limited. This situation makes it difficult
to train agents that are robust to rare but critical market events, such as financial crises.

	● Nonstationarity of financial markets: The core assumption of a stationary MDP is often
violated in finance. Market dynamics, volatility regimes, and correlation structures evolve
over time. A policy learned on historical data may become suboptimal or even detrimental
when market conditions change. This dynamic necessitates continuous learning or adaptive
models that can detect and adjust to regime shifts.

	● Fidelity of simulation environments: Training and validating RL agents, especially for high-
stakes applications, require a realistic market simulator. For example, for applications for
trading in the limit order book, building a simulator that accurately captures market micro-
structure, order flow dynamics, latency, and the feedback loop of market impact is an
extremely challenging problem in itself. An agent that performs well in a flawed simulation
may fail spectacularly in a live market.

	● Reward specification and risk sensitivity: For direct RL, defining a reward function that perfectly
aligns with a long-term financial objective is nontrivial. A myopic reward (e.g., single-period
profit) can lead to undesirable behavior, such as excessive risk taking. As discussed, standard
RL optimizes for expected returns (risk neutrality), whereas financial applications almost
always demand explicit management of risk (e.g., variance, tail risk, drawdown). Risk-sensitive
and distributional RL can therefore present a particular interest for financial applications.

	● Interpretability and trust: Many modern RL agents, especially those using deep neural net-
works, function as “black boxes.” This lack of transparency is a major hurdle for adoption in
a highly regulated industry where portfolio managers and risk officers need to understand
and justify investment decisions.

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    113

The Research Frontiers
Addressing these challenges is the focus of ongoing research. Several exciting frontiers are
emerging that are particularly relevant for finance:

	● Model-based RL and learned simulators: To improve sample efficiency, researchers are
developing agents that simultaneously learn a policy and a model of the environment.
A learned world model can be used to generate simulated experiences, allowing the agent
to “plan” and learn much faster than by relying solely on real market data.

	● Explainable AI (XAI) for RL/IRL: A critical area of research is the development of methods to
make the decisions of RL/IRL agents more transparent. Such techniques as sensitivity anal-
ysis and feature attribution can help practitioners understand which market signals are driv-
ing an agent’s actions, fostering greater trust and facilitating model risk management.

	● Multi-agent RL (MARL): Financial markets are inherently multi-agent systems. MARL moves
beyond the single-agent paradigm to model the strategic interactions between multiple
learning agents (e.g., competing high-frequency traders, interacting institutional investors,
networks of broker/dealers in OTC markets). Similarly, multi-agent IRL aims to deconvolve
the observed market dynamics into the behaviors and objectives of distinct classes of
agents, which is a significant step beyond “single representative agent” models.

	● RL with large language models (LLMs): The intersection of RL and LLMs is a rapidly developing
area with significant implications for finance. LLMs can process and synthesize vast amounts of
unstructured text data, such as news, filings, and social media, creating a richer, more nuanced
state representation for an RL agent. Beyond simply enhancing the state, the methods used to
align LLMs with human intent are directly applicable to financial decision making.
■	 Reinforcement learning from human feedback (RLHF): This is the established tech-

nique used to fine-tune models such as ChatGPT. It involves a multistage process:
First, a reward model is trained on human preference data (e.g., a human ranks several
model-generated responses). Then, this reward model is used to fine-tune the LLM’s
policy using an RL algorithm (such as PPO). In a financial context, this approach could
be adapted to align a trading or allocation agent with the complex, hard-to-specify intu-
ition of an expert portfolio manager. A manager could provide qualitative feedback by
ranking several trade proposals generated by the agent, allowing the system to learn
the manager’s implicit risk preferences and market views without the manager having
to articulate an explicit utility function.

■	 Direct policy optimization: Although powerful, RLHF is a complex and potentially unsta-
ble multistage process. Rafailov, Sharma, Mitchell, Ermon, Manning, and Finn (2023)
introduced a more elegant and direct method called direct preference optimization
(DPO), which bypasses the need for an explicit reward model. It uses a clever math-
ematical re-parameterization to show that the reward-modeling-plus-RL objective
can be optimized directly on the preference data with a single, stable loss function.
This approach significantly simplifies the training process. For finance, DPO offers a
more robust and efficient way to fine-tune an RL agent’s policy based on direct human
preference data.

