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Introduction
Deep learning refers to a type of machine learning algorithm that uses multiple layers to 
progressively extract higher-level features from input data. For example, in image process-
ing, lower layers may identify edges, while higher layers may identify more sophisticated 
concepts, such as digits, letters, or faces. The first major business application of deep learning 
was to check processing in the early 2000s. The modern deep learning revolution builds on 
connectionism—an approach in cognitive science that seeks to explain mental phenomena 
using artificial neural networks. Connectionism took its rise from the work of Warren McCulloch, 
Walter Pitts, Donald Olding Hebb, and Karl Lashley. Modern neural networks can be thought of 
as generalizations of the “perceptron” introduced by Frank Rosenblatt in 1957. In this chapter, 
we explore the foundations of deep learning and its applications to finance and investing.

Background: Deciphering the Human Brain
Neuron architecture, in various degrees, forms the basis of deep learning algorithms. 
The detailed study of neurons commenced in the early 1900s, when anatomists began using 
microscopes and new staining methods to study the microscopic parts of the brain. It was 
around this time that neuroanatomists Santiago Ramón y Cajal and Camillo Golgi discovered 
“that nerve cells (neurons) are the building blocks of the brain and showing there are many 
different types” of neurons (Jones 1999).

Neuroscience progressed significantly through discoveries about how neurons interact. 
Researchers eventually identified the synapse as the point of connection where nerve cells 
communicate, leading to major insights into the workings of the central nervous system. 
Later work revealed that neurons transmit signals through both electrical impulses and 
chemical processes. The understanding of how neural activity strengthens connections 
between cells introduced the concept often summarized as “neurons that fire together 
become more strongly linked,” forming the basis for associative or Hebbian learning, 
where repeated activation strengthens connections between neurons involved in the 
same process.

Around the same period, Alan Turing developed the idea of a mechanical model of computation, 
now known as the Turing machine. His work provided a mathematical framework for defining 
what it means for a task or function to be computationally solvable. This led to the principle 
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that any process considered effectively computable can be represented by a Turing machine, 
forming a cornerstone of modern computer science. In 1943, McCulloch and Pitts published 
“A Logical Calculus of the Ideas Immanent to Nervous Activity,” which described a mathematical 
model of the nervous system as a network of simple logical elements, known as artificial 
neurons, or later as McCulloch–Pitts neurons. These neurons take inputs, calculate a weighted 
sum, and produce an output signal based on a threshold function.

In 1957, Frank Rosenblatt at the Cornell Aeronautical Laboratory simulated a simple artificial 
neuron called a perceptron on an IBM 704. Later, he obtained funding from the Information 
Systems Branch of the United States Office of Naval Research and the Rome Air Development 
Center to build a custom-made computer, the Mark I Perceptron. It was first publicly demon-
strated on 23 June 1960. The machine was part of a previously secret four-year NPIC 
(US National Photographic Interpretation Center) project that ran from 1963 through 1966, with 
the goal of developing the Mark I into a useful tool for photo-interpreters. Indeed, the Mark I 
was a fairly powerful pattern learning and recognition device for its time and was able to reliably 
learn to classify visual patterns into groups on the basis of certain geometric similarities and 
differences, utilizing properties such as position in the retinal field of view, geometric form, 
occurrence frequency, and size.

Perceptrons and feed forward neural networks (FFNNs) feed information from the front to 
the back (respectively, input and output). A common characteristic of FFNNs is that in them, 
two adjacent layers are “fully connected,” which means that every neuron from one layer is 
connected to every neuron from another layer. FFNNs are typically trained through backpropa-
gation, giving the network paired datasets of “what goes in” and “what we want to have coming 
out.” This is called supervised learning, as opposed to unsupervised learning, where we only 
give it input and let the network fill in the blanks. The error being backpropagated is often some 
variation of the difference between the input and the output (such as mean squared error, 
or MSE) or just the linear difference. Given that the network has enough hidden neurons, it can 
theoretically always model the relationship between the input and output. Practically, their 
use is a lot more limited, but they are popularly combined with other networks to form new 
networks. In Exhibit 1, we show a perceptron, and in Exhibit 2, we show an FFFN. (Note that 
all exhibits in this chapter were created by the authors).

