
72    © 2025 CFA Institute Research Foundation. All rights reserved.

DEEP LEARNING
Paul Bilokon, PhD
CEO, Thalesians Ltd.
Visiting Professor, Imperial College London

Joseph Simonian, PhD
Senior Affiliate Researcher, CFA Institute

Introduction
Deep learning refers to a type of machine learning algorithm that uses multiple layers to
progressively extract higher-level features from input data. For example, in image process-
ing, lower layers may identify edges, while higher layers may identify more sophisticated
concepts, such as digits, letters, or faces. The first major business application of deep learning
was to check processing in the early 2000s. The modern deep learning revolution builds on
connectionism—an approach in cognitive science that seeks to explain mental phenomena
using artificial neural networks. Connectionism took its rise from the work of Warren McCulloch,
Walter Pitts, Donald Olding Hebb, and Karl Lashley. Modern neural networks can be thought of
as generalizations of the “perceptron” introduced by Frank Rosenblatt in 1957. In this chapter,
we explore the foundations of deep learning and its applications to finance and investing.

Background: Deciphering the Human Brain
Neuron architecture, in various degrees, forms the basis of deep learning algorithms.
The detailed study of neurons commenced in the early 1900s, when anatomists began using
microscopes and new staining methods to study the microscopic parts of the brain. It was
around this time that neuroanatomists Santiago Ramón y Cajal and Camillo Golgi discovered
“that nerve cells (neurons) are the building blocks of the brain and showing there are many
different types” of neurons (Jones 1999).

Neuroscience progressed significantly through discoveries about how neurons interact.
Researchers eventually identified the synapse as the point of connection where nerve cells
communicate, leading to major insights into the workings of the central nervous system.
Later work revealed that neurons transmit signals through both electrical impulses and
chemical processes. The understanding of how neural activity strengthens connections
between cells introduced the concept often summarized as “neurons that fire together
become more strongly linked,” forming the basis for associative or Hebbian learning,
where repeated activation strengthens connections between neurons involved in the
same process.

Around the same period, Alan Turing developed the idea of a mechanical model of computation,
now known as the Turing machine. His work provided a mathematical framework for defining
what it means for a task or function to be computationally solvable. This led to the principle

Deep Learning

CFA Institute Research Foundation    73

that any process considered effectively computable can be represented by a Turing machine,
forming a cornerstone of modern computer science. In 1943, McCulloch and Pitts published
“A Logical Calculus of the Ideas Immanent to Nervous Activity,” which described a mathematical
model of the nervous system as a network of simple logical elements, known as artificial
neurons, or later as McCulloch–Pitts neurons. These neurons take inputs, calculate a weighted
sum, and produce an output signal based on a threshold function.

In 1957, Frank Rosenblatt at the Cornell Aeronautical Laboratory simulated a simple artificial
neuron called a perceptron on an IBM 704. Later, he obtained funding from the Information
Systems Branch of the United States Office of Naval Research and the Rome Air Development
Center to build a custom-made computer, the Mark I Perceptron. It was first publicly demon-
strated on 23 June 1960. The machine was part of a previously secret four-year NPIC
(US National Photographic Interpretation Center) project that ran from 1963 through 1966, with
the goal of developing the Mark I into a useful tool for photo-interpreters. Indeed, the Mark I
was a fairly powerful pattern learning and recognition device for its time and was able to reliably
learn to classify visual patterns into groups on the basis of certain geometric similarities and
differences, utilizing properties such as position in the retinal field of view, geometric form,
occurrence frequency, and size.

Perceptrons and feed forward neural networks (FFNNs) feed information from the front to
the back (respectively, input and output). A common characteristic of FFNNs is that in them,
two adjacent layers are “fully connected,” which means that every neuron from one layer is
connected to every neuron from another layer. FFNNs are typically trained through backpropa-
gation, giving the network paired datasets of “what goes in” and “what we want to have coming
out.” This is called supervised learning, as opposed to unsupervised learning, where we only
give it input and let the network fill in the blanks. The error being backpropagated is often some
variation of the difference between the input and the output (such as mean squared error,
or MSE) or just the linear difference. Given that the network has enough hidden neurons, it can
theoretically always model the relationship between the input and output. Practically, their
use is a lot more limited, but they are popularly combined with other networks to form new
networks. In Exhibit 1, we show a perceptron, and in Exhibit 2, we show an FFFN. (Note that
all exhibits in this chapter were created by the authors).

Extreme learning machines (ELMs) (Huang 2015) are similar to FFNNs but have random
connections. They have many similarities to liquid state machines and echo state networks
but are neither recurrent nor spiking and do not use backpropagation. Instead of backpropa-
gation, ELMs start with random weights and train the weights in a single step according to the
least-squares fit (lowest error across all functions). This results in a considerably less expressive
network but one that is also significantly faster than backpropagation.

Deep residual networks (DRNs) (He, Zhang, Ren, and Sun 2016) are very deep FFNNs with
additional connections passing input from one layer to one or more further layers.

AI in Asset Management: Tools, Applications, and Frontiers

74    CFA Institute Research Foundation

Exhibit 1. Perceptron Architecture

Feature 1 High
Importance

Medium
Importance

Low
Importance

Makes Decision
Feature 2

Feature 3

Feature 4

Real-World Example: Credit Approval
Inputs: Income, Credit Score, Debt, Employment

Output: Approve or Deny Loan

1. Receives multiple inputs
2. Weights each input by importance

3. Combines all weighted inputs
4. Makes final yes/no decision

Final
Decision

Decision
Maker

Input
1

Input
2

Input
3

Input
4

Medium
Importance

Exhibit 2. Feed Forward Neural Network Architecture
Financial Example: Credit Risk Assessment

Input: Income, Credit Score, Debt Risk Patterns Default Probability

Information flows forward through layers:

Like building understanding step by step
Input Simple patterns Complex features Final answer

Information Flow

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

Final
Decision

Finds
Patterns

Builds
Features

Raw Data

Processes Combines Decides

Deep Learning

CFA Institute Research Foundation    75

Now, let us implement a perceptron in Python. Going through the steps manually will give us a
good idea about how neural networks solve problems. First, we generate some data:

X = []

for x1 in [0., 1.]:

for x2 in [0., 1.]:

X. append ([x1 , x2])

y = []

for x in X:

y. append (x[0] and x [1])

It is more convenient to work with NumPy arrays than native Python lists, so we convert
accordingly:

X = np. array (X) y = np. array (y)

We initialize the weights and bias to (pseudo)random values sampled from the standard normal
distribution:

weights = np. random . normal(size =(2 , 1)) bias = np. random . normal ()

AI in Asset Management: Tools, Applications, and Frontiers

76    CFA Institute Research Foundation

The function “predict” will predict y given X as well as fixed weights and bias:

def predict(X, weights, bias):

  y_pred = []

  for x in X:

   x = x.reshape(-1, 1)

   v = weights.T @ x + bias

   y_pred.append(0. if v < 0. else 1.)

  return np.array(y_pred)

The function fit updates the weights and bias using gradient descent with γ set to the
learning_rate:

def fit(X, y, weights, bias, learning_rate=.01, epochs=1):

  for i in range(epochs):

   for x, target in zip(X, y):

    x = x.reshape(-1, 1)

    v = weights.T @ x + bias

    y_pred = 0. if v < 0. else 1.

    if target != y_pred:

     bias -= learning_rate * (y_pred - target)

     weights -= learning_rate * (y_pred - target) * x

  return weights, bias

Deep Learning

CFA Institute Research Foundation    77

The epoch parameter represents the number of complete cycles (epochs) through the entire
training dataset and indicates the number of passes that the machine learning algorithm must
complete during that training. We proceed as follows:

weights, bias = fit(X, y, weights, bias, epochs=100)

y_pred = predict(X, weights, bias)

y_pred

array([0., 0., 0., 1.])

y

array([0., 0., 0., 1.])

weights, bias

(array([[0.12671415],

#   [0.0117357]]),

-0.13231146189930793)

These weights and bias have been found by the gradient descent algorithm. Our procedural
code is a bit haphazard. It would be cleaner to use the object-oriented approach and encapsu-
late the notion of a perceptron in a dedicated class:

class Perceptron(object):

  def __init__(self, dim):

   self.dim = dim

   self.weights = np.random.normal(size=(self.dim, 1))

   self.bias = np.random.normal()

AI in Asset Management: Tools, Applications, and Frontiers

78    CFA Institute Research Foundation

  def fit(self, X, y, learning_rate=.01, epochs=1):

   for i in range(epochs):

    for x, target in zip(X, y):

     x = x.reshape(-1, 1)

     v = self.weights.T @ x + self.bias

     y_pred = 0. if v < 0. else 1.

     if target != y_pred:

      self.bias -= learning_rate * (y_pred - target)

      self.weights -= learning_rate * (y_pred - target) * x

  def predict(self, X):

   y_pred = []

   for x in X:

    x = x.reshape(-1, 1)

    v = self.weights.T @ x + self.bias

    y_pred.append(0. if v < 0. else 1.)

   return np.array(y_pred)

The code we have provided is for pedagogical purposes; as such, a class already exists in
scikit-learn, the popular free software machine learning library for Python. Scikit-learn grew out
of a June 2007 Google Summer of Code project by David Cournapeau and now features various
classification, regression, and clustering algorithms, including support vector machines, random
forests, gradient boosting, k-means, and DB-SCAN. Scikit-learn is designed to interoperate with
the Python numerical and scientific libraries NumPy and SciPy.

Although individual perceptrons turned out to be of limited practical use, networks of percep-
trons (or feed forward neural networks, FFNNs) were soon recognized as powerful universal
function approximators. Their calibration in practice was impeded by computational restric-
tions, which were overcome algorithmically using the backpropagation algorithm (Rumelhart,
Hinton, and Williams 1986), a major computational advance, and improvements in hardware,
such as the emergence of GPUs. The progress was not uniform, and this academic area

Deep Learning

CFA Institute Research Foundation    79

went through several periods of funding cuts, which are sometimes referred to as AI winters
(Harguess and Ward 2022).

More Sophisticated Deep Learning Frameworks
In this section, we describe more sophisticated deep learning frameworks, several of which
have become popular in finance. We begin with recurrent neural networks (RNNs) (Rumelhart
et al. 1986), which are FFNNs that are not stateless—rather, they have connections between
passes, connections through time. They are popular in financial applications. Neurons take
input information not only from previous layers but also from themselves on previous passes.
Thus, the order in which the input is fed into and trained in the network matters. One major
challenge with RNNs is the vanishing gradient problem, where, depending on the activation
functions used, information rapidly gets lost over time. This is similar to how some FFNNs lose
information in depth. Nevertheless, RNNs are a good choice for many time series applications.
We show an RNN in Exhibit 3.

Echo state networks (Jaeger and Haas 2004) are another type of (recurrent) network. They set
themselves apart by having random connections between neurons (i.e., they are not organized
into neat sets of layers). Instead of feeding input and backpropagating the error, they feed
the input, update the neurons, and observe the output over time. The input and output layers
have a somewhat unconventional role as the input layer is used to prepare the network and the
output layer acts as an observer of the activation patterns that develop over time. During the
training period, only the connections between the observer and the hidden units are changed.

Exhibit 3. Recurrent Neural Network Architecture Through Time

Input
0

Input
1

Input
2

Input
3

Output
0

Generates
Output

Generates
Output

Processes
Input

Key Concept: Memory cells remember information from previous time steps
This allows the network to understand sequences and context

Time 0

Input:
Sequential

Data

Hidden:
Memory

Cells

Output:
Predictions

Time 1 Time 2 Time 3

Memory
Flow

Memory
Flow

Memory
Flow

Processes
Input

Processes
Input

Processes
Input

Generates
Output

Generates
Output

Output
1

Output
2

Output
3

Memory
Cell 3

Memory
Cell 0

Memory
Cell 1

Memory
Cell 2

AI in Asset Management: Tools, Applications, and Frontiers

80    CFA Institute Research Foundation

Long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997) networks try to combat
the vanishing/exploding gradient problem by introducing gates and an explicitly defined
memory cell. These are inspired mostly by circuitry, not so much biology. Each neuron has a
memory cell and three gates: input, output, and forget. The function of these gates is to safe-
guard the information by stopping or allowing the flow of it. The input gate determines how
much of the information from the previous layer is stored in the cell. The output layer takes the
job on the other end and determines how much of the next layer gets to know about the state
of this cell. The forget gate, as the name suggests, enables the network to forget. LSTMs have
been shown to be able to learn complex sequences, such as writing prose or composing music.
We show an LSTM in Exhibit 4.