■	 Group preference optimization: A limitation of both RLHF and DPO is their focus on
a single preference provider. In many financial settings, decisions must satisfy multi-
ple stakeholders with potentially conflicting objectives (e.g., a pension fund manager

AI in Asset Management: Tools, Applications, and Frontiers

114    CFA Institute Research Foundation

balancing the needs of different beneficiary groups or a team of traders with diverse
market views). Zeng, Zhang, Yang, and Chen (2024) formalized this problem as group
preference optimization (GPO), a multi-agent extension of DPO. GPO learns a single
policy that represents a social welfare optimum—a Condorcet winner—that is most
preferred by the group as a whole. This approach provides a principled framework
for building RL agents that can learn from and make decisions for a group of diverse
financial experts or stakeholders.

Case Study: Trading and Option Hedging
In this section, we apply RL to building trading and option hedging strategies. We begin by
exploring how RL can be used in trading, focusing on the ability of AI to discover optimal strat-
egies despite market frictions, the definition of optimality in finance, and ways to encode risk
preferences within the RL framework.

Next, we examine how various reward functions and state representations arise naturally in
trading problems. We discuss how to formulate RL problems to reflect real financial objectives,
such as maximizing expected utility, managing risk, or hedging derivatives.

We then introduce simple illustrative models—mean-reversion trading and option hedging—that
demonstrate the mechanics of RL in finance and reveal key practical challenges. These foun-
dational examples set the stage for more-advanced RL methods, including policy-gradient and
deep RL approaches. As a practical complement to the discussion, we provide an open-source
code example implementing the mean-reversion trading model, allowing readers to experiment
with RL in a real trading context.

By the end of the case study, you will have a practical understanding of how to frame trading
problems within the RL paradigm, design reward and state structures aligned with investment
objectives, and interpret the results and limitations of RL-based trading strategies. This founda-
tion prepares you for further study of deep RL, risk-sensitive methods, and real-world deploy-
ment in quantitative finance.

Defining Optimality and the Role of the Reward Function
in Trading
We begin this section by discussing some worthwhile questions that motivated the first investi-
gations into the application of RL to optimal trading strategies.

Question 1. Can an artificial intelligence autonomously identify an optimal dynamic trading
strategy, accounting for transaction costs, without prior knowledge of the strategy’s structure?

AlphaGo Zero (Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, et al. 2017) is
a historically important RL system that learned to play with “zero” human guidance, given only
the rules of the game and the chance to play against a simulator. Question 1 asks, What are the
various financial analogues of AlphaGo Zero—where an RL agent learns trading or investment
strategies from first principles, with minimal human guidance?

Question 2. In the context of Question 1, how should we define an optimal strategy? Is opti-
mality inherently subjective, or can we rigorously quantify the strategy that a rational decision
maker would employ?

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    115

In finance, we define a strategy as optimal if it maximizes the expected utility of terminal
wealth. This notion is grounded in the seminal work of von Neumann and Morgenstern (1944),
who showed that if a decision maker (a) faces uncertain (probabilistic) outcomes and (b) has
preferences satisfying four axioms of rational behavior, then the decision maker will behave as
if maximizing the expected value of a utility function u, defined over possible outcomes. For
further details, see Benveniste, Kolm, and Ritter (2024). When applied to trading or investment
management, the relevant outcome is typically terminal wealth wT, so the rational agent’s
objective becomes

	 E[u(wT)].� (1)

This principle underpins modern portfolio theory (Markowitz 1952; Merton 1969; Merton 1971)
and provides the foundation for quantitative models of optimal investment and trading. We
express terminal wealth as the sum of initial wealth w0 and the cumulative increments in wealth
over time:

	
=

= + δ∑0
1

,
T

T �
t

w w w � (2)

where

	 dwt := wt – wt–1� (3)

denotes the wealth increment at time t and T is the final time.

Although it might be tempting to maximize E[wT] directly, doing so ignores risk and can lead to
paradoxes or undesirable outcomes. In contrast, maximizing expected utility E[u(wT)] incorpo-
rates risk preferences appropriately. Chamberlain (1983) and Benveniste et al. (2024) showed
that the equivalence between maximizing expected utility and using mean–variance optimi-
zation is much broader than most practitioners realize. The classic mean–variance approach
remains theoretically justified across a wide range of realistic return distributions—not just
under the normality assumption. Specifically, this result applies whenever the distribution of
terminal wealth is mean–variance equivalent (MVE), a broad class that includes all elliptical dis-
tributions, such as the normal and multivariate t-distributions, as well as a family of asymmetric
distributions with well-defined first and second moments. In such cases, a rational agent’s pref-
erences over risky outcomes can be fully characterized by the mean and variance of terminal
wealth, and the optimal strategy reduces to maximizing expected return penalized by risk,
as in the classical Markowitz mean–variance framework (Markowitz 1952). We clarify those
assumptions next.

