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1 Fundamental literature on networks includes Wasserman and Faust (1994), Newman (2010), Barabási (2016), and Borgatti, 
Everett, Johnson, and Agneessens (2022). Financial networks are extensively analyzed by Diebold and Yilmaz (2015).

Introduction
Decision making and risk assessment have traditionally been grounded in core financial models. 
These models have encountered challenges as global interdependencies have grown in com-
plexity as financial markets evolve. Many classical models approach the market as either a 
collective system with uniform interactions or groups of unconnected systems where actors 
make autonomous decisions. These overly simplified approaches have proved incorrect in many 
incidents, such as the financial crisis of 2007–2008 and the COVID-19 pandemic. The failure of 
Lehman Brothers and the near-collapse of AIG highlighted how distress is capable of rapidly 
spreading from one region of the system to another, revealing hidden links and vulnerabilities. 
Conventional models did not foresee these vulnerabilities. These events revealed the sobering 
truth that the interconnectivity of financial institutions and the system is much more intricate 
than the models of the time could capture and that the interexposures between institutions 
are crucial to the systemic stability of the structure. This crisis proves that models are blind 
to emerging risks if relationships between players add up in unpredictable asymmetric ways. 
To respond to the challenge of managing systemic risk, one needs tools that identify and struc-
ture relationships to analyze connections, no matter how unconventional the direction might be.1

A powerful and intuitive framework for overcoming these constraints is provided by network 
theory, a discipline with roots in graph theory. It offers mathematical language for investigating 
systems made up of distinct entities (represented as nodes or vertices) and the connections 
or interactions among them (represented as links or edges). This method has shown promise 
in a wide range of fields, including biology, computer science, transportation, and the 
social sciences.

Network analysis is a natural fit for financial systems. Markets, assets, financial institutions, and 
even information flows are all interconnected. These relationships create intricate networks 
that support the dynamics of the market. Practitioners can examine the true structure of market 
interactions and go beyond oversimplified assumptions by depicting these varied financial 
relationships as networks. The following are examples of networks:

	● Interbank lending networks: A vital network for distributing liquidity is created when banks 
lend to and borrow from one another.
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	● Asset and factor networks: By comparing price movements of stocks, bonds, commodities, 
currencies, or factors, one can identify community structures, relationships, associations, 
and interactions that improve diversification.

	● Ownership networks: Ownership links are created by businesses that own stock in other 
businesses.

	● Derivative networks: Counterparty exposures in derivative contracts, such as credit default 
swaps (CDSs), create a web of contingent liabilities.

	● Bank–firm networks: The financial sector is connected to the actual economy through 
lending relationships between banks and nonfinancial firms.

	● Supply chain networks: Along supply chains, there are dependencies and financial flows.

By demonstrating how information spreads, how sentiment changes, and how various market 
segments affect one another, network analysis provides a potent lens through which to view 
market dynamics. It is a crucial tool for evaluating systemic risk, a viewpoint that central banks 
and regulators have now widely embraced because it enables modeling of contagion pathways 
and identification of systemically important institutions. It also supports diversification through 
cluster detection, feature selection, importance score determination, and unveiling hidden 
relationships between assets. Network models also provide insight into how news and analyst 
sentiment affect asset prices by tracking the flow of information through markets.

This chapter introduces key network theory concepts and their practical use in finance. It covers 
community detection to find hidden asset groups, centrality measures to identify influential 
actors, and fundamental structures such as nodes and edges. It also investigates network 
dynamics for modeling contagion and systemic risk. Formal definitions are paired with actual 
financial examples to discuss applications in investment management, such as portfolio 
construction, market prediction, and pattern recognition.

Concepts
Knowing the fundamentals of graph theory is necessary to comprehend financial systems from a 
network perspective. These elements offer the framework for modeling complex dependencies.2

Nodes
Nodes or vertices are the basic components or entities that make up a network. They stand in 
for the actors or objects in the system that is being modeled. The definition and selection of a 
node are important decisions that depend solely on the particular financial system under study. 
Numerous entities can be represented by nodes:

	● Institutions, such as central banks, investment banks, mutual funds, and hedge funds

	● Corporations, such as nonfinancial businesses that participate in supply chains or credit 
relationships

	● Assets and factors, such as individual stocks, bonds, currencies, commodities, or 
derivatives, such as CDSs

2 A detailed explanation of these metrics can be found in Newman (2010) and Barabási (2016).
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	● People, such as market traders, stock analysts, board members, firm employees, and even 
politicians in policy networks

	● Geographic/political entities, such as nations, jurisdictions, communities, or areas involved 
in global networks of capital flows or trade

Financial network nodes are more than just abstract points; they also carry characteristics that 
give analysis crucial context. These attributes, such as the total assets of a bank, the sector or 
volatility of a stock, the credit rating of a company, or the GDP of a nation, aid in differentiating 
nodes and influence how network relationships are interpreted. A key first step in creating 
meaningful financial network models is defining nodes and their relevant attributes because 
this process establishes what relationships can be captured and what insights can be obtained.

Edges
The connections, relationships, interactions, or dependencies between pairs of nodes in 
a network are represented by edges, also referred to as links or arcs. They represent the 
connections between the nodes. In finance, they capture the way financial entities interact 
with one another. The following are examples:

	● Lending and borrowing: In an interbank network, an edge can stand in for a loan from Bank 
A to Bank B or a bank credit line to a business.

	● Association: Two stocks whose returns show a high degree of association can be connected 
by an edge. Association metrics, such as pairwise correlations between asset classes, are 
the most widely used tool to measure association and to draw edges in financial networks.

	● Counterparty: In a derivative contract (such as a CDS), an edge can stand in for the possible 
loss exposure between two parties.

	● Informational: Two stocks may be linked if they are covered by the same financial analyst.

	● Ownership: An edge may indicate that Firm A owns a sizable portion of Firm B’s stock.

	● Affiliation: Edges can connect businesses that share board members.

Edges in financial networks can have attributes that are essential for network analysis. The dif-
ference between directed and undirected edges is a crucial one. A relationship with a distinct 
origin and destination is indicated by directed edges, such as when Bank A lends to Bank B. 
The relationship’s direction is vital in these situations, particularly when simulating influence or 
contagion. Undirected edges, in contrast, show symmetrical or reciprocal relationships in which 
order is irrelevant, such as the correlation between two stocks.