Neural Turing machines (NTMs) (Graves, Wayne, and Danihelka 2014) can be understood
as an abstraction of LSTMs and an attempt to undo the black-box nature of neural networks
(and provide insight into what is going on in there). NTMs augment the traditional neural
network architecture with an external memory bank, allowing it to perform tasks that require
both computation and flexible memory manipulation, such as copying, sorting, and associative
recall. The architecture consists of three main components: a controller, which processes inputs
and determines how to interact with memory; a memory matrix, which serves as the external
storage for information; and read/write heads, which focus attention on specific memory
locations for reading or writing data.

Exhibit 4. LSTM Architecture

LSTM Memory Cell
Long-Term Memory Flow

What to
forget?

What to
remember?

New info
to store

What to
share?

���Writes down important new facts
���Remembers context over long periods

���Erases outdated information
Like a smart notebook that:

LSTM Process:
1. Decides what old information to throw away (Forget Gate)

2. Decides what new information to store (Input Gate)
3. Creates candidate values for new information
4. Updates memory with selected information

5. Decides what parts of memory to output (Output Gate)

Forget
Gate

New
Info

Previous
Thought

Current
Thought

Updated
Memory

Input
Gate

Candidate
Values

Output
Gate

Deep Learning

CFA Institute Research Foundation    81

The controller, often implemented as a recurrent neural network, receives both the current
input and the previous memory readout, enabling it to make informed decisions about memory
access. The read and write heads use attention mechanisms to determine how much focus
to place on each memory location, allowing the NTM to interact with memory in a smooth,
differentiable way. This differentiability means the entire system can be trained end to end
using gradient descent, just like standard neural networks. The result is a model that combines
the pattern recognition strengths of neural networks with the algorithmic flexibility of a Turing
machine, making NTMs particularly suited for tasks that require reasoning over sequences and
manipulating stored data in complex ways. Differentiable neural computers (Graves, Wayne,
Reynolds, Harley, Danihelka, Grabska-Barwińska, Colmenarejo, Grefenstette, and Ramalho
2016) are enhanced neural Turing machines with scalable memory, inspired by how memories
are stored by the human hippocampus. We show the architecture of an NTM in Exhibit 5.

Gated recurrent units (GRUs) (Cho, van Merrienboer, Bahdanau, and Bengio 2014) are a varia-
tion on LSTMs. They contain one less gate and are wired slightly differently: instead of an input,
output, and forget gate, they have an update gate. The update gate determines both how much
information to keep from the last state and how much information to let in from the previous
layer. The reset gate functions much like the forget gate of an LSTM but is located at different
points in the decision-making process. In most cases, they function similarly to LSTMs but are
slightly faster and easier to run (albeit also slightly less expressive).

Exhibit 5. Neural Turing Machine Architecture

Controller
“The Brain”

Processes information
and makes decisions

External Memory
“Smart Database”

Trading
Decision

Receives

Market
Signals

Stores

Buy/Sell/
Hold

Retrieves

DECIDES

Stores historical patterns
and trading rules

SEARCHES

UPDATES

Financial Example: Algorithmic Trading System
Remembers past market patterns to make better predictions

Like a trader with perfect memory of all market history

How it works:
1. Receives market data and analyzes current conditions

2. Searches memory for similar historical patterns
3. Updates memory with new market insights

4. Makes informed trading decisions based on history + current data

Q1 Data

Patterns History Trends

Q2 Data Rules

Focus

Current
Attention

Write Head
“Information Updater”

Stores new market
insights

Read Head
“Information Finder”
Searches for relevant

historical data

Input
Data

AI in Asset Management: Tools, Applications, and Frontiers

82    CFA Institute Research Foundation

Bidirectional recurrent neural networks and bidirectional long short-term memory networks
(BNs) (Schuster and Paliwal 1997) look identical to their unidirectional counterparts. The main
difference between them is that BNs are not just connected to the past but also connected to
the future. This means that during training, the network fills in gaps instead of simply advancing
information. For example, instead of advancing an image on the edge, it could fill a hole in the
middle of an image.

Autoencoders (AEs) represent a different use of FFNNs rather than a fundamentally differ-
ent architecture. In autoencoders, we compress information. In AEs, the entire network
resembles an hourglass, having smaller hidden layers relative to the input and output layers.
AEs can be trained using backpropagation by feeding input and setting the error to be the
difference between the input and what came out (Hinton and Salakhutdinov 2006). Variational
autoencoders (VAEs) have the same architecture as AEs but are “taught” an approximated
probability distribution of the input samples data (Kingma and Welling 2014). Denoising
autoencoders are AEs where we feed in the input data with noise. The output of the network
is compared with the original input without the noise, which encourages the network to learn
broader features instead of details (Vincent, Larochelle, Bengio, and Manzagol 2008).

With sparse autoencoders (SAEs) (Makhzani and Frey 2013) we encode information in more
space. So instead of the network converging in the middle and then expanding back to the input
size, the middle of the network is the zone of expansion. SAEs are useful in extracting small
features from a dataset. Instead of simply feeding back the input as in some other networks,
we feed back the input with the addition of a sparsity driver. This sparsity driver is often a
“threshold filter,” where only a certain error is passed back and trained; other errors will be
“irrelevant” for that pass and set to zero. This is somewhat similar to spiking neural networks,
where not all neurons fire all the time. Among the various types of encoders, VAEs in particular
have become popular in finance because of their utility in anomaly detection and generating
synthetic data. We show VAE architecture in Exhibit 6.

Generative adversarial networks (GANs) (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley,
Ozair, Courville, and Bengio 2014) are a class of generative models that use a game-theoretic
framework to learn and generate new data that mimics the distribution of a given dataset.
GANs consist of two neural network twins: the generator and the discriminator. The genera-
tor creates synthetic data from random noise, attempting to mimic the real data distribution.
The discriminator distinguishes between real data (from the dataset) and fake data (produced
by the generator). The discriminator receives either training data or generated content from
the generator. Information regarding how well the discriminator is able to correctly predict the
data source is then used as part of the error for the generating network. This process in essence
creates a competitive game in which the discriminator gets better at distinguishing real data
from generated data and the generator learns to become less predictable to the discriminator.
GANs have become popular in finance as a means to generate synthetic data. We show the
GAN architecture in Exhibit 7.