Assumption 1 (Discreteness). Trading occurs at discrete times (t = 1,…,T), and final wealth is
given by Equation 2.

Assumption 2 (Portfolios). There exists a set of portfolios (h0,…,hT–1) known at t = 0 such that

	 dwt = ht–1·rt,� (4)

where ht is the dollar holdings vector at time t and rt is the random vector of asset returns
over [t–1,t].

Assumption 3 (Independence). If t ≠ s, then rt and rs are independent.

AI in Asset Management: Tools, Applications, and Frontiers

116    CFA Institute Research Foundation

Assumption 4 (Mean–Variance Equivalence). For each t, the distribution of rt is mean–variance
equivalent.

Assumption 5 (Utility). The utility function is increasing and concave, and it has continuous
derivatives up to second order.

The assumption that the distribution is MVE is perhaps the most interesting one. Although the
mean–variance optimization framework dates back to Markowitz’s pioneering work in the early
1950s, the precise conditions under which mean–variance optimization is truly equivalent to
expected utility maximization were only recently clarified by Benveniste et al. (2024). This dis-
tinction is central in our context, because a von Neumann–Morgenstern rational investor aims
to maximize E[u(wT)], whereas the reward signal in Equation 11 takes a mean–variance form.
Under the MVE condition, these objectives are, in fact, equivalent. Specifically, there exists
some constant

	 k > 0,� (5)

that depends on initial wealth w0 and the investor’s utility function, such that maximizing

	 E[u(wT)]� (6)

is equivalent to maximizing

	 − κ1[] [].
2T TE w w � (7)

In the following, we focus on

	 { }κ−E maximize [] [] .
2T Tw w � (8)

The first example of a reward signal appropriate for mean–variance utility in the context of RL
was provided by Ritter (2017), which we now describe (see also Ritter 2018). Suppose we could
invent some definition of reward (Rt) such that

	
=

κ− ≈ ∑
1

[] [] .
2

T

T T �
t

E w V w R � (9)

Then, the optimization problem (Equation 8) looks like the kind of “cumulative reward over time”
problem that is typical in RL. RL searches for policies that maximize

	 E[Gt] = E[Rt+1 + gRt+2 + g2Rt+3 + …],� (10)

which by Equation 9 would then maximize expected utility as long as g ≈ 1.

We consider the reward function proposed by Ritter (2017):

	 ()2
,ˆ:

2t t tw � wκ= δ − δ − µ � (11)

where µ̂ is an estimate of a parameter representing the mean wealth increment over one
period, (m:= E[dwt]). Then, averaging over T periods yields

	 ()2

1 1 1

[] []

1 1 1 ˆ ,
2

t t

T T T

t t t
t t t

w w

w � w
T T T= = =

→ δ → δ

κ= δ − δ − µ∑ ∑ ∑
 

E 

� (12)

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    117

where for large T, the first term approaches the sample mean and the second approaches
the sample variance of the wealth increments. Thus, with the reward function (Equation 11),
maximizing cumulative reward implies maximizing the mean–variance form of expected utility.

State Variables for Trading Problems
The state variable (st) is a data structure that, simply put, should contain everything the agent
needs to make an informed trading decision and nothing else. Variables that are natural
candidates for inclusion in the state are

	● the current position or holding in the asset,

	● the values of any signals that are believed to be predictive,

	● the current state of the market, including current price and any relevant microstructure/limit
order book details, and

	● if the portfolio includes contracts with expirations, such as futures or options, the time
remaining until expiry.

In trading problems, the most natural choice for an action is the number of shares to trade, dnt.
This choice identifies the action space (A ⊂ Z). When market microstructure effects are signif-
icant, the action space may need to be expanded. For example, the agent could decide which
execution algorithm to use, choose between crossing the spread or submitting a passive order,
or set the target participation rate. If one of the assets is an option, the agent may also have the
ability to take additional actions, such as early exercise.

Trading Examples
In this section, we present two simple examples—mean-reversion trading and option hedging—
that highlight key ideas and challenges in applying RL in trading.