Extreme learning machines (ELMs) (Huang 2015) are similar to FFNNs but have random 
connections. They have many similarities to liquid state machines and echo state networks 
but are neither recurrent nor spiking and do not use backpropagation. Instead of backpropa-
gation, ELMs start with random weights and train the weights in a single step according to the 
least-squares fit (lowest error across all functions). This results in a considerably less expressive 
network but one that is also significantly faster than backpropagation.

Deep residual networks (DRNs) (He, Zhang, Ren, and Sun 2016) are very deep FFNNs with 
additional connections passing input from one layer to one or more further layers.
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Exhibit 1. Perceptron Architecture
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Now, let us implement a perceptron in Python. Going through the steps manually will give us a 
good idea about how neural networks solve problems. First, we generate some data:

X = []

for x1 in [0., 1.]:

for x2 in [0., 1.]:

X. append ([ x1 , x2 ])

y = []

for x in X:

y. append ( x[0] and x [1])

It is more convenient to work with NumPy arrays than native Python lists, so we convert 
accordingly:

X = np. array ( X) y = np. array ( y)

We initialize the weights and bias to (pseudo)random values sampled from the standard normal 
distribution:

weights = np. random . normal( size =(2 , 1)) bias = np. random . normal ()
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The function “predict” will predict y given X as well as fixed weights and bias:

def predict(X, weights, bias):

  y_pred = []

  for x in X:

    x = x.reshape(-1, 1)

    v = weights.T @ x + bias

    y_pred.append(0. if v < 0. else 1.)

  return np.array(y_pred)

The function fit updates the weights and bias using gradient descent with γ set to the 
learning_rate:

def fit(X, y, weights, bias, learning_rate=.01, epochs=1):

  for i in range(epochs):

    for x, target in zip(X, y):

      x = x.reshape(-1, 1)

      v = weights.T @ x + bias

      y_pred = 0. if v < 0. else 1.

      if target != y_pred:

        bias -= learning_rate * (y_pred - target)

        weights -= learning_rate * (y_pred - target) * x

  return weights, bias
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The epoch parameter represents the number of complete cycles (epochs) through the entire 
training dataset and indicates the number of passes that the machine learning algorithm must 
complete during that training. We proceed as follows:

weights, bias = fit(X, y, weights, bias, epochs=100)

y_pred = predict(X, weights, bias)

y_pred

# array([0., 0., 0., 1.])

y

# array([0., 0., 0., 1.])

weights, bias

# (array([[0.12671415],

#    [0.0117357]]),

# -0.13231146189930793)

These weights and bias have been found by the gradient descent algorithm. Our procedural 
code is a bit haphazard. It would be cleaner to use the object-oriented approach and encapsu-
late the notion of a perceptron in a dedicated class:

class Perceptron(object):

  def __init__(self, dim):

    self.dim = dim

    self.weights = np.random.normal(size=(self.dim, 1))

    self.bias = np.random.normal()
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  def fit(self, X, y, learning_rate=.01, epochs=1):

    for i in range(epochs):

      for x, target in zip(X, y):

        x = x.reshape(-1, 1)

        v = self.weights.T @ x + self.bias

        y_pred = 0. if v < 0. else 1.

        if target != y_pred:

          self.bias -= learning_rate * (y_pred - target)

          self.weights -= learning_rate * (y_pred - target) * x

  def predict(self, X):

    y_pred = []

    for x in X:

      x = x.reshape(-1, 1)

      v = self.weights.T @ x + self.bias

      y_pred.append(0. if v < 0. else 1.)

    return np.array(y_pred)

The code we have provided is for pedagogical purposes; as such, a class already exists in 
scikit-learn, the popular free software machine learning library for Python. Scikit-learn grew out 
of a June 2007 Google Summer of Code project by David Cournapeau and now features various 
classification, regression, and clustering algorithms, including support vector machines, random 
forests, gradient boosting, k-means, and DB-SCAN. Scikit-learn is designed to interoperate with 
the Python numerical and scientific libraries NumPy and SciPy.