Liquid state machines (Maass, Natschläger, and Markram 2002) are a type of spiking neural net-
work that replace the usual sigmoid activation functions with discrete threshold mechanisms,
where each neuron also maintains an internal state or accumulated potential. Instead of
overwriting the neuron’s current value with the weighted sum of its neighbors, the input
is incrementally added to the neuron’s stored energy. When this accumulated value sur-
passes a defined threshold, the neuron emits a spike, transferring energy to connected units.

Deep Learning

CFA Institute Research Foundation    83

Exhibit 6. Variational Autoencoder Architecture

Financial Application: Market Anomaly Detection and Portfolio Optimization

• Learns normal market behavior patterns from historical data
• Detects unusual market conditions and potential opportunities

• Generates synthetic market scenarios for risk assessment
• Creates more robust trading strategies by understanding market “DNA”

Moving Avg: $148

RSI: 65

P/E Ratio: 18.2

Volume: 2.5M

Stock Price: $150

Input Data
“Raw Information”

Market data, prices,
volumes, indicators

Signal: Buy

Confidence: 87%

Trend: Bullish

Risk Level: Low

Predicted: $152

Clean, enhanced
market predictions

Output Data
“Reconstructed”

Feature Detection

Compression

Pattern Recognition

Compresses complex
market data into

key patterns

Encoder
“Pattern Finder”

Expansion

Reconstruction

Detail Recovery

Rebuilds market data
from core patterns

Decoder
“Reconstructor”

Pattern
Variation

Average
Pattern

Smart
Sample

Captures core market
behavior patterns:

• Bull/bear trends
• Volatility levels
• Sector correlations

Latent Space
“The Essence”

SAMPLE

COMPRESS

EXPAND GENERATEANALYZE

The VAE Process:

1. Takes complex market data and finds the core patterns
2. Creates a “fingerprint” of market behavior in latent space

3. Can generate new, realistic market scenarios
4. Helps identify when markets behave unusually

Exhibit 7. GAN Architecture
Financial Example: Creating synthetic trading data

that mimics real market patterns for testing strategies

Like rolling dice

Feeds Creates

Synthetic Creation

Examines

Authentic samples

Judges

Random
Noise

REAL

FAKE

The Competition:
1. Generator tries to fool the Discriminator

2. Discriminator tries to catch the Generator
3. They compete and both get better

4. Eventually Generator creates perfect fakes

Generator
“The Forger”

Creates fake data
that looks real

Fake
Data

Real
Data

Tries to spot
fakes from real

Discriminator
“The Detective”

AI in Asset Management: Tools, Applications, and Frontiers

84    CFA Institute Research Foundation

This produces a characteristic firing pattern with long periods of inactivity punctuated by
sudden bursts of activity, behavior that is typical of spiking behaviors. A Hopfield network (HN)
is a network in which each neuron is connected to every other neuron. Every node is input
before training, hidden during training, and output afterward. These networks are trained by
setting the neurons’ value to the desired pattern; then, the weights can be computed. These
networks are often called associative memory because they converge to the most similar
state as the input. Boltzmann machines (BMs) are similar to HNs, except that some neurons
are marked as input neurons and others remain “hidden.” The algorithm begins by assigning
weights randomly and learns through backpropagation, or contrastive divergence, where a
Markov chain is used to determine the gradients between two informational gains. At the end
of a full network update, the input neurons become output neurons. In contrast to HNs, in BMs,
the neurons mostly have binary activation patterns.

Convolutional neural networks (CNNs) (LeCun, Bottou, Bengio, and Haffner 1998) or deep con-
volutional neural networks (DCNNs) are different from most other deep learning algorithms.
They are primarily used for image processing but can also be applied to other types of data such
as audio. A typical use case for CNNs is where you input network images and the network clas-
sifies the data—for example, “cat” versus “dog.” CNNs tend to start with an input “scanner” that
is not intended to parse all training data at once. The input data are then processed through
convolutional layers, where not all nodes are connected to all nodes. Each node only concerns
itself with neighboring cells in close proximity (how close varies by application). Convolutional
layers also tend to shrink as they deepen.

Aside from these convolutional layers, CNNs also frequently feature pooling layers. Pooling is a
way to filter out details. One commonly used pooling technique is max pooling, where we take,
for example, three pixels and pass on the pixel with the most amount of red. Real-world imple-
mentations of CNNs often attach an FFNN to the end of the algorithm to further process the
data, a maneuver that allows for highly nonlinear abstractions.

Deconvolutional networks (DNs), also known as inverse graphics networks (IGNs), are reversed
convolutional neural networks. For example, consider the case where we feed a network the
word “dog” (or a binary classification input vector) and train it to produce dog-like pictures by
comparing what it generates to real pictures of dogs. DNNs can also be combined with FFNNs
just like regular CNNs can. When this is done, the pooling layers often found in CNNs are
frequently replaced with analogous inverse operations, primarily interpolation and extrapolation
with biased assumptions.

Finally, capsule networks (CapsNet) (Sabour, Frosst, and Hinton 2017) are biologically inspired
alternatives to pooling, where neurons are connected with a vector of weights instead of just
one weight (a scalar). Kohonen networks (Kohonen 1990), on the other hand, use competitive
learning to classify data without supervision. In the next section, we describe some specific
applications of deep learning to finance.

Applications in Finance
Derivatives pricing was one of the early targets of applied neural networks in finance.
Early adopters of neural networks in option pricing include Malliaris and Salchenberger
(1993); Hutchinson, Lo, and Poggio (1994); Yao, Li, and Tan (2000); Bennell and Sutcliffe
(2004); and Gradojevic, Gencay, and Kukolj (2009). With the advent of deep learning

Deep Learning

CFA Institute Research Foundation    85

(Goodfellow 2016), neural networks started to become mainstream, and deep learning
reentered quants’ collective consciousness, particularly following publication of work on deep
learning volatility (Ferguson and Green 2018; Horvath, Muguruza, and Tomas 2021), which
soon became mainstream.