Mean Reversion

We assume there exists a tradable asset with a strictly positive price process pt > 0. This “asset”
could be a portfolio of other assets, such as an exchange-traded fund or a hedged relative value
trade. Further suppose that there exists an “equilibrium price” pe such that xt = log(pt/pe) has
dynamics

	 dxt = −lxt + sxt,� (13)

where xt ~ N(0,1) and xt,xs are independent when t ≠ s. This means that pt tends to revert to its
long-run equilibrium level, pe, with mean-reversion rate l.

These assumptions describe a scenario that is close to an arbitrage: Positions established far
from equilibrium have a very small probability of loss and highly asymmetric gain/loss profiles.
Initially, we do not allow the agent to know anything about the dynamics. That is, the agent
does not know l, s, or even that some dynamics of Equation 13 are valid. The agent also does
not know there are trading costs. We impose a spread cost of one tick per trade. If the bid–offer

AI in Asset Management: Tools, Applications, and Frontiers

118    CFA Institute Research Foundation

spread were equal to two ticks, then this proportional cost would correspond to the slippage
incurred by an aggressive fill that crosses the spread to execute. Hence,

	 SpreadCost(dn) = TickSize · |dn|.� (14)

Additionally, we assume there is a temporary price impact with a linear functional form: Each
round lot traded is assumed to move the price one tick, hence leading to a dollar cost

	 dnt × TickSize/LotSize� (15)

per share traded, for a total dollar cost for all shares

	 ImpactCost(dn) = (dn)2 × TickSize/LotSize.� (16)

Together, the total trading cost is given by

	 Cost(dn) = Multiplier × [SpreadCost(dn) + ImpactCost(dn)].� (17)

This functional form matches the t-cost assumptions of Almgren and Chriss (1999). In fact,
the Almgren–Chriss model of optimal execution can be learned by an RL agent, similar to the
Ornstein–Uhlenbeck trading model discussed here.

The state variable at time t,

	 st = (pt,nt–1),� (18)

consists of the current asset price, pt, and the agent’s position in shares, nt–1, at the start
of the period.

As a proof of concept and in the spirit of exhausting the simplest method first, Ritter (2017)
trained a tabular Q-learner with ntrain = 107 training steps and then evaluated the system on
5,000 new samples of the stochastic process; see Exhibit 1.

These results look encouraging. We simulated a simple dynamic wherein we know there is an
arbitrage, analogous to a game where it is actually possible to win. The machine then learns
to play this game and develops a profitable strategy. How well did the agent really learn? To
find the answer, we examine a cross-section of its learned action-value function q̂, a diagnostic
that reveals not only whether the agent profits but also how it chooses actions across different
states. This deeper analysis helps us move beyond performance to evaluate the quality and
reliability of the learned policy (see Exhibit 2).

The main weakness of the tabular method is that it estimates each element

	 ˆ(,)q s a � (19)

in isolation, without any smoothing across neighboring states or any inherent continuity.
In this example, the optimal action choice exhibits a natural monotonicity, which we now
describe intuitively.

If the current holding is h = 0 and for some price p < pe the optimal action is to buy 100 shares,
then for any lower price ′ <p p, the optimal action should be to buy at least 100 shares. As
Exhibit 2 illustrates, however, for large prices, the tabular value function often oscillates
between different decisions, violating this monotonicity. This behavior reflects estimation

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    119

error and incomplete convergence, even after millions of iterations. The tabular value function
also tends to collapse to a trivial form in the far-left tail because those states are rarely visited
during training.

All these issues stem from the same fundamental limitation: the use of a finite, tabular state
space. Methods that rely on discretizing the state space inevitably break down as dimension-
ality increases. For example, if the state vector included 10 variables, each taking 100 possible
values, the number of parameters to estimate would reach into the billions. The solution to
this curse of dimensionality is to move beyond tabular methods and adopt continuous state
spaces with function approximation in RL. In the next section, we illustrate this approach with
a concrete example.

Option Hedging with Transaction Costs

We now consider another problem of interest to traders: hedging an option position. For clarity,
we focus on the simplest possible case—a European call option with strike K and expiry T on
a non-dividend-paying stock. We set the strike and maturity as exogenous constants and, for

Exhibit 1. Tabular Q-Learner with 107 Training Steps, Evaluated
on 5,000 New Samples

0e+00

1e+06

2e+06

3e+06

0 1,000 2,000 3,000 4,000 5,000
Time Periods

P/
L

Simulated Net P/L over 5,000 Out-of-Sample Periods

Notes: This exhibit uses simulated data. P/L stands for profit/loss.

AI in Asset Management: Tools, Applications, and Frontiers

120    CFA Institute Research Foundation

simplicity, assume a risk-free rate of zero. We train the agent to hedge this specific option with
its given strike and maturity, rather than teaching it to hedge options with arbitrary parameters.