Additionally, edges can be weighted or unweighted. Weighted edges, such as trading volume, 
correlation coefficients, or loan size, show how strong a relationship is. Ignoring these 
weights can result in a substantial loss of information because they provide important detail. 
Conversely, unweighted edges do not quantify the strength of a relationship; they show only 
whether one exists. They are helpful in situations where a connection’s existence is more sig-
nificant than its size. The adjacency matrix of a network is the one that carries the information 
about the pairwise weight structure.3

3 See the next section for detailed information about the adjacency matrix.
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To create precise and instructive financial network models, edges must be carefully defined, 
including their directionality and weighting. The outcomes of network analysis, including conta-
gion simulations and centrality calculations, are directly affected by these characteristics.

Exhibit 1 provides a simple example of the correlation-based network of the Dow Jones 
Industrial Average Index. The network consists of 30 nodes (stocks in the index), and according 
to the simple algorithm, there are 570 links between the nodes. Given the 30 nodes in the net-
works, the total number of possible links between all 30 nodes is 30 × 29 = 870. In other words, 
the algorithm’s output of 570 links between the nodes shows that not all nodes share a pairwise 
link between them. For example, American Express might not have a link to Amazon. Similarly, 
the edge between, say, Boeing and Visa might not exist.

Exhibit 1. A Simple Correlation-Based Network of the Dow Jones 
Industrial Average Index
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Path, Trails, Walks, Geodesic Distances, and Network Structure
Higher-level insights can be gained from the general arrangement and connectivity patterns 
of a network, which go beyond individual nodes and edges. A crucial distinction lies in the 
definitions of paths, trails, walks, and geodesic distances.

A path is a route in a network consisting of a sequence of nodes connected by edges. The terms 
geodesic, trail, path, and walk describe different types of node–edge sequences in a network. 
They differ in their constraints and the connectivity characteristics they represent.

A geodesic is the shortest path between two nodes in a network. It represents the most direct 
route, taking into account the network’s structure and any weights assigned to its edges (if appli-
cable). Geodesic distances are used to calculate various network metrics, such as average path 
length, network diameter, and centrality measures. The length of a path is determined by the 
number of edges it traverses; a path with a length of 1 consists of a single edge. For centrality met-
rics, such as closeness and betweenness, the shortest path between nodes is critical because it 
minimizes either total weight (in weighted graphs) or the number of edges (in unweighted graphs).

Paths are useful in finance for modeling complex transaction sequences, analyzing the propa-
gation of shocks through counterparties, and tracking the flow of information from analysts to 
investors. Konstantinov, Aldridge, and Kazemi (2023) extensively discussed the flow properties 
of financial networks. A walk is a sequence of nodes and edges in which each edge is adjacent 
to the previous one and both nodes and edges can be revisited. Walks can include loops and 
repeated edges. This property is typical in financial networks. A trail is similar to a walk, but 
no edge may be repeated, although nodes can still be revisited. For instance, a stock can be 
bought multiple times from the same brokerage house, but the exact transaction (edge) cannot 
be repeated. A path further restricts the sequence such that no node or edge is repeated. 
This type of sequence can be quite limiting in financial networks.

According to Newman (2010), some directed networks have a special structure called cycles. 
A cycle is a walk in which no node is repeated (except for the starting/ending node), forming 
a closed loop where all edges point in the same direction. Networks without such loops are 
referred to as acyclic directed networks, which are widely used in causal inference and prediction.

The primary differences between these sequences are the rules about revisiting nodes and 
edges. When analyzing flow processes in networks, each type of sequence can represent differ-
ent aspects of connectivity, traversal, or the spread of information. For example, geodesics can 
indicate the most efficient information flow between nodes. Thus, applying geodesic metrics to 
financial networks provides a generalizable framework for modeling relationships. The simplest 
way to model such relationships is through pairwise correlation metrics.

An important consideration in flow processes is whether money, information, or services 
reach a node only once, simultaneously, or multiple times. Financial flows often arrive at 
nodes repeatedly over time. For example, a portfolio’s exposure to certain assets may change 
frequently depending on the economic environment. In this context, systematic financial risk 
can become systemic, simultaneously impacting many nodes via multiple links, not necessarily 
along a single geodesic path.

Similarly, information can reach multiple points at once, spreading by replication rather than 
linear transfer and influencing many nodes simultaneously.
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In contrast, goods and packages are often transferred along geodesic paths—a model that may 
not always be appropriate for finance, where assets, factors, or institutions may be discon-
nected. Consider a hedge fund using a sophisticated quantitative strategy with minimal market 
exposure. In a hedge fund network, this fund might not be linked to others based on correla-
tion coefficients, meaning no directed path exists. Directionality in networks implies causality, 
a key concept in financial markets, although it is often difficult to detect. The direction of 
money, information, and technological impacts (e.g., high-frequency trading) reflects this cau-
sality. The processes of paths, trails, and walks help define how relationships form and evolve 
between nodes.

The underlying flow process—whether involving information, rumors, money, goods, services, 
orders, transactions, or financial contagion—is critical for network modeling. A major distinction 
lies in whether flows follow geodesics, trails, paths, or walks. In financial markets, money 
typically follows walks rather than trails, which is a defining characteristic of financial flow and 
essential for network analysis.

Based on mathematical graph theory, a network (or graph) is a collection of nodes (vertices) 
connected by edges (links). A network G is defined as a set of nodes n and edges m, formally 
expressed as G = (n, m).

There are two primary ways to construct a financial network:

	● by modeling the data at the edge level, keeping the nodes fixed, or

	● by modeling the network at the node level, with edges defined between them.

Mathematically, relationships between nodes are often represented using a matrix. Financial 
networks can be modeled by an adjacency matrix, where rows and columns represent nodes 
and each cell indicates the presence or strength of a connection.

