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Introduction

Decision making and risk assessment have traditionally been grounded in core financial models.
These models have encountered challenges as global interdependencies have grown in com-
plexity as financial markets evolve. Many classical models approach the market as either a
collective system with uniform interactions or groups of unconnected systems where actors
make autonomous decisions. These overly simplified approaches have proved incorrect in many
incidents, such as the financial crisis of 2007-2008 and the COVID-19 pandemic. The failure of
Lehman Brothers and the near-collapse of AlG highlighted how distress is capable of rapidly
spreading from one region of the system to another, revealing hidden links and vulnerabilities.
Conventional models did not foresee these vulnerabilities. These events revealed the sobering
truth that the interconnectivity of financial institutions and the system is much more intricate
than the models of the time could capture and that the interexposures between institutions

are crucial to the systemic stability of the structure. This crisis proves that models are blind

to emerging risks if relationships between players add up in unpredictable asymmetric ways.

To respond to the challenge of managing systemic risk, one needs tools that identify and struc-
ture relationships to analyze connections, no matter how unconventional the direction might be.’

A powerful and intuitive framework for overcoming these constraints is provided by network
theory, a discipline with roots in graph theory. It offers mathematical language for investigating
systems made up of distinct entities (represented as nodes or vertices) and the connections

or interactions among them (represented as links or edges). This method has shown promise
in a wide range of fields, including biology, computer science, transportation, and the

social sciences.

Network analysis is a natural fit for financial systems. Markets, assets, financial institutions, and
even information flows are all interconnected. These relationships create intricate networks
that support the dynamics of the market. Practitioners can examine the true structure of market
interactions and go beyond oversimplified assumptions by depicting these varied financial
relationships as networks. The following are examples of networks:

e Interbank lending networks: A vital network for distributing liquidity is created when banks
lend to and borrow from one another.

TFundamental literature on networks includes Wasserman and Faust (1994), Newman (2010), Barabasi (2016), and Borgatti,
Everett, Johnson, and Agneessens (2022). Financial networks are extensively analyzed by Diebold and Yilmaz (2015).
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e Asset and factor networks: By comparing price movements of stocks, bonds, commodities,
currencies, or factors, one can identify community structures, relationships, associations,
and interactions that improve diversification.

e Ownership networks: Ownership links are created by businesses that own stock in other
businesses.

e Derivative networks: Counterparty exposures in derivative contracts, such as credit default
swaps (CDSs), create a web of contingent liabilities.

e Bank-firm networks: The financial sector is connected to the actual economy through
lending relationships between banks and nonfinancial firms.

e Supply chain networks: Along supply chains, there are dependencies and financial flows.

By demonstrating how information spreads, how sentiment changes, and how various market
segments affect one another, network analysis provides a potent lens through which to view
market dynamics. It is a crucial tool for evaluating systemic risk, a viewpoint that central banks
and regulators have now widely embraced because it enables modeling of contagion pathways
and identification of systemically important institutions. It also supports diversification through
cluster detection, feature selection, importance score determination, and unveiling hidden
relationships between assets. Network models also provide insight into how news and analyst
sentiment affect asset prices by tracking the flow of information through markets.

This chapter introduces key network theory concepts and their practical use in finance. It covers
community detection to find hidden asset groups, centrality measures to identify influential
actors, and fundamental structures such as nodes and edges. It also investigates network
dynamics for modeling contagion and systemic risk. Formal definitions are paired with actual
financial examples to discuss applications in investment management, such as portfolio
construction, market prediction, and pattern recognition.

Concepts

Knowing the fundamentals of graph theory is necessary to comprehend financial systems from a
network perspective. These elements offer the framework for modeling complex dependencies.?

Nodes

Nodes or vertices are the basic components or entities that make up a network. They stand in
for the actors or objects in the system that is being modeled. The definition and selection of a
node are important decisions that depend solely on the particular financial system under study.
Numerous entities can be represented by nodes:

e Institutions, such as central banks, investment banks, mutual funds, and hedge funds

e Corporations, such as nonfinancial businesses that participate in supply chains or credit
relationships

e Assets and factors, such as individual stocks, bonds, currencies, commodities, or
derivatives, such as CDSs

2A detailed explanation of these metrics can be found in Newman (2010) and Barabasi (2016).
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e People, such as market traders, stock analysts, board members, firm employees, and even
politicians in policy networks

e Geographic/political entities, such as nations, jurisdictions, communities, or areas involved
in global networks of capital flows or trade

Financial network nodes are more than just abstract points; they also carry characteristics that
give analysis crucial context. These attributes, such as the total assets of a bank, the sector or
volatility of a stock, the credit rating of a company, or the GDP of a nation, aid in differentiating
nodes and influence how network relationships are interpreted. A key first step in creating
meaningful financial network models is defining nodes and their relevant attributes because
this process establishes what relationships can be captured and what insights can be obtained.