To hedge a European option, the state must at least contain the current price, St, of the
underlying; the time remaining to expiry,

	 t := T − t > 0;� (20)

and our current position of n shares in the underlier. The state is thus naturally an element of

	 += × = τ > τ > ∈   2: {(, ,)| 0, 0, }.S n � n � (21)

We emphasize that the state does not need to contain the option Greeks, because these quan-
tities are nonlinear functions of the state variables already available to the agent. We expect
agents to learn such nonlinear functions on their own as needed. This approach has the advan-
tage of not requiring any model-based calculations. First, we consider a “frictionless” world
(i.e., without trading costs) and ask whether it is possible for a machine to learn what we teach

Exhibit 2. Value Function p → q̂ [(0, p), a], Where q̂ Is Estimated
by the Tabular Method

−4,000

−2,000

0

2,000

4,000

0 25 50 75 100
Price

q

Action
−100 −200 0 100 200

Tabular Q-Learning Value Function
ˆ�

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    121

students in their first semester of business school: the dynamic replicating portfolio strategy.
Unlike our students, the machine can learn only by observing and interacting with the environ-
ment, without any explicit instruction.

The RL agent is initially at a disadvantage. Recall that it does not know any of the following
pertinent pieces of information:

	● The strike price, K

	● The fact that the stock price process is a geometric Brownian motion

	● The volatility of the price process

	● The Black–Scholes–Merton formula

	● The payoff function, (S − K)+, at maturity

	● Any of the Greeks

It must infer the relevant information from the state variables, insofar as it affects the value
function, by interacting with the environment. We present the results in Exhibit 3. Notably, the
cumulative stock and option P&L largely offset each other, resulting in a total P&L with relatively

Exhibit 3. Out-of-Sample Simulation of a Trained Agent

−200

−100

0

100

200

0 10 20 30 40 50
Timestep (D*T)

V
al

ue
 (d

ol
la

rs
 o

r s
ha

re
s)

Delta.hedge.shares Option.pnl Stock.pnl Stock.pos.shares Total.pnl

Note: We depict cumulative stock, option, and total P&L; the RL agent’s position in shares (Stock.pos.shares);
and −100 · ∆ (Delta.hedge.shares).

AI in Asset Management: Tools, Applications, and Frontiers

122    CFA Institute Research Foundation

low variance. We also see that the RL agent’s position closely tracks the delta position, despite
having no direct access to it. For a more detailed discussion, see Kolm and Ritter (2019).

Policy Gradient Methods
When working in continuous state spaces, policy gradient methods frequently outperform
value-based approaches. Du, Jin, Kolm, Ritter, Wang, and Zhang (2020) were the first to apply
proximal policy optimization (PPO) to the problem of option hedging with transaction costs.
The authors developed models that replicate options across a wide range of strikes while incor-
porating discrete trading, round lots, and nonlinear transaction costs. These models use deep
RL techniques—including deep Q-learning and PPO—and are built to interface easily with any
option pricing and simulation library, enabling users to train them on arbitrary option portfo-
lios without further modification. Our empirical studies demonstrate that deep RL models can
match or surpass traditional delta hedging, with PPO delivering superior results in terms of
profit and loss, training speed, and data efficiency; see Exhibit 4.

Note that policy gradient methods, including PPO and asynchronous actor-critic (A2C), can
be applied to the mean-reversion trading model discussed earlier and, in practice, yield signifi-
cantly better results than the simple tabular Q-learning approach used by Ritter (2017).

Exhibit 4. Average Reward vs. GPU Seconds for the DQN and PPO
Agents in the One and Five Strike Scenarios

GPU Seconds

R
ew

ar
d

−200

−400

−600

−800

−1,200

−1,000

0

−200

−400

−600

−800

0

102

GPU Seconds

DQN PPO

101 102103 104

R
ew

ar
d

One Strike Five Strike

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation    123

Computational Implementations
The state of the art for computational AI is evolving at an extraordinary pace. Nevertheless,
we believe that providing readers with a short, self-contained program that implements the
mean-reversion example we showed will contribute to practical understanding and further
progress in this area.

The code for this guide was developed with the goal of prioritizing simplicity, brevity, and repro-
ducibility, using only open-source frameworks. Computational efficiency was intentionally not
the aim, in the spirit of Knuth’s well-known advice that premature optimization is the root of all
(programming) evil.