In unweighted networks, entries in the adjacency matrix are binary (0 or 1), whereas in weighted 
networks, these entries are real numbers reflecting the strength or weight of the connection. 
Generally, in an unweighted network, the adjacency matrix has cell values [i, j] equal to 1 if 
there is a link from node i to node j and 0 otherwise. Using this notation, the result is a simple 
network whose main diagonal reflects self-edges. An example of self-edge (main diagonal 
of nonzeros) indicates that the node has a self-connectedness. Mathematically for a graph, 
G = (n, m), where n is the number of nodes and m is the number of edges, the n × n adjacency 
matrix is denoted by [A]ij and is estimated using following rule:

	
∈= 



 1  if node  and  are connected, or { , }
 0  otherwise ij

i j i j m
a 	

The adjacency matrix for an undirected network consisting of 30 nodes for the Dow Jones 
Industrial Index is shown in Exhibit 2.

Konstantinov and Fabozzi (2025) provided an extensive review of the useful and practical 
ways to construct financial networks. The approaches used to estimate the links between the 
assets include correlation coefficients, regression models, econometric models, probabilistic 
models that derive probabilities, evaluation of transaction and money flow volumes, assets 
under management, and all possible information that applies to exchange in financial markets.
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Exhibit 2. Adjacency Matrix

Goldman.Sachs 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1

UnitedHealth.Group 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0

Microsoft 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0

Home.Depot 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0

Caterpillar 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0

Sherwin.Williams 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1

Salesforce 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0

Visa.A 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0

American.Express 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0

McDonalds 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0

Amgen 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0

Apple 1 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0

Travelers 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0

JPMorgan.Chase 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1

Honeywell.International 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1

IBM 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1

Amazon 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0

Boeing 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0

Procter.Gamble 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1

Johnson.Johnson 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1

Chevron 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1

NVIDIA 1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1

3M 0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1

Disney 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1

Merck 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1

Walmart 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1

NIKE.B 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 1

Coca.Cola 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1

Cisco.Systems 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0

Verizon.Communications 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0
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Some structural features are frequently seen in real-world financial networks:

	● A core–periphery structure displays a densely connected core (mainly large players) sur-
rounded by a sparsely connected periphery (relatively smaller players). For instance, large 
international banks with extensive cross-border ties typically form the core of the global 
banking system, with national or regional banks that have fewer direct international ties 
encircling the core.

	● Scale-free networks have a power-law degree distribution, which means that although most 
nodes have few connections, a select few (hubs) have a lot of connections. These hubs 
frequently have a significant impact on the stability and operation of networks. A few 
big, highly linked banks serve as hubs in the interbank lending market, which frequently 
has a scale-free structure. Such a hub’s failure may have systemic repercussions that are 
disproportionately severe.

	● Small-world networks are characterized by short average path lengths between any two 
nodes and high clustering. Fast transmission throughout the network is made possible by 
this structure. Financial markets might frequently act like small-world networks, enabling 
information, sentiment, or shocks to spread remarkably quickly.

Understanding these structural patterns aids in understanding the general behavior, resil-
ience, and shock susceptibility of the network. The particular topology has a big impact on 
how information moves, how fast contagion spreads, and where systemic risks could be 
concentrated.

How to evaluate networks is an important question, and a graph theoretic toolkit allows us to 
measure the specific properties of a network. A classical financial network has specific proper-
ties, and the average degree, density, centrality scores, reciprocity, and clustering coefficient 
are the most important. The average degree ki of a node i and kj of node j at time t is the most 
basic structural property representation of the connections of a node in a network:

	 = = = =∑ ∑, , , , .i t j t ij t ji ti j

mk k a a
n

	

The density, or completeness, of a network, V, is given by the ratio between the numbers of 
current links relative to the number of all possible links between the nodes in the network:

	 ς =
−

.
 ( 1)

t
t

t t

m
n n

	

Here, m represents the number of links between nodes in the network and n represents the 
number of nodes. The density values range from 0 (no ties are present) to 1 (a completed 
network). A density value of 1 means all possible links are used.

The relation between the pairs of nodes in a directed network (a network with direction or 
flow, indicated by arrows) at time t is given by the value of reciprocity, t. The reciprocity mea-
sures whether a node i is linked to a node j and if a node j is also linked to a node i. The values 
range between 0 and 1 (with 1 for fully reciprocal network). Given the entries in the adjacency 
matrices, the reciprocity is given by
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A node pair (i, j) is called reciprocal if ties exist between both nodes in both directions.

Centrality Measures
After the network is defined, finding the most important nodes is a crucial task. Although 
influence can take many different forms, centrality measures assign scores based on a node’s 
position and connections. Selecting the appropriate measure depends on the information flow 
process because different measures quantify different aspects of the nodes. We discuss the 
most important measures of network properties.

Degree Centrality
The simplest measure, degree centrality, counts the number of direct connections a node 
has. It is denoted as deg(v), where v is the node. A high degree measure denotes a popular 
or active entity—for instance, a bank with many trading relationships or a frequently traded 
stock. To compare networks of varying sizes, a normalized version (by number of nodes) is 
frequently used.

If the network is directed, the number of incoming edges is called in-degree, and the number of 
outgoing edges is referred to as out-degree. A node with a high in-degree is one that receives 
a lot of connections or attention, such as a bank that borrows a lot and is therefore at risk of 
lender distress or a stock with a lot of buy recommendations. In contrast, a node with a high 
out-degree is a source of influence or risk, such as a bank lending to numerous people, which 
could spread distress if it fails.

Degree is often used as a measure of a node’s connectedness in networks. In real-world net-
works, the average degree typically exceeds 1, indicating that a node is connected to more than 
one other node. A higher average degree or greater overall connectedness increases the likeli-
hood of forming communities within the network.

One limitation of degree centrality is its exclusive focus on direct, immediate connections. 
This approach does not account for a node’s position within the broader network or its indirect 
influence via the connections of its neighbors. A node may have a high degree but be linked 
only to minor, peripheral nodes, limiting its actual influence. Furthermore, standard degree 
centrality ignores the weights of the edges, although this shortcoming can be addressed by 
defining a weighted degree centrality.