Although individual perceptrons turned out to be of limited practical use, networks of percep-
trons (or feed forward neural networks, FFNNs) were soon recognized as powerful universal 
function approximators. Their calibration in practice was impeded by computational restric-
tions, which were overcome algorithmically using the backpropagation algorithm (Rumelhart, 
Hinton, and Williams 1986), a major computational advance, and improvements in hardware, 
such as the emergence of GPUs. The progress was not uniform, and this academic area 
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went through several periods of funding cuts, which are sometimes referred to as AI winters 
(Harguess and Ward 2022).

More Sophisticated Deep Learning Frameworks
In this section, we describe more sophisticated deep learning frameworks, several of which 
have become popular in finance. We begin with recurrent neural networks (RNNs) (Rumelhart 
et al. 1986), which are FFNNs that are not stateless—rather, they have connections between 
passes, connections through time. They are popular in financial applications. Neurons take 
input information not only from previous layers but also from themselves on previous passes. 
Thus, the order in which the input is fed into and trained in the network matters. One major 
challenge with RNNs is the vanishing gradient problem, where, depending on the activation 
functions used, information rapidly gets lost over time. This is similar to how some FFNNs lose 
information in depth. Nevertheless, RNNs are a good choice for many time series applications. 
We show an RNN in Exhibit 3.

Echo state networks (Jaeger and Haas 2004) are another type of (recurrent) network. They set 
themselves apart by having random connections between neurons (i.e., they are not organized 
into neat sets of layers). Instead of feeding input and backpropagating the error, they feed 
the input, update the neurons, and observe the output over time. The input and output layers 
have a somewhat unconventional role as the input layer is used to prepare the network and the 
output layer acts as an observer of the activation patterns that develop over time. During the 
training period, only the connections between the observer and the hidden units are changed.

Exhibit 3. Recurrent Neural Network Architecture Through Time
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Long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997) networks try to combat 
the vanishing/exploding gradient problem by introducing gates and an explicitly defined 
memory cell. These are inspired mostly by circuitry, not so much biology. Each neuron has a 
memory cell and three gates: input, output, and forget. The function of these gates is to safe-
guard the information by stopping or allowing the flow of it. The input gate determines how 
much of the information from the previous layer is stored in the cell. The output layer takes the 
job on the other end and determines how much of the next layer gets to know about the state 
of this cell. The forget gate, as the name suggests, enables the network to forget. LSTMs have 
been shown to be able to learn complex sequences, such as writing prose or composing music. 
We show an LSTM in Exhibit 4.

Neural Turing machines (NTMs) (Graves, Wayne, and Danihelka 2014) can be understood 
as an abstraction of LSTMs and an attempt to undo the black-box nature of neural networks 
(and provide insight into what is going on in there). NTMs augment the traditional neural 
network architecture with an external memory bank, allowing it to perform tasks that require 
both computation and flexible memory manipulation, such as copying, sorting, and associative 
recall. The architecture consists of three main components: a controller, which processes inputs 
and determines how to interact with memory; a memory matrix, which serves as the external 
storage for information; and read/write heads, which focus attention on specific memory 
locations for reading or writing data.