For our implementation, we chose Stable Baselines 3 (SB3), a set of reliable, well-tested, and
standardized RL algorithms built on PyTorch. SB3 offers a clean, modular codebase and a con-
sistent API for training, evaluating, and deploying RL agents. It is compatible with gymnasium
environments. These features make SB3 an ideal computational engine for our examples.

For clarity, our code sample consists of just two short files: reversion.py defines the custom
environment for the mean-reversion trading problem described previously, and main.py is a
main script that orchestrates the training and performance evaluation. The primary outputs of
the main script are a set of image files that summarize the learning curve, the behavior of the
trained agent, and the key performance metrics, such as P/L and the Sharpe ratio. The trained
model is also saved as a file that can be reloaded for later use. Setting the Boolean variable
discrete to true switches the model to a discrete action space; by default, the model operates
with a continuous action space.

In summary, machines can identify arbitrage opportunities in data when such opportunities
exist and can learn to optimize over long horizons in the presence of transaction costs.
Despite these advances, the field of RL in finance remains in its early stages, and we are still
far from a fully autonomous “Skynet” for trading. In practice, working in continuous state
spaces is most effective because most optimal value functions in finance are continuous—and
often monotonic—functions of the state, with properties grounded in economic intuition.
Many optimal value functions are smooth or piecewise smooth, as seen in such classic prob-
lems as the linear-quadratic regulator. These same RL methods can be applied to derivative
hedging in illiquid markets, where trading costs play a crucial role. RL agents can learn to
price and hedge derivatives in environments where perfect replication is either impossible
or prohibitively expensive.

Conclusion and Outlook
Reinforcement learning and inverse reinforcement learning mark a paradigm shift in quantita-
tive finance, transitioning from static predictive models to dynamic, adaptive decision-making
systems. RL excels in optimizing sequential decisions under uncertainty, making it ideal for such
tasks as asset allocation, trade execution, and risk management. IRL, although less mature,
enables the inference of preferences or objectives from observed behaviors, offering novel
insights into individual trader strategies or market dynamics.

AI in Asset Management: Tools, Applications, and Frontiers

124    CFA Institute Research Foundation

For practitioners aiming to adopt these technologies, a disciplined and strategic approach
is essential. The path to real-world deployment is complex, but the benefits—improved per-
formance and deeper market understanding—are significant. We provide the following key
recommendations:

	● Target well-defined problems: Choose applications with clearly defined states, actions,
and rewards to ensure effective RL implementation. Identify problems aligned with your
specific objectives, where the decision-making process can be modeled and optimized
systematically.

	● Integrate risk management early: Incorporate risk considerations directly into the reward
function, using risk-averse or distributional RL frameworks. Doing so ensures alignment
with the desired risk–return profile, avoiding the pitfalls of retrofitting risk controls.

	● Prioritize robust simulation: Success hinges on high-quality data and realistic simulation
environments. Rigorous backtesting, out-of-sample validation, and stress testing across
diverse market scenarios are critical before deployment.

	● Leverage hybrid intelligence: Combine RL and IRL with human expertise for optimal results.
Use IRL to codify successful human strategies and RL to refine them, creating systems that
augment human decision making while addressing ethical considerations.

	● Address practical constraints: Design frameworks to meet computational, latency, and reg-
ulatory requirements. Interpretability is essential in regulated environments and should be a
core design principle.

The future of quantitative finance lies in adaptive, real-time learning systems. RL and IRL pro-
vide the theoretical and practical tools to realize this vision. Despite challenges, their ability to
enhance performance and uncover new market insights makes them critical for practitioners
to master. As computational power grows and algorithms advance, RL and IRL are poised to
become indispensable components of the quantitative finance toolkit, driving widespread
adoption across the industry.

References
Almgren, Robert, and Neil Chriss. 1999. “Value under Liquidation.” Risk (December): 61–63.

Benveniste, Jerome, Petter N. Kolm, and Gordon Ritter. 2024. “Untangling Universality
and Dispelling Myths in Mean–Variance Optimization.” Journal of Portfolio Management
50 (8): 90–116. doi:10.3905/jpm.2024.50.8.090.

Black, Fischer, and Myron Scholes. 1973. “The Pricing of Options and Corporate Liabilities.”
Journal of Political Economy 81 (3): 637–54. doi:10.1086/260062.

Brown, Daniel S., Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. 2019. “Extrapolating
beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations.”
In International Conference on Machine Learning, 783–792. doi:10.48550/arXiv.1904.06387.