As noted by Konstantinov and Fabozzi (2025), the key advantage of degree centrality—and 
metrics that assess the degree of all nodes in a network—is its ability to measure the immedi-
ate impact of risk at the node level. In contrast, eigenvector centrality captures both direct and 
indirect long-term influence across the network.

Importantly, many mathematical models in network science place a central focus on degree 
distribution, which plays a foundational role in understanding the structure and dynamics of 
complex networks.
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Betweenness Centrality
The extent to which a node is situated on the shortest routes between any other pair of nodes 
in the network is measured by betweenness centrality. Developed by Linton C. Freeman, it 
gauges a node’s function as a bridge or middleman. The fraction of shortest paths between 
each pair of nodes (u,v) that pass through node s is added up using the following formula:

	
≠ ≠

σ
=

σ∑ ,

,

)
( ) ,

(u v

u v s
u v

s
C b 	

where su,v(s) is the number of shortest paths that go through s and su,v is the total number of 
shortest paths between u and v.

The application of betweenness centrality in financial networks depends on the underlying 
flow processes within the network. Unlike such metrics as closeness centrality, which assume 
random path selection, betweenness centrality is particularly appropriate for networks in which 
the flow of resources or information follows specific, predetermined paths.

A key assumption when applying betweenness centrality is that transactions or flows tend to 
follow the shortest paths between nodes. This assumption does not always hold in financial 
markets, however, where flows may follow more complex, indirect routes. As such, the applica-
tion of closeness centrality in financial contexts requires careful consideration and may not be 
universally appropriate.

Nodes with high betweenness centrality are identified as critical intermediaries that control or 
facilitate the movement of capital, information, or risk across the network. These may include 
banks that bridge market segments, clearinghouses, or major dealers in the financial industry. 
Betweenness centrality can also highlight bottlenecks or key links between otherwise discon-
nected institutions or investor groups.

A node with low betweenness is typically not essential for linking other nodes in the network. 
Although high betweenness scores often indicate influence, they may also reflect peripheral 
connectors between clusters. Therefore, interpreting these scores depends heavily on the 
context and structure of the specific financial network being analyzed.

Closeness Centrality
Closeness centrality measures the average distance between a node and every other reachable 
node in the network. This metric, based on the foundational work of Linton C. Freeman, is 
grounded in the idea that a node’s importance is inversely related to its geodesic distance from 
other nodes. It is calculated as the reciprocal of the sum of the shortest path distances from the 
node to all other nodes in the network.

A node with a higher closeness score (i.e., a lower average distance) can reach other nodes 
more quickly, indicating greater efficiency in communication or influence across the network.

In the context of financial networks, assets or institutions with high closeness centrality are 
assumed to respond more rapidly to information, shocks, or risk events compared with those 
that have lower scores. For example, a financial institution that is well positioned to quickly 
disseminate or receive contagion would likely exhibit a high closeness centrality value.
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The conventional formula for closeness is the inverse of the sum of distances:

	
≠ ′

′
−=

∑
1( ) ,
( , )

u u

NC v
d u u

	

where N is the number of nodes and ′( , )d u u  is the shortest path distance between the 
two nodes.

Differentiation can be challenging in highly connected networks because many nodes may have 
similar, high closeness scores. This measure is also sensitive to the overall structure of the net-
work. Finding all-pairs shortest paths is necessary for calculations, and for very large networks, 
this process can be computationally demanding.

Eigenvector Centrality
The idea behind eigenvector centrality is that a node’s significance is determined by the signif-
icance of the nodes it is connected to, not just by the number of connections it has. A node’s 
eigenvector centrality will be high if it is connected to numerous highly central nodes. The com-
ponents of the principal eigenvector of the network’s adjacency matrix (A), which corresponds 
to the largest eigenvalue (l), are mathematically known as the centrality scores (x):

	 = λx x.A 	

The key to identifying systemically significant institutions lies in eigenvector centrality, which 
captures nodes that are influential not only through their direct connections but also through 
links to other highly connected and influential nodes. Conversely, nodes with low eigenvector 
centrality are typically connected only to peripheral or less significant nodes.

An important property of eigenvector centrality is that it is only appropriate for analyzing nodes 
that are connected to at least one other node. If a node is completely disconnected from the 
rest of the network, eigenvector centrality assigns it a score of zero. This scoring may not 
accurately reflect the node’s importance, however, because it ignores exogenous factors that 
can affect a node’s role within the broader system.

A simple example illustrates this limitation. Consider an asset such as the risk-free rate, 
which may be temporarily disconnected from other assets in a financial network. In this case, 
eigenvector centrality would assign it a score of zero, implying no influence. This implication 
is misleading, however, because the risk-free rate is determined by exogenous factors—for 
instance, central bank policy—that have significant system-wide effects and influence the con-
nectivity and behavior of other assets in the network. Thus, although eigenvector centrality 
is a powerful tool for identifying influential nodes based on endogenous network structure, it 
should be interpreted carefully, especially in contexts where external forces play a key role in 
shaping network dynamics.

A direct comparison of four widely used centrality metrics provides insight into how importance 
scores vary among algorithms. Each centrality measure captures a distinct aspect of a node’s 
role within the network, resulting in different scores for the same node. In the corresponding 
network visualizations in Exhibit 3, larger node sizes represent higher importance scores based 
on the respective centrality metric. Exhibit 4 presents the numerical values associated with 
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each node under the four centrality measures. Obviously, a node’s centrality depends on the 
specific centrality metric used. For instance, a node with a high betweenness centrality score 
may not necessarily have a high eigenvector centrality score, because each metric captures 
different aspects of a node’s role within the network.