Exhibit 4. LSTM Architecture
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The controller, often implemented as a recurrent neural network, receives both the current 
input and the previous memory readout, enabling it to make informed decisions about memory 
access. The read and write heads use attention mechanisms to determine how much focus 
to place on each memory location, allowing the NTM to interact with memory in a smooth, 
differentiable way. This differentiability means the entire system can be trained end to end 
using gradient descent, just like standard neural networks. The result is a model that combines 
the pattern recognition strengths of neural networks with the algorithmic flexibility of a Turing 
machine, making NTMs particularly suited for tasks that require reasoning over sequences and 
manipulating stored data in complex ways. Differentiable neural computers (Graves, Wayne, 
Reynolds, Harley, Danihelka, Grabska-Barwińska, Colmenarejo, Grefenstette, and Ramalho 
2016) are enhanced neural Turing machines with scalable memory, inspired by how memories 
are stored by the human hippocampus. We show the architecture of an NTM in Exhibit 5.

Gated recurrent units (GRUs) (Cho, van Merrienboer, Bahdanau, and Bengio 2014) are a varia-
tion on LSTMs. They contain one less gate and are wired slightly differently: instead of an input, 
output, and forget gate, they have an update gate. The update gate determines both how much 
information to keep from the last state and how much information to let in from the previous 
layer. The reset gate functions much like the forget gate of an LSTM but is located at different 
points in the decision-making process. In most cases, they function similarly to LSTMs but are 
slightly faster and easier to run (albeit also slightly less expressive).

Exhibit 5. Neural Turing Machine Architecture
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Bidirectional recurrent neural networks and bidirectional long short-term memory networks 
(BNs) (Schuster and Paliwal 1997) look identical to their unidirectional counterparts. The main 
difference between them is that BNs are not just connected to the past but also connected to 
the future. This means that during training, the network fills in gaps instead of simply advancing 
information. For example, instead of advancing an image on the edge, it could fill a hole in the 
middle of an image.

Autoencoders (AEs) represent a different use of FFNNs rather than a fundamentally differ-
ent architecture. In autoencoders, we compress information. In AEs, the entire network 
resembles an hourglass, having smaller hidden layers relative to the input and output layers. 
AEs can be trained using backpropagation by feeding input and setting the error to be the 
difference between the input and what came out (Hinton and Salakhutdinov 2006). Variational 
autoencoders (VAEs) have the same architecture as AEs but are “taught” an approximated 
probability distribution of the input samples data (Kingma and Welling 2014). Denoising 
autoencoders are AEs where we feed in the input data with noise. The output of the network 
is compared with the original input without the noise, which encourages the network to learn 
broader features instead of details (Vincent, Larochelle, Bengio, and Manzagol 2008).

With sparse autoencoders (SAEs) (Makhzani and Frey 2013) we encode information in more 
space. So instead of the network converging in the middle and then expanding back to the input 
size, the middle of the network is the zone of expansion. SAEs are useful in extracting small 
features from a dataset. Instead of simply feeding back the input as in some other networks, 
we feed back the input with the addition of a sparsity driver. This sparsity driver is often a 
“threshold filter,” where only a certain error is passed back and trained; other errors will be 
“irrelevant” for that pass and set to zero. This is somewhat similar to spiking neural networks, 
where not all neurons fire all the time. Among the various types of encoders, VAEs in particular 
have become popular in finance because of their utility in anomaly detection and generating 
synthetic data. We show VAE architecture in Exhibit 6.

Generative adversarial networks (GANs) (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, 
Ozair, Courville, and Bengio 2014) are a class of generative models that use a game-theoretic 
framework to learn and generate new data that mimics the distribution of a given dataset. 
GANs consist of two neural network twins: the generator and the discriminator. The genera-
tor creates synthetic data from random noise, attempting to mimic the real data distribution. 
The discriminator distinguishes between real data (from the dataset) and fake data (produced 
by the generator). The discriminator receives either training data or generated content from 
the generator. Information regarding how well the discriminator is able to correctly predict the 
data source is then used as part of the error for the generating network. This process in essence 
creates a competitive game in which the discriminator gets better at distinguishing real data 
from generated data and the generator learns to become less predictable to the discriminator. 
GANs have become popular in finance as a means to generate synthetic data. We show the 
GAN architecture in Exhibit 7.