In these articles, the authors presented neural network-based calibration methods that perform
the calibration task within a few milliseconds for the full implied surface. These frameworks are
applicable across a range of volatility models—including second-generation stochastic volatility
models and the rough volatility family—and a range of derivative contracts. Neural networks are
being used in offline approximations of complex pricing functions, which are difficult to repre-
sent or time consuming to evaluate by other means.

In some instances, finance has generated algorithmic advances, such as differential deep learn-
ing (Huge and Savine 2020). It combines automatic adjoint differentiation (Capriotti and Giles
2024) with machine learning, where the models are trained on examples of not only inputs
and labels but also differentials of labels with regard to inputs, yielding highly effective pricing
and risk approximations. More recently, these approaches have been applied in a wider range
of settings, such as stochastic volatility (Sridi and Bilokon 2023), including exotic products
(Ma, Ventre, Tiranti, and Chen 2025).

Outside the context of derivatives pricing, deep methods have been applied for alpha gen-
eration. Kolm, Turiel, and Westray (2023) deployed deep learning to forecast high-frequency
returns at multiple horizons for 115 stocks traded on Nasdaq using order book information at
the most granular level. State-of-the-art predictive accuracy was achieved by running “off-the-
shelf” artificial neural networks on stationary inputs derived from the order book. Using
cross-sectional regressions, the authors linked an LSTM network’s forecasting performance to
stock characteristics at the market microstructure level, suggesting “information-rich” equities
can be predicted more accurately. The effective horizon of stock-specific forecasts was found to
be approximately two average price changes.

Deep econometrics (Bilokon 2025) is a principled rethinking of the classical econometric
(Ruud 2000) and time-series (Tsay 2010) analyses using deep learning techniques (Goodfellow
2016; Dixon, Halperin, and Bilokon 2020). The focus of Bilokon (2025) is on the estimation of
parameters in various econometric settings. Some applications focus on the rethinking of the
Wiener–Kolmogorov filtering theory, the so-called deep stochastic filters (Horvath, Kratsios,
Limmer, and Yang 2023; Stok, Bilokon, and Simonian 2024).

Some interesting applications have arisen out of the combination of reinforcement deep learn-
ing and reinforcement learning, a framework where agents learn through a system of rewards
and punishments, based on their actions in specific states. Reinforcement learning (Sutton
2020) differs from supervised learning in that the ground truth may not necessarily be known.
Feedback is often evaluative rather than prescriptive, is often delayed, and may be sourced from
the environment. In recent years, this subfield of machine learning/artificial intelligence gained
public recognition when a reinforcement-learning-based system beat the human champion at
the game of Go (Silver, Huang, Maddison, Guez, Sifre, van den Driessche, Schrittwieser, et al.
2016). Soon after, reinforcement learning began to gain popularity in finance.

Early adopters started to use deep reinforcement learning for hedging derivative contracts,
giving rise to deep hedging (Halperin 2017; Buehler, Gonon, Teichmann, and Wood 2019;
Kolm and Ritter 2019a; Cao, Chen, Hull, and Poulos 2021). Reinforcement learning in this

AI in Asset Management: Tools, Applications, and Frontiers

86    CFA Institute Research Foundation

application was used to derive optimal hedging strategies for derivatives in cases where trans-
action costs and other frictions are present.

Far from being a novelty, many of these algorithms have been extensively studied and evaluated
(see, e.g., Stoiljkovic 2025). Financial applications have led to a cross-pollination of ideas, which
has contributed new and enhanced reinforcement learning techniques, such as enhancements
to inverse reinforcement learning (Halperin, Liu, and Zhang 2022) and distributional
reinforcement learning (Halperin 2024). Other researchers focused on applications of reinforce-
ment learning to wealth management (e.g., Dixon, Gvozdanovic, and O’Kane 2023). This gave
rise to G-Learner (Dixon and Halperin 2020), a reinforcement learning algorithm that uses
explicitly defined one-step rewards, does not assume a data generation process, and is appro-
priate for use with noisy data. GIRL (Dixon and Halperin 2020) applies goal-based G-learning to
inverse reinforcement learning (IRL) (Dixon et al. 2020), where rewards collected by the agent
are not observed but inferred.

Others have combined ideas from the emerging subfields of reinforcement learning, such as
multiarmed bandits, to update the now classic Markowitz–Sharpe framework (Varlashova
and Bilokon 2025; Bilokon and Varlashova 2025). This framework arose from the rethinking of
some of the issues relevant to finance, such as nonstationarity, in novel and nontrivial ways.
Needless to say, the extensive work on the uses of machine learning for time-series forecasting
(Dixon, Klabjan, and Bang 2017; Stok et al. 2024) is the foundation of many trading applications.
Jaddu and Bilokon (2024) combined deep learning on the order books with reinforcement
learning and backtested the resulting strategies in the presence of frictions. Zejnullahu, Moser,
and Osterrieder (2022) explored in considerable detail the use of double deep Q-networks
for trading purposes. Pendharkar and Cusatis (2018) explored applications of reinforcement
learning agents to trading financial indexes. We point out that financial applications of rein-
forcement learning have been extensively reviewed by Kolm and Ritter (2019b); Charpentier,
Élie, and Remlinger (2023); and Hambly, Xu, and Yang (2023).

Other advances in machine learning have been applied to create synthetic financial data,
which are particularly useful in small data environments (Buehler, Horvath, Lyons, Arribas,
and Wood 2020; Bühler, Horvath, Lyons, Arribas, and Wood 2020). Some research has focused
on speeding up the calculations on a wider range of devices, such as field-programmable
gate arrays (Sobakinskikh and Bilokon 2025), rather than algorithmic advances. There has
also been cross-disciplinary work, which is difficult to classify, at the boundaries of finance,
machine learning, and physics (Halperin and Dixon 2020). Progress has occurred in one of the
most controversial areas of applications of machine learning and artificial intelligence to
finance—explainability (Bussmann, Giudici, Marinelli, and Papenbrock 2021). The rise of large
language models, such as ChatGPT (OpenAI, Achiam, Adler, Agarwal, Ahmad, Akkaya, Aleman,
et al. 2023) and Claude are likely to further revolutionize finance.