Exhibit 3. Overview of the Betweenness, Closeness, 
Eigenvector, and Degree Centrality of a Dow Jones 
Industrial Average Correlation-Based Network
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Exhibit 4. Centrality Scores for Betweenness, Closeness, 
Eigenvector, and Degree Centrality of a Dow Jones Industrial 
Average Correlation-Based Network

Eigenvector Closeness Betweenness Degree

Goldman.Sachs 0.69 0.71 0.01 34

UnitedHealth.Group 0.71 0.71 0.01 34

Microsoft 0.72 0.71 0.01 34

Home.Depot 0.69 0.69 0.01 32

Caterpillar 0.56 0.64 0.00 26

Sherwin.Williams 0.95 0.85 0.02 48

Salesforce 0.66 0.69 0.01 32

Visa.A 0.77 0.74 0.01 38

American.Express 0.71 0.71 0.01 34

McDonalds 0.65 0.67 0.01 30

Amgen 0.62 0.67 0.01 30

Apple 0.70 0.71 0.01 34

Travelers 0.83 0.76 0.01 40

JPMorgan.Chase 0.79 0.74 0.01 38

Honeywell.International 0.99 0.91 0.03 52

IBM 0.66 0.69 0.01 32

Amazon 0.69 0.71 0.01 34

Boeing 0.75 0.72 0.01 36

Procter.Gamble 1.00 0.91 0.03 52

Johnson.Johnson 0.75 0.74 0.01 38

Chevron 0.88 0.81 0.02 44

NVIDIA 0.77 0.74 0.01 38

3M 0.69 0.71 0.01 34

Disney 1.00 0.88 0.02 50

Merck 0.85 0.78 0.01 42

Walmart 0.94 0.85 0.02 48

NIKE.B 0.84 0.78 0.02 42

Coca.Cola 0.87 0.81 0.02 44

Cisco.Systems 0.81 0.76 0.01 40

Verizon.Communications 0.65 0.67 0.00 30
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A simple comparison illustrates the point. Consider the eigenvector centrality of Goldman 
Sachs (GS), and compare it with the degree and closeness centrality that GS has in the net-
work. Recall that eigenvector centrality assigns a higher score to a node that is itself con-
nected to other highly connected nodes. Degree centrality measures the total number of links 
that a specific node has to other nodes. In this respect, GS has a relatively high eigenvector 
centrality (0.69) and is highly connected to other highly connected nodes, but its degree 
of 34 is in the lower percentile of degree connectedness. That is, GS has 34 edges to other 
nodes. The eigenvector centrality, however, indicates that GS is not connected to highly 
connected nodes.

Community Detection
Network analysis offers powerful tools not only for identifying individually significant nodes 
but also for uncovering structural patterns, such as clusters of nodes that are more closely con-
nected to each other than to the rest of the network. These groups are commonly referred to as 
modules, communities, or components. Identifying such communities helps reveal the under-
lying structure of a network, providing insights into shared characteristics, functional relation-
ships, and potential vulnerabilities within financial systems.

A community is typically defined as a subset of nodes within a network where the density of 
internal connections is significantly higher than the density of connections between that subset 
and the rest of the network. The emergence of community structure depends on the network 
regime. A network is said to be in a connected regime when it forms cohesive components or 
communities. The average degree of nodes in the network plays a critical role in this dynamic: 
Once it exceeds a certain threshold, the network begins to form a connected component.

To identify these communities, community detection algorithms aim to maximize the number 
of intracommunity links while minimizing intercommunity links. These algorithms divide the 
network into distinct (and sometimes overlapping) communities, and at a coarser resolution, 
this process effectively reveals the network’s global structural organization.

Finding communities in financial networks enables the discovery of significant clusters that may 
not be visible through node-level analysis alone. The following list provides examples:

	● Banking groups: Groups of banks with comparable balance sheets or a high level of 
interbank activity indicate shared vulnerabilities or concentrated risk.

	● Asset communities (clusters): Diversification is aided by identifying sectors or risk expo-
sures by classifying assets based on strong return correlations. Unlike static classifications, 
such as GICS, these clusters can capture dynamic market structures.

	● Functional modules: Communities in supply chains or financial systems frequently repre-
sent groups carrying out related tasks.

	● Shared interest groups: Communities in financial information networks identify groups that 
share information sources, tactics, or interests.

Exhibit 5 provides an example for the community detection of the Dow Jones Industrial Average 
Index according to a correlation-based network and the Cluster Spinglass algorithm according 
to the highest modularity score.
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Measuring Community Structure
Assessing the quality of a particular network partition is a major challenge in community 
detection. The most popular metric for this assessment is modularity.

By comparing the number of edges that actually fall within the suggested communities with 
the number that would be predicted if edges were dispersed randomly throughout the network 
while maintaining each node’s degree, modularity quantifies how well a network is divided into 

Exhibit 5. A Correlation-Based Network for the Dow Jones 
Industrial Average Index
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communities. Strong community structure is indicated by a high modularity score, which means 
that the identified communities are much more densely connected internally and sparsely con-
nected externally than would be predicted by chance. Usually, modularity values fall between 
−0.5 and 1. In real-world networks, values higher than roughly 0.3 are frequently regarded as 
suggestive of substantial community structure.

The following formula suggested by Clauset, Newman, and Moore (2004) is used to determine 
the modularity, Q, for a network’s partition C with adjacency matrix A:4
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where Aij is the weight of the edge connecting nodes i and j (1 if connected and unweighted 
and 0 otherwise). = ∑i ijj

k A  is the weighted degree of node i. = ∑ ,

1
2 iji j

M A  is the network’s total 

number of edges (or weight sum). The community that node i is assigned to is called Ci. d(Ci,Cj) 
is the Kronecker delta, which is 0 if nodes i and j are not in the same community and 1 other-
wise. In this formula, the difference between the expected and actual edge weights for every 
pair of nodes in the same community is added up.

For many community detection algorithms, modularity serves as both an objective function 
and an evaluation metric. One widely used algorithm, the Louvain method, specifically seeks 
the network partition that maximizes the modularity score. The choice and performance of 
community detection algorithms depend significantly on the type of graph (e.g., directed vs. 
undirected) and its characteristics.

According to Yang, Algesheimer, and Tessone (2016), algorithm selection should consider 
network size (number of nodes), number of edges, and the mixing parameter—a measure 
of how well defined the communities are. Networks with fewer than 1,000 nodes are gen-
erally considered small, and most standard algorithms, including Louvain, Spinglass, and 
fast greedy, are well suited for these. For larger networks, such algorithms as Multilevel, 
Walktrap, and Infomap may be more appropriate, particularly as computational efficiency 
becomes critical.

Community Detection Models
A variety of algorithms have been developed to identify communities in networks. These can be 
broadly categorized by their methodology:

	● Bottom-up approaches begin with each node as its own community and merge communi-
ties based on such criteria as modularity gain.