Liquid state machines (Maass, Natschläger, and Markram 2002) are a type of spiking neural net-
work that replace the usual sigmoid activation functions with discrete threshold mechanisms, 
where each neuron also maintains an internal state or accumulated potential. Instead of 
overwriting the neuron’s current value with the weighted sum of its neighbors, the input 
is incrementally added to the neuron’s stored energy. When this accumulated value sur-
passes a defined threshold, the neuron emits a spike, transferring energy to connected units. 
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Exhibit 6. Variational Autoencoder Architecture
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This produces a characteristic firing pattern with long periods of inactivity punctuated by 
sudden bursts of activity, behavior that is typical of spiking behaviors. A Hopfield network (HN) 
is a network in which each neuron is connected to every other neuron. Every node is input 
before training, hidden during training, and output afterward. These networks are trained by 
setting the neurons’ value to the desired pattern; then, the weights can be computed. These 
networks are often called associative memory because they converge to the most similar 
state as the input. Boltzmann machines (BMs) are similar to HNs, except that some neurons 
are marked as input neurons and others remain “hidden.” The algorithm begins by assigning 
weights randomly and learns through backpropagation, or contrastive divergence, where a 
Markov chain is used to determine the gradients between two informational gains. At the end 
of a full network update, the input neurons become output neurons. In contrast to HNs, in BMs, 
the neurons mostly have binary activation patterns.

Convolutional neural networks (CNNs) (LeCun, Bottou, Bengio, and Haffner 1998) or deep con-
volutional neural networks (DCNNs) are different from most other deep learning algorithms. 
They are primarily used for image processing but can also be applied to other types of data such 
as audio. A typical use case for CNNs is where you input network images and the network clas-
sifies the data—for example, “cat” versus “dog.” CNNs tend to start with an input “scanner” that 
is not intended to parse all training data at once. The input data are then processed through 
convolutional layers, where not all nodes are connected to all nodes. Each node only concerns 
itself with neighboring cells in close proximity (how close varies by application). Convolutional 
layers also tend to shrink as they deepen.

Aside from these convolutional layers, CNNs also frequently feature pooling layers. Pooling is a 
way to filter out details. One commonly used pooling technique is max pooling, where we take, 
for example, three pixels and pass on the pixel with the most amount of red. Real-world imple-
mentations of CNNs often attach an FFNN to the end of the algorithm to further process the 
data, a maneuver that allows for highly nonlinear abstractions.

Deconvolutional networks (DNs), also known as inverse graphics networks (IGNs), are reversed 
convolutional neural networks. For example, consider the case where we feed a network the 
word “dog” (or a binary classification input vector) and train it to produce dog-like pictures by 
comparing what it generates to real pictures of dogs. DNNs can also be combined with FFNNs 
just like regular CNNs can. When this is done, the pooling layers often found in CNNs are 
frequently replaced with analogous inverse operations, primarily interpolation and extrapolation 
with biased assumptions.

Finally, capsule networks (CapsNet) (Sabour, Frosst, and Hinton 2017) are biologically inspired 
alternatives to pooling, where neurons are connected with a vector of weights instead of just 
one weight (a scalar). Kohonen networks (Kohonen 1990), on the other hand, use competitive 
learning to classify data without supervision. In the next section, we describe some specific 
applications of deep learning to finance.

Applications in Finance
Derivatives pricing was one of the early targets of applied neural networks in finance. 
Early adopters of neural networks in option pricing include Malliaris and Salchenberger 
(1993); Hutchinson, Lo, and Poggio (1994); Yao, Li, and Tan (2000); Bennell and Sutcliffe 
(2004); and Gradojevic, Gencay, and Kukolj (2009). With the advent of deep learning 
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(Goodfellow 2016), neural networks started to become mainstream, and deep learning 
reentered quants’ collective consciousness, particularly following publication of work on deep 
learning volatility (Ferguson and Green 2018; Horvath, Muguruza, and Tomas 2021), which 
soon became mainstream.