Concluding Thoughts
The application of deep learning to finance has evolved from early neural network experiments
in derivative pricing to sophisticated deep learning systems that now permeate virtually every
aspect of financial markets. Financial applications of deep learning have increasingly focused
on practical implementation challenges. Early research often ignored market microstructure
effects, transaction costs, and regulatory constraints. Contemporary work in deep hedging,

Deep Learning

CFA Institute Research Foundation    87

order flow prediction, and portfolio optimization explicitly incorporates these real-world fric-
tions, making the resulting strategies more robust and implementable.

Several developments promise to further revolutionize finance. The emergence of large
language models creates opportunities for natural language processing of financial docu-
ments, automated report generation, and sophisticated conversational interfaces for financial
analysis. Quantum computing, although still in its infancy, may eventually enable the solution
of optimization problems that are currently intractable. Meanwhile, regulatory developments
around algorithmic transparency and explainable AI will likely shape how these technologies
are deployed in practice.

The cross-pollination between finance and deep learning has benefited both fields. Finance has
provided challenging real-world problems that have spurred methodological advances in such
areas as differential machine learning and distributional reinforcement learning. Conversely,
techniques developed in computer science have enabled financial practitioners to tackle
previously unsolvable problems in risk management, trading, and asset allocation.

As we stand at this inflection point, with deep learning capabilities advancing at an unprece-
dented pace, the integration of artificial intelligence into financial markets appears not merely
inevitable but already well underway. The question is no longer whether deep learning (and AI
as a whole) will transform finance but, rather, how quickly and in what specific directions this
transformation will proceed.

References
Bennell, Julia, and Charles Sutcliffe. 2004. “Black–Scholes versus Artificial Neural Networks in
Pricing FTSE 100 Options.” Intelligent Systems in Accounting, Finance & Management 12 (4):
243–60. doi:10.1002/isaf.254.

Bilokon, Paul. 2025. “Deep Econometrics.” Working paper (9 June). doi:10.2139/ssrn.5286898.

Bilokon, Paul, and Valeria Varlashova. 2025. “Tail-Aware Portfolio Optimization Using Hoeffding-
Informed Thresholds.” Working paper (22 May). doi:10.2139/ssrn.5265442.

Buehler, Hans, Lukas Gonon, Josef Teichmann, and Ben Wood. 2019. “Deep Hedging.”
Quantitative Finance 19 (8): 1271–91. doi:10.1080/14697688.2019.1571683.

Buehler, Hans, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben Wood. 2020.
“Generating Financial Markets with Signatures.” Working paper (21 July). doi:10.2139/
ssrn.3657366.

Bühler, Hans, Blanka Horvath, Terry Lyons, Imanol Perez Arribas, and Ben Wood. 2020. “A Data-
Driven Market Simulator for Small Data Environments.” Working paper (21 June). doi:10.48550/
arXiv.2006.14498.

Bussmann, Niklas, Paolo Giudici, Dimitri Marinelli, and Jochen Papenbrock. 2021. “Explainable
Machine Learning in Credit Risk Management.” Computational Economics 57 (1): 203–16.
doi:10.1007/s10614-020-10042-0.

https://doi.org/10.1002/isaf.254
http://dx.doi.org/10.2139/ssrn.5286898
http://dx.doi.org/10.2139/ssrn.5265442
https://doi.org/10.1080/14697688.2019.1571683
https://doi.org/10.2139/ssrn.3657366
https://doi.org/10.2139/ssrn.3657366
https://doi.org/10.48550/arXiv.2006.14498
https://doi.org/10.48550/arXiv.2006.14498
https://doi.org/10.1007/s10614-020-10042-0

AI in Asset Management: Tools, Applications, and Frontiers

88    CFA Institute Research Foundation

Cao, Jay, Jacky Chen, John Hull, and Zissis Poulos. 2021. “Deep Hedging of Derivatives
Using Reinforcement Learning.” Journal of Financial Data Science 3 (1): 10–27. doi:10.3905/
jfds.2020.1.052.

Capriotti, Luca, and Mike Giles. 2024. “15 Years of Adjoint Algorithmic Differentiation (AAD)
in Finance.” Quantitative Finance 24 (9): 1353–79. doi:10.1080/14697688.2024.2325158.

Charpentier, Arthur, Romuald Élie, and Carl Remlinger. 2023. “Reinforcement Learning
in Economics and Finance.” Computational Economics 62 (1): 425–62. doi:10.1007/
s10614-021-10119-4.

Cho, K., B. van Merrienboer, D. Bahdanau, and Y. Bengio. 2014. “On the Properties of Neural
Machine Translation: Encoder–Decoder Approaches.” Proceedings of SSST-8, Eighth Workshop
on Syntax, Semantics and Structure in Statistical Translation: 103–11.

Dixon, Matthew Francis, Ivan Gvozdanovic, and Dominic O’Kane. 2023. “Time Consistent
Reinforcement Learning for Optimal Consumption under Epstein–Zin Preferences.
Working paper (14 March). doi:10.2139/ssrn.4388762.

Dixon, Matthew, and Igor Halperin. 2020. “G-Learner and GIRL: Goal Based Wealth Management
with Reinforcement Learning.” Working paper (25 February). doi:10.48550/arXiv.2002.10990.

Dixon, Matthew F., Igor Halperin, and Paul Bilokon. 2020. Machine Learning in Finance:
From Theory to Practice. Cham, Switzerland: Springer.

Dixon, Matthew, Diego Klabjan, and Jin Hoon Bang. 2017. “Classification-Based Financial
Markets Prediction Using Deep Neural Networks.” Algorithmic Finance 6 (3–4): 67–77.
doi:10.3233/AF-170176.

Ferguson, Ryan, and Andrew Green. 2018. “Deeply Learning Derivatives.”
Working paper (17 October). doi:10.48550/arXiv.1809.02233.

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. 2014. “Generative Adversarial Nets.” Proceedings of the
27th International Conference on Neural Information Processing Systems 2: 2672–80.

Goodfellow, Ian. 2016. Deep Learning: Adaptive Computation and Machine Learning.
Cambridge, MA: MIT Press.