Edges

The connections, relationships, interactions, or dependencies between pairs of nodes in

a network are represented by edges, also referred to as links or arcs. They represent the
connections between the nodes. In finance, they capture the way financial entities interact
with one another. The following are examples:

e Lending and borrowing: In an interbank network, an edge can stand in for a loan from Bank
A to Bank B or a bank credit line to a business.

e Association: Two stocks whose returns show a high degree of association can be connected
by an edge. Association metrics, such as pairwise correlations between asset classes, are
the most widely used tool to measure association and to draw edges in financial networks.

e Counterparty: In a derivative contract (such as a CDS), an edge can stand in for the possible
loss exposure between two parties.

¢ Informational: Two stocks may be linked if they are covered by the same financial analyst.
e Ownership: An edge may indicate that Firm A owns a sizable portion of Firm B's stock.

o Affiliation: Edges can connect businesses that share board members.

Edges in financial networks can have attributes that are essential for network analysis. The dif-
ference between directed and undirected edges is a crucial one. A relationship with a distinct
origin and destination is indicated by directed edges, such as when Bank A lends to Bank B.

The relationship's direction is vital in these situations, particularly when simulating influence or
contagion. Undirected edges, in contrast, show symmetrical or reciprocal relationships in which
order is irrelevant, such as the correlation between two stocks.

Additionally, edges can be weighted or unweighted. Weighted edges, such as trading volume,
correlation coefficients, or loan size, show how strong a relationship is. Ignoring these
weights can result in a substantial loss of information because they provide important detail.
Conversely, unweighted edges do not quantify the strength of a relationship; they show only
whether one exists. They are helpful in situations where a connection’s existence is more sig-
nificant than its size. The adjacency matrix of a network is the one that carries the information
about the pairwise weight structure.?

3See the next section for detailed information about the adjacency matrix.
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To create precise and instructive financial network models, edges must be carefully defined,
including their directionality and weighting. The outcomes of network analysis, including conta-
gion simulations and centrality calculations, are directly affected by these characteristics.

Exhibit 1 provides a simple example of the correlation-based network of the Dow Jones
Industrial Average Index. The network consists of 30 nodes (stocks in the index), and according
to the simple algorithm, there are 570 links between the nodes. Given the 30 nodes in the net-
works, the total number of possible links between all 30 nodes is 30 x 29 = 870. In other words,
the algorithm'’s output of 570 links between the nodes shows that not all nodes share a pairwise
link between them. For example, American Express might not have a link to Amazon. Similarly,
the edge between, say, Boeing and Visa might not exist.
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Exhibit 1. A Simple Correlation-Based Network of the Dow Jones
Industrial Average Index
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Path, Trails, Walks, Geodesic Distances, and Network Structure

Higher-level insights can be gained from the general arrangement and connectivity patterns
of a network, which go beyond individual nodes and edges. A crucial distinction lies in the
definitions of paths, trails, walks, and geodesic distances.

A path is a route in a network consisting of a sequence of nodes connected by edges. The terms
geodesic, trail, path, and walk describe different types of node-edge sequences in a network.
They differ in their constraints and the connectivity characteristics they represent.

A geodesic is the shortest path between two nodes in a network. It represents the most direct
route, taking into account the network'’s structure and any weights assigned to its edges (if appli-
cable). Geodesic distances are used to calculate various network metrics, such as average path
length, network diameter, and centrality measures. The length of a path is determined by the
number of edges it traverses; a path with a length of 1 consists of a single edge. For centrality met-
rics, such as closeness and betweenness, the shortest path between nodes is critical because it
minimizes either total weight (in weighted graphs) or the number of edges (in unweighted graphs).