Buehler, Hans, Lukas Gonon, Josef Teichmann, and Ben Wood. 2019. “Deep Hedging.”
Quantitative Finance 19 (8): 1271–91. doi:10.1080/14697688.2019.1571683.

https://doi.org/10.3905/jpm.2024.50.8.090
https://doi.org/10.1086/260062
https://doi.org/10.48550/arXiv.1904.06387
https://doi.org/10.1080/14697688.2019.1571683

Reinforcement Learning and Inverse Reinforcement Learning

CFA Institute Research Foundation 

Chamberlain, Gary. 1983. “A Characterization of the Distributions That Imply
Mean–Variance Utility Functions.” Journal of Economic Theory 29 (1): 185–201.
doi:10.1016/0022-0531(83)90129-1.

Dixon, Matthew Francis, and Igor Halperin. 2020. “G-Learner and GIRL: Goal Based
Wealth Management with Reinforcement Learning.” Working paper (25 February).
doi:10.2139/ssrn.3543852.

Dixon, Matthew F., Igor Halperin, and Paul Bilokon. 2020. Machine Learning in Finance: From
Theory to Practice. Cham, Switzerland: Springer. doi:10.1007/978-3-030-41068-1.

Du, Jiayi, Muyang Jin, Petter N. Kolm, Gordon Ritter, Yixuan Wang, and Bofei Zhang. 2020.
“Deep Reinforcement Learning for Option Replication and Hedging.” Journal of Financial Data
Science 2 (4): 44–57. doi:10.3905/jfds.2020.1.045.

Ernst, Damien, Pierre Geurts, and Louis Wehenkel. 2005. “Tree-Based Batch Mode
Reinforcement Learning.” Journal of Machine Learning Research 6 (18): 503–56.

Finn, Chelsea, Paul Christiano, Pieter Abbeel, and Sergey Levine. 2016. “A Connection Between
Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models.”
Working paper (25 November). doi:10.48550/arXiv.1611.03852.

Halperin, Igor. 2020. “QLBS: Q-Learner in the Black–Scholes(–Merton) Worlds.” Journal of
Derivatives 28 (1): 99–122. doi:10.3905/jod.2020.1.108.

Halperin, Igor. 2024. “Distributional Offline Continuous-Time Reinforcement Learning with
Neural Physics-Informed PDEs (SciPhy RL for DOCTR-L).” Neural Computing & Applications
36: 4643–59. doi:10.1007/s00521-023-09300-7.

Halperin, Igor, Jiayo Liu, and Xiao Zhang. 2022. “Asset Allocation with Inverse
Reinforcement Learning.” Risk.net (30 November). www.risk.net/cutting-edge/7955333/
asset-allocation-with-inverse-reinforcement-learning.

Ho, Jonathan, and Stefano Ermon. 2016. “Generative Adversarial Imitation Learning.”
In Advances in Neural Information Processing Systems 29. doi:10.48550/arXiv.1606.03476.

Kolm, Petter N., and Gordon Ritter. 2019. “Dynamic Replication and Hedging: A Reinforcement
Learning Approach.” Journal of Financial Data Science 1 (1): 159–71. doi:10.3905/jfds.2019.1.1.159.

Levine, Sergey, Zoran Popović, and Vladlen Koltun. 2011. “Nonlinear Inverse Reinforcement
Learning with Gaussian Processes.” In NIPS’11: Proceedings of the 25th International
Conference on Neural Information Processing Systems, 19–27. https://dl.acm.org/doi/
abs/10.5555/2986459.2986462.

Li, Yang, Zhi Chen, and Steve Yang. 2025. “FlowHFT: Flow Policy Induced Optimal
High-Frequency Trading under Diverse Market Conditions.” Working paper (22 May).
doi:10.48550/arXiv.2505.05784.

Markowitz, Harry. 1952. “Portfolio Selection.” Journal of Finance 7 (1): 77–91.

Merton, Robert C. 1969. “Lifetime Portfolio Selection under Uncertainty: The Continuous-Time
Case.” Review of Economics and Statistics 51 (3): 247–57. doi:10.2307/1926560.