Gradojevic, Nikola, Ramazan Gencay, and Dragan Kukolj. 2009. “Option Pricing with Modular
Neural Networks.” IEEE Transactions on Neural Networks 20 (4): 626–37. doi:10.1109/
TNN.2008.2011130.

Graves, A., G. Wayne, and I. Danihelka. 2014. “Neural Turing Machines.” arXiv (10 December).
doi:10.48550/arXiv.1410.5401.

Graves, A., G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska,
S. G. Colmenarejo, E. Grefenstette, and T. Ramalho. 2016. “Hybrid Computing Using a Neural
Network with Dynamic External Memory.” Nature 538 (7626): 471–76.

Halperin, Igor. 2017. “QLBS: Q-Learner in the Black–Scholes (–Merton) Worlds.”
Working paper (17 December). doi:10.48550/arXiv.1712.04609.

https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.3905/jfds.2020.1.052
https://doi.org/10.1080/14697688.2024.2325158
https://doi.org/10.1007/s10614-021-10119-4
https://doi.org/10.1007/s10614-021-10119-4
https://doi.org/10.2139/ssrn.4388762
https://doi.org/10.48550/arXiv.2002.10990
https://doi.org/10.3233/AF-170176
https://doi.org/10.48550/arXiv.1809.02233
https://doi.org/10.1109/TNN.2008.2011130
https://doi.org/10.1109/TNN.2008.2011130
https://doi.org/10.48550/arXiv.1410.5401
https://doi.org/10.48550/arXiv.1712.04609

Deep Learning

CFA Institute Research Foundation    89

Halperin, Igor. 2024. “Distributional Offline Continuous-Time Reinforcement Learning with
Neural Physics-Informed PDEs (SciPhy RL for DOCTR-L).” Neural Computing & Applications
36 (9): 4643–59. doi:10.1007/s00521-023-09300-7.

Halperin, Igor, and Matthew Dixon. 2020. “‘Quantum Equilibrium–Disequilibrium’:
Asset Price Dynamics, Symmetry Breaking, and Defaults as Dissipative Instantons.”
Physica A 537 (1 January). doi:10.1016/j.physa.2019.122187.

Halperin, Igor, Jiayu Liu, and Xiao Zhang. 2022. “Combining Reinforcement Learning and Inverse
Reinforcement Learning for Asset Allocation Recommendations.” Working paper (6 January).
doi:10.48550/arXiv.2201.01874.

Hambly, Ben, Renyuan Xu, and Huining Yang. 2023. “Recent Advances in Reinforcement
Learning in Finance.” Mathematical Finance 33 (3): 437–503. doi:10.1111/mafi.12382.

Harguess, Josh, and Chris M. Ward. 2022. “Is the Next Winter Coming for AI? Elements of
Making Secure and Robust AI.” In 2022 IEEE Applied Imagery Pattern Recognition Workshop
(AIPR), 1–7. doi:10.1109/AIPR57179.2022.10092230.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image Recognition.”
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–78.

Hinton, Geoffrey E., and Ruslan Salakhutdinov. 2006. “Reducing the Dimensionality of Data
with Neural Networks.” Science 313 (5786): 504–07. doi:10.1126/science.1127647.

Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation
9 (8): 1735–80.

Horvath, Blanka, Anastasis Kratsios, Yannick Limmer, and Xuwei Yang. 2023. “Deep Kalman
Filters Can Filter.” Working paper (27 October). doi:10.13140/RG.2.2.22953.57445.

Horvath, Blanka, Aitor Muguruza, and Mehdi Tomas. 2021. “Deep Learning Volatility:
A Deep Neural Network Perspective on Pricing and Calibration in (Rough) Volatility Models.”
Quantitative Finance 21 (1): 11–27. doi:10.1080/14697688.2020.1817974.

Huang, Guang-Bin. 2015. “What are Extreme Learning Machines? Filling the Gap between Frank
Rosenblatt’s Dream and John von Neumann’s Puzzle.” Cognitive Computation 7 (3): 263–78.

Huge, Brian, and Antoine Savine. 2020. “Differential Machine Learning.” Working paper
(30 September). doi:10.48550/arXiv.2005.02347.

Hutchinson, James M., Andrew W. Lo, and Tomaso Poggio. 1994. “A Nonparametric Approach
to Pricing and Hedging Derivative Securities via Learning Networks.” Journal of Finance 49 (3):
851–89. doi:10.1111/j.1540-6261.1994.tb00081.x.

Jaddu, Koti S., and Paul A. Bilokon. 2024. “Deep Learning with Reinforcement Learning on Order
Books.” Journal of Financial Data Science 6 (1): 61–84. doi:10.3905/jfds.2024.1.149.

Jaeger, H., and H. Haas. 2004. “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication.” Science 304 (5667): 78–80.

Jones, Edward G. 1999. “Golgi, Cajal and the Neuron Doctrine.” Journal of the History of the
Neurosciences 8 (2): 170–78. doi:10.1076/jhin.8.2.170.1838.

https://doi.org/10.1007/s00521-023-09300-7
https://doi.org/10.1016/j.physa.2019.122187
https://doi.org/10.48550/arXiv.2201.01874
https://doi.org/10.1111/mafi.12382
https://doi.org/10.1109/AIPR57179.2022.10092230
https://doi.org/10.1126/science.1127647
http://dx.doi.org/10.13140/RG.2.2.22953.57445
https://doi.org/10.1080/14697688.2020.1817974
https://doi.org/10.48550/arXiv.2005.02347
https://doi.org/10.1111/j.1540-6261.1994.tb00081.x
https://doi.org/10.3905/jfds.2024.1.149
https://doi.org/10.1076/jhin.8.2.170.1838

AI in Asset Management: Tools, Applications, and Frontiers

90    CFA Institute Research Foundation

Kingma, D. P., and M. Welling. 2014. “Auto-Encoding Variational Bayes.” arXiv (1 May).
doi:10.48550/arXiv.1312.6114.

Kohonen, T. 1990. “The Self-Organizing Map.” Proceedings of the IEEE 78 (9): 1464–80.

Kolm, Petter N., and Gordon Ritter. 2019a. “Dynamic Replication and Hedging: A Reinforcement
Learning Approach.” Journal of Financial Data Science 1 (1): 159–71. doi:10.3905/jfds.2019.1.1.159.