	● Top-down approaches start with the full network and iteratively split it, often by removing 
edges with high betweenness centrality.

	● Optimization-based methods aim to maximize a quality function (e.g., modularity) using 
heuristics.

4 See Newman (2010) and Bech and Atalay (2010).
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Other techniques include random walks, spectral clustering, and statistical inference. 
Commonly used algorithms in financial applications include Louvain, Girvan–Newman, 
hierarchical clustering, and k-means.

Louvain Method

The Louvain algorithm is a greedy optimization technique that operates in two iterative stages 
to maximize modularity:

	● Local optimization phase: Each node begins in its own community. Nodes are moved to 
neighboring communities if such moves increase modularity. This process continues until 
no further improvement is possible.

	● Aggregation phase: Identified communities are collapsed into “super-nodes,” forming 
a new network with weighted edges reflecting the total connections between groups. 
The two-phase process repeats on the new network until modularity no longer increases.

The Louvain method is widely applied in finance to group large sets of stocks based on correla-
tion matrices, identifying risk groups or sectors for portfolio construction.

Girvan–Newman Algorithm

This algorithm identifies communities by progressively removing edges with the highest edge 
betweenness centrality—those that frequently appear in the shortest paths between nodes. 
In finance, this approach can be useful for detecting correlated asset clusters or uncovering 
cohesive subgroups within interbank networks.

Hierarchical Clustering

Hierarchical clustering creates a tree-like structure (dendrogram) of clusters. Variants include 
the following:

	● Single linkage—based on the minimum distance

	● Average linkage—based on the average distance

	● Complete linkage—based on the maximum distance

Typically, correlation is used as the similarity metric. This method is popular for asset clustering.

k-Means Clustering

In k-means, nodes are grouped into a predefined number (k) of clusters by minimizing the 
distance between each node and its assigned cluster center. Although simple, this process 
requires prior specification of k and is commonly used for clustering stocks or clients in the 
financial sector.

The optimal choice of algorithm depends on the network size, network type (weighted/
unweighted, directed/undirected), computational resources, and analytical objectives. Because 
different algorithms may produce distinct community structures from the same dataset, it is 
crucial to understand their assumptions and test the robustness of the results.
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Case Study: Asset Clustering
A well-known application of community detection in finance is grouping financial 
assets (usually stocks) for the purpose of portfolio diversification. The central idea 
is that assets in different clusters behave more independently, whereas those in the 
same cluster exhibit similar behavior (e.g., high return correlation). This strategy can be 
implemented as follows:

1.	 Compute pairwise correlations between asset returns over a specified period.

2.	 Convert the correlation coefficients (ρ) into a distance metric (d) using a transfor-
mation such as = − ρ )2(1ij ijd . This step is necessary because correlation coeffi-
cients should be converted to Euclidean distance metrics.

3.	 Apply a community detection algorithm (e.g., Louvain, Spinglass, fast greedy, 
leading eigenvector, Walktrap, or Multilevel) on the resulting network.

4.	 Select representative assets from each cluster. Selection criteria may include node 
centrality, cluster size, or other financial metrics.

The effectiveness of a cluster-based investment strategy can be assessed by compar-
ing portfolio performance with benchmarks or peer strategies. Standard evaluation 
tools include the Sharpe ratio, the information ratio, and factor exposure analysis. 
These metrics help determine whether the identified clusters and community 
structures contribute meaningfully to risk-adjusted returns.

Network Dynamics
Financial systems are inherently dynamic and evolving. Modeling these dynamics—especially 
the spread of shocks and the emergence of systemic risk—is a core application of network 
theory. Mathematical models from network analysis provide essential tools for evaluating these 
network dynamics across different market cycles. Key structural metrics used to capture and 
assess financial network behavior include the following:

	● Edge density

	● Reciprocity (in directed networks)

	● Assortativity degree

	● Transitivity

	● Mean distance

	● Diameter

	● Mean degree

These measures help reveal patterns in connectivity and vulnerability, offering insights into how 
financial systems adapt and destabilize under stress.
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Systemic Risk
Following Konstantinov and Fabozzi (2025), the focus in assessing systemic risk lies not solely 
on its origins—often stemming from external factors, such as macroeconomic shifts, financial 
distress among key institutions, or sovereign crises—but also on how it spreads and permeates 
through the network. Thus, systemic risk analysis focuses on the potential failure of individual 
nodes within the system because their risk exposures can precipitate broader systemic reper-
cussions. Nodes play a pivotal role here because this analysis indicates which nodes are most 
susceptible to being affected, either simultaneously or in a specific sequence.

Systemic risk is the possibility that a single shock or failure will set off a series of events that 
could cause the financial system to collapse or be severely disrupted, affecting its functionality 
and potentially impacting the real economy. It is an emergent characteristic resulting from the 
interdependence of financial institutions and their group dynamics.

To properly understand the meaning of systemic risk, financial contagion, and spillover, it is 
necessary to understand the metrics that describe networks and capture interconnectedness. 
Following Konstantinov and Fabozzi (2025), financial networks are characterized by specific met-
rics. A thorough understanding of these metrics is critical for understanding network dynamics 
and interconnectedness. Some common network properties include size, degree, density, and 
community structure, among others. According to Konstantinov and Fabozzi (2025), “These 
metrics refer to the overall properties of a network and aim to describe its underlying structure. 
The structure of network connectedness depends on the underlying information flow process, 
or how nodes interact over the edges.” The metrics that describe the concentration of intercon-
nectedness and the degree of nodal connectedness deserve special attention.

	● Role of density: Network connectivity and financial stability have a complicated relationship 
that is frequently characterized as “robust yet fragile.” Although fully connected networks 
offer maximum diversification, moderate connectivity can increase resilience by distrib-
uting minor shocks across more institutions. In other words, a network with few links is 
more fragile than a network with a large number of links. However, higher connectivity has 
the potential to magnify significant shocks beyond a certain threshold, facilitating quicker 
contagion and enhancing systemic fragility. As a result, there is a tipping point at which 
additional links cause the system to become unstable rather than stable.