125

https://doi.org/10.1016/0022-0531(83)90129-1
https://doi.org/10.2139/ssrn.3543852
https://doi.org/10.1007/978-3-030-41068-1
https://doi.org/10.3905/jfds.2020.1.045
https://doi.org/10.48550/arXiv.1611.03852
https://doi.org/10.3905/jod.2020.1.108
https://doi.org/10.1007/s00521-023-09300-7
https://www.risk.net/cutting-edge/7955333/asset-allocation-with-inverse-reinforcement-learning
https://www.risk.net/cutting-edge/7955333/asset-allocation-with-inverse-reinforcement-learning
https://doi.org/10.48550/arXiv.1606.03476
https://doi.org/10.3905/jfds.2019.1.1.159
https://dl.acm.org/doi/abs/10.5555/2986459.2986462
https://dl.acm.org/doi/abs/10.5555/2986459.2986462
https://doi.org/10.48550/arXiv.2505.05784
https://doi.org/10.2307/1926560

AI in Asset Management: Tools, Applications, and Frontiers

126    CFA Institute Research Foundation

Merton, Robert C. 1971. “Optimum Consumption and Portfolio Rules in a Continuous-Time
Model.” Journal of Economic Theory 3 (4): 373–413. doi:10.1016/0022-0531(71)90038-X.

Merton, Robert C. 1974. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.”
Journal of Finance 29 (2): 449–70. doi:10.2307/2978814.

Ng, Andrew Y., Daishi Harada, and Stuart J. Russell. 1999. “Policy Invariance under Reward
Transformations: Theory and Application to Reward Shaping.” In ICML ’99: Proceedings of the
Sixteenth International Conference on Machine Learning, 278–87.

Noguer i Alonso, Miquel, and Sonam Srivastava. 2020. “Deep Reinforcement Learning for Asset
Allocation in US Equities.” Working paper (9 October). doi:10.2139/ssrn.3711487.

Pricope, Tidor-Vlad. 2021. “Deep Reinforcement Learning in Quantitative Algorithmic Trading:
A Review.” Working paper (31 May). doi:10.48550/arXiv.2106.00123.

Rafailov, Rafael, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. 2023. “Direct Preference Optimization: Your Language Model Is Secretly a Reward
Model.” Working paper (13 December). doi:10.48550/arXiv.2305.18290.

Ritter, Gordon. 2017. “Machine Learning for Trading.” Working paper (8 August). doi:10.2139/
ssrn.3015609.

Ritter, Gordon. 2018. “Reinforcement Learning in Finance.” In Big Data and Machine Learning in
Quantitative Investment, edited by Tony Guida, 225–250. Hoboken, NJ: John Wiley & Sons.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, et al. 2017. “Mastering the Game of Go without Human Knowledge.” Nature
550 (7676): 354–59. doi:10.1038/nature24270.

Spooner, Thomas, John Fearnley, Rahul Savani, and Andreas Koukorinis. 2018. “Market Making
via Reinforcement Learning.” Working paper (11 April). doi:10.48550/arXiv.1804.04216.

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA: MIT Press.

von Neumann, John, and Oskar Morgenstern. 1944. Theory of Games and Economic Behavior.
Princeton, NJ: Princeton University Press.

Yang, Steve Y., Qifeng Qiao, Peter A. Beling, William T. Scherer, and Andrei A. Kirilenko. 2015.
“Gaussian Process-Based Algorithmic Trading Strategy Identification.” Quantitative Finance
15 (10): 1683–703. doi:10.1080/14697688.2015.1011684.

Yang, Steve Y., Yangyang Yu, and Saud Almahdi. 2018. “An Investor Sentiment Reward-Based
Trading System Using Gaussian Inverse Reinforcement Learning Algorithm.” Expert Systems
with Applications 114 (30 December): 388–401. doi:10.1016/j.eswa.2018.07.056.

Zeng, J.-C., Z. Zhang, Y. Yang, and J. Chen. 2024. “Group Preference Optimization:
A Multi-Agent Formalization of RLHF for Scenarios with Multiple Stakeholders.”

Ziebart, Brian D., Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. 2008. “Maximum Entropy
Inverse Reinforcement Learning.” In Twenty-Third AAAI Conference on Artificial Intelligence,
1433–38.

https://doi.org/10.1016/0022-0531(71)90038-X
https://doi.org/10.2307/2978814
https://doi.org/10.2139/ssrn.3711487
https://doi.org/10.48550/arXiv.2106.00123
https://doi.org/10.48550/arXiv.2305.18290
http://dx.doi.org/10.2139/ssrn.3015609
http://dx.doi.org/10.2139/ssrn.3015609
https://doi.org/10.1038/nature24270
https://doi.org/10.48550/arXiv.1804.04216
https://doi.org/10.1080/14697688.2015.1011684
https://doi.org/10.1016/j.eswa.2018.07.056