Kolm, Petter N., and Gordon Ritter. 2019b. “Modern Perspectives on Reinforcement Learning
in Finance.” Working paper (6 September). doi:10.2139/ssrn.3449401.

Kolm, Petter N., Jeremy Turiel, and Nicholas Westray. 2023. “Deep Order Flow Imbalance:
Extracting Alpha at Multiple Horizons from the Limit Order Book.” Mathematical Finance
33 (4): 1044–81. doi:10.1111/mafi.12413.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-Based Learning Applied
to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–324.

Ma, Yanqing, Carmine Ventre, Renzo Tiranti, and Aiming Chen. 2025. “Deep Generative
Calibration on Stochastic Volatility Models with Applications in FX Barrier Options.” In SAC ’25:
Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing, 122–30.

Maass, W., T. Natschläger, and H. Markram. 2002. “Real-Time Computing without Stable States:
A New Framework for Neural Computation Based on Perturbations.” Neural Computation
14 (11): 2531–60.

Makhzani, A., and B. J. Frey. 2013. “k-Sparse Autoencoders.” arXiv (19 December). doi:10.48550/
arXiv.1312.5663.

Malliaris, Mary, and Linda Salchenberger. 1993. “A Neural Network Model for Estimating Option
Prices.” Applied Intelligence 3 (3): 193–206. doi:10.1007/BF00871937.

McCulloch, Warren, and Walter Pitts. 1943. “A Logical Calculus of the Ideas Immanent to
Nervous Activity.” Bulletin of Mathematical Biophysics 5 (4): 115–33.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia
Leoni Aleman, et al. 2023. “GPT-4 Technical Report.” Working paper (15 March). doi:10.48550/
arXiv.2303.08774.

Pendharkar, Parag C., and Patrick Cusatis. 2018. “Trading Financial Indices with Reinforcement
Learning Agents.” Expert Systems with Applications 103 (August): 1–13. doi:10.1016/j.eswa.
2018.02.032.

Rosenblatt, F. 1957. “The Perceptron—A Perceiving and Recognizing Automaton.” Cornell
Aeronautical Laboratory 85 (460–1).

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning Representations
by Back-Propagating Errors.” Nature 323 (6088): 533–36. doi:10.1038/323533a0.

Ruud, Paul Arthur. 2000. An Introduction to Classical Econometric Theory. New York: Oxford
University Press.

https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.3905/jfds.2019.1.1.159
https://dx.doi.org/10.2139/ssrn.3449401
https://doi.org/10.1111/mafi.12413
https://doi.org/10.48550/arXiv.1312.5663
https://doi.org/10.48550/arXiv.1312.5663
https://doi.org/10.1007/BF00871937
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1016/j.eswa.2018.02.032
https://doi.org/10.1016/j.eswa.2018.02.032
https://doi.org/10.1038/323533a0

Deep Learning

CFA Institute Research Foundation    91

Sabour, S., N. Frosst, and G. E. Hinton. 2017. “Dynamic Routing between Capsules.”
arXiv (26 October). doi:10.48550/arXiv.1710.09829.

Schuster, M., and K. K. Paliwal. 1997. “Bidirectional Recurrent Neural Networks.”
IEEE Transactions on Signal Processing 45 (11): 2673–81.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, et al. 2016. “Mastering the Game of Go with Deep Neural
Networks and Tree Search.” Nature 529 (7587): 484–89. doi:10.1038/nature16961.

Sobakinskikh, Ilia, and Paul Alexander Bilokon. 2025. “Optimizing Transformer Neural
Network for Real-Time Outlier Detection on FPGAs.” Journal of FinTech 5 (1). doi:10.1142/
S2705109925500014.

Sridi, Abir, and Paul Bilokon. 2023. “Applying Deep Learning to Calibrate Stochastic Volatility
Models.” Working paper (25 September). doi:10.48550/arXiv.2309.07843.

Stoiljkovic, Zoran. 2025. “Advanced Option Pricing and Hedging with Q-Learning: Performance
Evaluation of the QLBS Algorithm.” Journal of Derivatives 32 (3): 48–79. doi:10.3905/
jod.2025.1.222.

Stok, Robert, Paul Bilokon, and Joseph Simonian. 2024. “From Deep Learning to Deep
Econometrics.” Journal of Financial Data Science 6 (2): 54–73. doi:10.3905/jfds.2024.1.155.

Sutton, Richard S. 2020. Reinforcement Learning: Adaptive Computation and Machine Learning,
2nd ed. Cambridge, MA: MIT Press.

Tsay, Ruey S. 2010. Analysis of Financial Time Series, 3rd ed. Hoboken, NJ: Wiley.

Varlashova, Valeria, and Paul Alexander Bilokon. 2025. “Optimal Allocation with Continuous
Sharpe Ratio Covariance Bandits.” Journal of Financial Data Science 7 (3): 171–91. doi:10.3905/
jfds.2025.1.191.

Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol. 2008. “Extracting and Composing
Robust Features with Denoising Autoencoders.” In ICML ’08: Proceedings of the 25th
International Conference on Machine Learning, 1096–103.

Yao, Jingtao, Yili Li, and Chew Lim Tan. 2000. “Option Price Forecasting Using Neural Networks.”
Omega 28 (4): 455–66. doi:10.1016/S0305-0483(99)00066-3.

Zejnullahu, Frensi, Maurice Moser, and Joerg Osterrieder. 2022. “Applications of Reinforcement
Learning in Finance—Trading with a Double Deep Q-Network.” Working paper (28 June).
doi:10.48550/arXiv.2206.14267.

https://doi.org/10.48550/arXiv.1710.09829
https://doi.org/10.1038/nature16961
https://doi.org/10.1142/S2705109925500014
https://doi.org/10.1142/S2705109925500014
https://doi.org/10.48550/arXiv.2309.07843
https://doi.org/10.3905/jod.2025.1.222
https://doi.org/10.3905/jod.2025.1.222
https://doi.org/10.3905/jfds.2024.1.155
https://dx.doi.org/10.3905/jfds.2025.1.191
https://dx.doi.org/10.3905/jfds.2025.1.191
https://doi.org/10.1016/S0305-0483(99)00066-3
https://doi.org/10.48550/arXiv.2206.14267