In these articles, the authors presented neural network-based calibration methods that perform 
the calibration task within a few milliseconds for the full implied surface. These frameworks are 
applicable across a range of volatility models—including second-generation stochastic volatility 
models and the rough volatility family—and a range of derivative contracts. Neural networks are 
being used in offline approximations of complex pricing functions, which are difficult to repre-
sent or time consuming to evaluate by other means.

In some instances, finance has generated algorithmic advances, such as differential deep learn-
ing (Huge and Savine 2020). It combines automatic adjoint differentiation (Capriotti and Giles 
2024) with machine learning, where the models are trained on examples of not only inputs 
and labels but also differentials of labels with regard to inputs, yielding highly effective pricing 
and risk approximations. More recently, these approaches have been applied in a wider range 
of settings, such as stochastic volatility (Sridi and Bilokon 2023), including exotic products 
(Ma, Ventre, Tiranti, and Chen 2025).

Outside the context of derivatives pricing, deep methods have been applied for alpha gen-
eration. Kolm, Turiel, and Westray (2023) deployed deep learning to forecast high-frequency 
returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at 
the most granular level. State-of-the-art predictive accuracy was achieved by running “off-the-
shelf” artificial neural networks on stationary inputs derived from the order book. Using 
cross-sectional regressions, the authors linked an LSTM network’s forecasting performance to 
stock characteristics at the market microstructure level, suggesting “information-rich” equities 
can be predicted more accurately. The effective horizon of stock-specific forecasts was found to 
be approximately two average price changes.

Deep econometrics (Bilokon 2025) is a principled rethinking of the classical econometric 
(Ruud 2000) and time-series (Tsay 2010) analyses using deep learning techniques (Goodfellow 
2016; Dixon, Halperin, and Bilokon 2020). The focus of Bilokon (2025) is on the estimation of 
parameters in various econometric settings. Some applications focus on the rethinking of the 
Wiener–Kolmogorov filtering theory, the so-called deep stochastic filters (Horvath, Kratsios, 
Limmer, and Yang 2023; Stok, Bilokon, and Simonian 2024).

Some interesting applications have arisen out of the combination of reinforcement deep learn-
ing and reinforcement learning, a framework where agents learn through a system of rewards 
and punishments, based on their actions in specific states. Reinforcement learning (Sutton 
2020) differs from supervised learning in that the ground truth may not necessarily be known. 
Feedback is often evaluative rather than prescriptive, is often delayed, and may be sourced from 
the environment. In recent years, this subfield of machine learning/artificial intelligence gained 
public recognition when a reinforcement-learning-based system beat the human champion at 
the game of Go (Silver, Huang, Maddison, Guez, Sifre, van den Driessche, Schrittwieser, et al. 
2016). Soon after, reinforcement learning began to gain popularity in finance.

Early adopters started to use deep reinforcement learning for hedging derivative contracts, 
giving rise to deep hedging (Halperin 2017; Buehler, Gonon, Teichmann, and Wood 2019; 
Kolm and Ritter 2019a; Cao, Chen, Hull, and Poulos 2021). Reinforcement learning in this 
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application was used to derive optimal hedging strategies for derivatives in cases where trans-
action costs and other frictions are present.

Far from being a novelty, many of these algorithms have been extensively studied and evaluated 
(see, e.g., Stoiljkovic 2025). Financial applications have led to a cross-pollination of ideas, which 
has contributed new and enhanced reinforcement learning techniques, such as enhancements 
to inverse reinforcement learning (Halperin, Liu, and Zhang 2022) and distributional 
reinforcement learning (Halperin 2024). Other researchers focused on applications of reinforce-
ment learning to wealth management (e.g., Dixon, Gvozdanovic, and O’Kane 2023). This gave 
rise to G-Learner (Dixon and Halperin 2020), a reinforcement learning algorithm that uses 
explicitly defined one-step rewards, does not assume a data generation process, and is appro-
priate for use with noisy data. GIRL (Dixon and Halperin 2020) applies goal-based G-learning to 
inverse reinforcement learning (IRL) (Dixon et al. 2020), where rewards collected by the agent 
are not observed but inferred.