	● Role of concentration: Das (2016) showed that even when the overall level of connectivity 
is the same, financial systems with highly concentrated exposures are typically more sus-
ceptible to contagion and systemic risk than systems with more dispersed exposures. In a 
concentrated system, partners may suffer catastrophic losses if a major counterparty fails.

High-centrality nodes often play a critical role in systemic risk. Hubs—measured by degree, 
or eigenvector—are systemically important financial institutions whose failure can trigger 
widespread contagion, making their identification essential for regulation. Bridges, character-
ized by high betweenness centrality, act as key intermediaries, and their failure can disrupt the 
flow of capital or information across the network.

Because of both confidentiality and complexity, a major barrier to financial network modeling is 
limited data. Regulators frequently have access to only a portion of the data, such as aggregate 
exposures. Although such methods as sparse reconstruction and maximum entropy aid in esti-
mating network structure, they may understate systemic risk if they fail to account for network 
sparsity or assume uniform link weights.
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Financial Contagion and Spillover
Risk propagation in financial networks has been studied using mathematical epidemiology 
models because of the similarities between financial contagion and disease spread. Financial 
contagion occurs when a shock or distress event originating in one part of the financial system 
(e.g., an institution, market segment, or asset class) spreads across the network, potentially 
causing systemic failures or widespread instability. This process is often compared with epi-
demic spread or a domino effect, driven by the intricate interconnectedness of financial entities. 
There are two broad channels of contagion:

	● Direct linkages: These arise from explicit contractual obligations between financial institu-
tions. For example, if Institution A defaults on a loan owed to Institution B (as in interbank 
lending), Institution B may suffer direct financial losses. These losses can impair its ability 
to meet obligations, possibly triggering further defaults.

	● Indirect linkages: These occur without direct contractual ties, operating through market- 
wide mechanisms, such as liquidity herding, fire sales of assets, information contagion, 
or common asset exposures.

Indirect and direct channels often interact. For instance, a direct counterparty loss may induce 
fire sales, which depress asset values and spark funding runs, escalating the contagion. 
Network models aim to capture and simulate these complex interactions, offering regulators 
and analysts a way to assess vulnerability propagation paths.

Case Study: Global Financial Crisis in 2008
Financial shocks can be amplified by network structure, as the 2008 crisis showed. 
Through a highly interconnected system that included repos, interbank lending, and 
complex derivatives, such as mortgage-backed securities, collateralized debt obliga-
tions, and CDSs, what started as losses in the US subprime mortgage market swiftly 
spread throughout the world. The September 2008 collapse of Lehman Brothers, 
a major market node, sparked widespread concerns about counterparty risk. This 
heightened concern resulted in repos and interbank lending being frozen, demonstrat-
ing how the collapse of a major institution can cause systemic instability. The risk of 
direct contagion was also made evident by AIG’s near default. Because AIG had sold 
significant amounts of CDS protection to big banks, its failure would have resulted in 
massive losses all at once, necessitating a government bailout to stop further collapse. 
The crisis was made worse by fire sales.

The global financial crisis emphasized how important it is to adopt a regulatory approach 
that goes beyond the solvency of individual institutions and specifically takes into 
account both network interconnectedness and systemic risk. Tools for network analysis 
became crucial for comprehending these weaknesses. The crisis brought to light the 
system’s “robust-yet-fragile” nature: Interconnectedness that could withstand minor 
shocks turned into a pathway for catastrophic failure when those shocks grew too big.
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Investment Management
Network theory provides useful tools and perspectives for investment management prac-
titioners engaged in portfolio construction, market prediction, and pattern recognition, 
in addition to risk management and regulatory oversight.

Diversification in Portfolio Construction: Modern Portfolio 
Theory vs. Network Theory
Expected returns, variances, and the pairwise covariance matrix of assets are the main compo-
nents of traditional portfolio construction, which is dominated by Markowitz’s mean–variance 
optimization (MVO). MVO has real-world drawbacks, however, such as sensitivity to errors in 
input estimation (particularly expected returns) and potentially unstable or unduly concentrated 
allocations. Through the explicit incorporation of the richer structure of asset relationships 
uncovered by network analysis, network-based approaches seek to improve or offer alterna-
tives. A direct relationship exists between the MVO framework and network centrality scores, 
which is extensively discussed in Zareei (2019), Ciciretti and Pallotta (2024), and Konstantinov 
and Fabozzi (2025), among others.

For a minimization of portfolio risk, the mathematical algorithm searches for all possible 
weights w that minimize the portfolio risk captured by the portfolio variance σ2

PF, which is 
a weighted product of the individual weights and the variance–covariance matrix, Σ = [σij] 
(see Konstantinov, Fabozzi, and Simonian 2023). That is,
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where w is a transposed n-dimensional vector of portfolio weights and Σ is the n-dimensional 
variance–covariance matrix of the portfolio assets. The variable x represents the portfolio 
return, while L represents the minimum return value that the portfolio must satisfy. The weights 
that satisfy the optimizations are
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where S−1 is the inverse covariance matrix and 1 represents vectors of ones.

Using the notion of the covariance matrix, S, that it is a product of the correlation matrix, W, and 
the diagonal matrix, D, whose entries are the variances with σ = σi ij , then the relationship is 
S = DWD and the weights subject to the correlation matrix are
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Considering the mean–variance framework, the diversification, or minimum risk given the 
expected level of return as measured by the portfolio variance and return E(r), is computed 
as follows:

	 σ = Σ =′ ′2min  with ( ).PF PFw
w w R w E r 	
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As a result, the weights of the mean–variance framework are a function of the expected 
portfolio returns and the covariance matrix of the assets, which gauges risk:
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where S−1 is the inverse covariance matrix, E(r) represents vectors of expected asset returns, and 
RPF is the portfolio return. Similarly, we can obtain the weights in the mean–variance framework 
using the correlation matrix.

In contrast, in network theory, diversification in a network context is identified by weaker 
relationships between nodes in a graph. The shorter the distances between nodes, the 
greater the potential impact of risk transmission. This limitation, as noted by Peralta and 
Zareei (2016) and Zareei (2019), has been addressed and relaxed by Konstantinov (2022), 
whose approach has found broader application in portfolio allocation, as discussed later in 
this chapter. Fundamentally, the transfer of risk between nodes is central when using networks 
for portfolio allocation.