Paths are useful in finance for modeling complex transaction sequences, analyzing the propa-
gation of shocks through counterparties, and tracking the flow of information from analysts to
investors. Konstantinov, Aldridge, and Kazemi (2023) extensively discussed the flow properties
of financial networks. A walk is a sequence of nodes and edges in which each edge is adjacent
to the previous one and both nodes and edges can be revisited. Walks can include loops and
repeated edges. This property is typical in financial networks. A trail is similar to a walk, but

no edge may be repeated, although nodes can still be revisited. For instance, a stock can be
bought multiple times from the same brokerage house, but the exact transaction (edge) cannot
be repeated. A path further restricts the sequence such that no node or edge is repeated.

This type of sequence can be quite limiting in financial networks.

According to Newman (2010), some directed networks have a special structure called cycles.

A cycle is a walk in which no node is repeated (except for the starting/ending node), forming

a closed loop where all edges point in the same direction. Networks without such loops are
referred to as acyclic directed networks, which are widely used in causal inference and prediction.

The primary differences between these sequences are the rules about revisiting nodes and
edges. When analyzing flow processes in networks, each type of sequence can represent differ-
ent aspects of connectivity, traversal, or the spread of information. For example, geodesics can
indicate the most efficient information flow between nodes. Thus, applying geodesic metrics to
financial networks provides a generalizable framework for modeling relationships. The simplest
way to model such relationships is through pairwise correlation metrics.

An important consideration in flow processes is whether money, information, or services

reach a node only once, simultaneously, or multiple times. Financial flows often arrive at

nodes repeatedly over time. For example, a portfolio's exposure to certain assets may change
frequently depending on the economic environment. In this context, systematic financial risk
can become systemic, simultaneously impacting many nodes via multiple links, not necessarily
along a single geodesic path.

Similarly, information can reach multiple points at once, spreading by replication rather than
linear transfer and influencing many nodes simultaneously.

CFA Institute Research Foundation

19




Al in Asset Management: Tools, Applications, and Frontiers

In contrast, goods and packages are often transferred along geodesic paths—a model that may
not always be appropriate for finance, where assets, factors, or institutions may be discon-
nected. Consider a hedge fund using a sophisticated quantitative strategy with minimal market
exposure. In a hedge fund network, this fund might not be linked to others based on correla-
tion coefficients, meaning no directed path exists. Directionality in networks implies causality,
a key concept in financial markets, although it is often difficult to detect. The direction of
money, information, and technological impacts (e.g., high-frequency trading) reflects this cau-
sality. The processes of paths, trails, and walks help define how relationships form and evolve
between nodes.

The underlying flow process—whether involving information, rumors, money, goods, services,
orders, transactions, or financial contagion—is critical for network modeling. A major distinction
lies in whether flows follow geodesics, trails, paths, or walks. In financial markets, money
typically follows walks rather than trails, which is a defining characteristic of financial flow and
essential for network analysis.

Based on mathematical graph theory, a network (or graph) is a collection of nodes (vertices)
connected by edges (links). A network G is defined as a set of nodes n and edges m, formally
expressed as G = (n, m).

There are two primary ways to construct a financial network:

e by modeling the data at the edge level, keeping the nodes fixed, or

e by modeling the network at the node level, with edges defined between them.

Mathematically, relationships between nodes are often represented using a matrix. Financial
networks can be modeled by an adjacency matrix, where rows and columns represent nodes
and each cell indicates the presence or strength of a connection.

In unweighted networks, entries in the adjacency matrix are binary (0 or 1), whereas in weighted
networks, these entries are real numbers reflecting the strength or weight of the connection.
Generally, in an unweighted network, the adjacency matrix has cell values [i, j] equal to 1 if
there is a link from node i to node j and 0 otherwise. Using this notation, the result is a simple
network whose main diagonal reflects self-edges. An example of self-edge (main diagonal

of nonzeros) indicates that the node has a self-connectedness. Mathematically for a graph,

G = (n, m), where n is the number of nodes and m is the number of edges, the n x n adjacency
matrix is denoted by [A]; and is estimated using following rule:

{1 if node i andj are connected, or {i,j}e m
a =
ij

0 otherwise

The adjacency matrix for an undirected network consisting of 30 nodes for the Dow Jones
Industrial Index is shown in Exhibit 2.