Others have combined ideas from the emerging subfields of reinforcement learning, such as 
multiarmed bandits, to update the now classic Markowitz–Sharpe framework (Varlashova 
and Bilokon 2025; Bilokon and Varlashova 2025). This framework arose from the rethinking of 
some of the issues relevant to finance, such as nonstationarity, in novel and nontrivial ways. 
Needless to say, the extensive work on the uses of machine learning for time-series forecasting 
(Dixon, Klabjan, and Bang 2017; Stok et al. 2024) is the foundation of many trading applications. 
Jaddu and Bilokon (2024) combined deep learning on the order books with reinforcement 
learning and backtested the resulting strategies in the presence of frictions. Zejnullahu, Moser, 
and Osterrieder (2022) explored in considerable detail the use of double deep Q-networks 
for trading purposes. Pendharkar and Cusatis (2018) explored applications of reinforcement 
learning agents to trading financial indexes. We point out that financial applications of rein-
forcement learning have been extensively reviewed by Kolm and Ritter (2019b); Charpentier, 
Élie, and Remlinger (2023); and Hambly, Xu, and Yang (2023).

Other advances in machine learning have been applied to create synthetic financial data, 
which are particularly useful in small data environments (Buehler, Horvath, Lyons, Arribas, 
and Wood 2020; Bühler, Horvath, Lyons, Arribas, and Wood 2020). Some research has focused 
on speeding up the calculations on a wider range of devices, such as field-programmable 
gate arrays (Sobakinskikh and Bilokon 2025), rather than algorithmic advances. There has 
also been cross-disciplinary work, which is difficult to classify, at the boundaries of finance, 
machine learning, and physics (Halperin and Dixon 2020). Progress has occurred in one of the 
most controversial areas of applications of machine learning and artificial intelligence to 
finance—explainability (Bussmann, Giudici, Marinelli, and Papenbrock 2021). The rise of large 
language models, such as ChatGPT (OpenAI, Achiam, Adler, Agarwal, Ahmad, Akkaya, Aleman, 
et al. 2023) and Claude are likely to further revolutionize finance.

Concluding Thoughts
The application of deep learning to finance has evolved from early neural network experiments 
in derivative pricing to sophisticated deep learning systems that now permeate virtually every 
aspect of financial markets. Financial applications of deep learning have increasingly focused 
on practical implementation challenges. Early research often ignored market microstructure 
effects, transaction costs, and regulatory constraints. Contemporary work in deep hedging, 
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order flow prediction, and portfolio optimization explicitly incorporates these real-world fric-
tions, making the resulting strategies more robust and implementable.

Several developments promise to further revolutionize finance. The emergence of large 
language models creates opportunities for natural language processing of financial docu-
ments, automated report generation, and sophisticated conversational interfaces for financial 
analysis. Quantum computing, although still in its infancy, may eventually enable the solution 
of optimization problems that are currently intractable. Meanwhile, regulatory developments 
around algorithmic transparency and explainable AI will likely shape how these technologies 
are deployed in practice.

The cross-pollination between finance and deep learning has benefited both fields. Finance has 
provided challenging real-world problems that have spurred methodological advances in such 
areas as differential machine learning and distributional reinforcement learning. Conversely, 
techniques developed in computer science have enabled financial practitioners to tackle 
previously unsolvable problems in risk management, trading, and asset allocation.

As we stand at this inflection point, with deep learning capabilities advancing at an unprece-
dented pace, the integration of artificial intelligence into financial markets appears not merely 
inevitable but already well underway. The question is no longer whether deep learning (and AI 
as a whole) will transform finance but, rather, how quickly and in what specific directions this 
transformation will proceed.
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