It is important to highlight that centrality scores—such as degree, eigenvector, or alpha central-
ities—are critical here because they help identify how risk might flow and affect nodes. Degree 
centrality is not the preferred score, however, because it measures only the immediate connect-
edness of a node, whereas other centrality metrics capture the more nuanced interconnected-
ness and influence of a node within the network.

When network theory is applied to portfolio construction, several methods can be used to 
heighten the diversification of asset portfolios, including the following:

	● Network-based asset selection: These techniques seek to combine related assets to ensure 
diversified portfolio exposure across various sources of risk and return.

	● Community detection on association, probabilistic, or statistical networks: To find clusters 
of co-moving assets, such algorithms as Louvain, Spinglass, leading eigenvector, or fast 
greedy provide efficient ways to detect community affiliations with differing factor expo-
sures. Hierarchical clustering or k-means methods are applied to asset correlation or dis-
tance matrices. Instead of relying on static classifications, selecting representative assets 
from each cluster can improve diversification and better capture changing market struc-
tures. This approach does not require a specific network formulation and is widely used 
in finance.

	● Graph filtering: The minimum spanning tree (MST) method highlights important relation-
ships and hierarchies by extracting simplified structures from dense correlation matrices. 
MST connects all assets with the smallest possible total edge distances. Asset selection 
can be guided by examining these structures (e.g., central versus peripheral nodes). Some 
research has shown that portfolios constructed from peripheral MST nodes exhibit strong 
performance. However, a major drawback of using MST to visualize graphs is that important 
links might be omitted. Therefore, MST should be used with great caution.

	● Network-based weighting schemes: Network principles can also guide capital distribution 
among assets after selection.
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	● Centrality-based weighting: The position of an asset in the network is directly used for 
weighting. There is an inverse relationship between centrality scores and the weights 
assigned in the minimum-variance framework. Consequently, peripheral assets are favored, 
potentially lowering contagion risk. This decision, however, may vary depending on market 
conditions. Expected returns also play an essential role because centrality-based algorithms 
focus on risk and interconnectedness but do not account for expected return impacts. 
Other centrality metrics can be applied to better integrate expected returns.

	● Fundamental networks: These link assets not only by price movements but also by financial 
fundamentals (such as profits). To enhance diversification, more capital is allocated to 
assets that are fundamentally distinct from others. Financial research offers examples of 
leveraging such information with centrality metrics and risk management tools.

	● Hierarchical risk parity of a community structure: By using clustering to group similar 
assets, this model distributes capital among groups to achieve a more balanced risk 
allocation (see Raffinot 2018).

	● Network risk parity: A variant of hierarchical risk parity, this method uses an asset’s degree 
of network connectivity based on risk. To reduce exposure to systematic risks that might 
become systemic, assets less central in the network are given more weight.

As the number of assets increases, these network-based techniques aim to achieve more robust 
diversification and potentially better risk-adjusted performance than traditional methods rely-
ing solely on pairwise statistics. They do so by explicitly leveraging the topological structure of 
asset relationships.

Market Prediction
Network theory offers frameworks and inputs for forecasting market movements and creating 
innovative trading tactics. Profitable opportunities or information about future price behavior 
can be found in the structure of connections between entities. Predictive signals can also be 
derived from network properties, such as reciprocity, edge density, clustering coefficients, and 
change in degree centralities.5 Variations in network density or structure may indicate changes 
in market volatility or regimes. Spillover effects, in which the actions of related entities affect 
the performance of a target entity in the future, can be captured by network analysis and 
applying appropriate network metrics, such as network nodal entropy, Ricci curvature, fragility, 
or criticality indicators.6

One area of quantitative finance that is expanding quickly is the fusion of network science 
and artificial intelligence, specifically machine learning and deep learning. Although more 
straightforward techniques can still be competitive, deep neural networks (DNNs) frequently 
outperform conventional models in forecasting stock returns. Adjusting to shifting market 
conditions is a major challenge in these models; by modifying regularization according to recent 
performance, however, such strategies as online early stopping are helpful.

5 See Das (2016) and Konstantinov, Chorus, and Rebmann (2020) for several network-based indicators to predict 
market behavior.
6 See Konstantinov and Fabozzi (2025) for extensive discussion and estimation of risk indicators in portfolio 
management.



AI in Asset Management: Tools, Applications, and Frontiers

38    CFA Institute Research Foundation

Graph neural networks (GNNs) are a category of DNNs that are perfect for modeling financial 
relationships such as stock interdependencies because they can learn from both node fea-
tures and network structure, modeling the dependencies between entities. A trading GNN, 
for instance, has been proposed as a way to calculate the impact of assets, dealers, and their 
relationships on prices (Wu 2025).

By using attention scores to weight neighbors differently, graph attention networks outperform 
GNNs in identifying the most pertinent connections. This ability helps with stock prediction and 
portfolio optimization in financial networks where relationships are complex and have different 
levels of importance.

Conclusion
As this chapter has shown, applying network theory to financial markets and institutions offers 
finance professionals useful tools and insightful perspectives. The intricate reality of inter-
connectedness is not captured by the conventional perspective of isolated actors or homo-
geneous systems. Network theory provides a strong framework for explicitly modeling these 
connections.

The integration of AI, the use of multiplex and multilayer networks, developments in explainable 
AI (XAI) for improved interpretability, and the inclusion of alternative data sources are some new 
trends in the application of network theory to finance.

Although network analysis provides insightful information, some obstacles exist for applying 
it in finance. Because data on exposures such as loans or derivatives are often confidential, 
practitioners are forced to work with partial or proxy data, which introduces potential biases. 
Complexity, speed, and interpretability must all be balanced in advanced models, which can be 
computationally taxing, particularly for dynamic or AI-driven models. Additionally, there is no 
one-size-fits-all tool. The data, research question, and objectives must all be considered when 
selecting a network structure, metrics, or algorithms. Drawing reliable conclusions requires an 
understanding of each tool’s limitations.
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