Konstantinov and Fabozzi (2025) provided an extensive review of the useful and practical
ways to construct financial networks. The approaches used to estimate the links between the
assets include correlation coefficients, regression models, econometric models, probabilistic
models that derive probabilities, evaluation of transaction and money flow volumes, assets
under management, and all possible information that applies to exchange in financial markets.
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Exhibit 2. Adjacency Matrix

Goldman.Sachs
UnitedHealth.Group
Microsoft
Home.Depot
Caterpillar
Sherwin.Williams
Salesforce

Visa.A
American.Express
McDonalds
Amgen

Apple

Travelers
JPMorgan.Chase
Honeywell.International
IBM

Amazon

Boeing
Procter.Gamble
Johnson.Johnson
Chevron

NVIDIA

3M

Disney

Merck

Walmart

NIKE.B
Coca.Cola
Cisco.Systems

Verizon.Communications

000000111011101011101101001111
000001111011101011101101001110
000001111011101010101101011110
0000010110111010170101101011110
000001010000001011111100011110
011110111111110011101101111111

111001000101011000111010111010
111111000100111101110011110100
111101000000111101110011110100
000001110010101010101101011110
111101000100011100110011110000
111101100000011101110011110100
111101011100011000111111110110
000001111011101011101101101111
111110111111110111011111111011

00000001101100101011010111T1111
1171111000100011100111011110000
110011011001011000111011111010
111111111111110111001111101111

000010111011101111001101101111
111111100100111011110011111101

111111000100111100110011111001
000000111011101011101100011111
111101011111 111111111100011111

0000011110111 1T11T11T111100011111

001T11T1111111101111001111101111

1171111100100011101111111110001

111111011101110100111011110011

111111100100111101110011110100
1000010000000111001T11111111100
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Some structural features are frequently seen in real-world financial networks:

e A core-periphery structure displays a densely connected core (mainly large players) sur-
rounded by a sparsely connected periphery (relatively smaller players). For instance, large
international banks with extensive cross-border ties typically form the core of the global
banking system, with national or regional banks that have fewer direct international ties
encircling the core.

e Scale-free networks have a power-law degree distribution, which means that although most
nodes have few connections, a select few (hubs) have a lot of connections. These hubs
frequently have a significant impact on the stability and operation of networks. A few
big, highly linked banks serve as hubs in the interbank lending market, which frequently
has a scale-free structure. Such a hub's failure may have systemic repercussions that are
disproportionately severe.

e Small-world networks are characterized by short average path lengths between any two
nodes and high clustering. Fast transmission throughout the network is made possible by
this structure. Financial markets might frequently act like small-world networks, enabling
information, sentiment, or shocks to spread remarkably quickly.

Understanding these structural patterns aids in understanding the general behavior, resil-
ience, and shock susceptibility of the network. The particular topology has a big impact on
how information moves, how fast contagion spreads, and where systemic risks could be
concentrated.

How to evaluate networks is an important question, and a graph theoretic toolkit allows us to
measure the specific properties of a network. A classical financial network has specific proper-
ties, and the average degree, density, centrality scores, reciprocity, and clustering coefficient
are the most important. The average degree k; of a node i and k; of node j at time t is the most
basic structural property representation of the connections of a node in a network:

k. =k = E a. :E a. =—.
it Jit it j Jiit n

The density, or completeness, of a network, ¢, is given by the ratio between the numbers of
current links relative to the number of all possible links between the nodes in the network:

m

M
(1)

Here, m represents the number of links between nodes in the network and n represents the
number of nodes. The density values range from 0 (no ties are present) to 1 (a completed
network). A density value of 1 means all possible links are used.

The relation between the pairs of nodes in a directed network (a network with direction or
flow, indicated by arrows) at time t is given by the value of reciprocity, g,. The reciprocity mea-
sures whether a node i is linked to a node j and if a node j is also linked to a node i. The values
range between 0 and 1 (with 1 for fully reciprocal network). Given the entries in the adjacency
matrices, the reciprocity is given by
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A node pair (i, j) is called reciprocal if ties exist between both nodes in both directions.

Centrality Measures

After the network is defined, finding the most important nodes is a crucial task. Although
influence can take many different forms, centrality measures assign scores based on a node’s
position and connections. Selecting the appropriate measure depends on the information flow
process because different measures quantify different aspects of the nodes. We discuss the
most important measures of network properties.

Degree Centrality

The simplest measure, degree centrality, counts the number of direct connections a node
has. It is denoted as deg(v), where v is the node. A high degree measure denotes a popular
or active entity—for instance, a bank with many trading relationships or a frequently traded
stock. To compare networks of varying sizes, a normalized version (by number of nodes) is
frequently used.

If the network is directed, the number of incoming edges is called in-degree, and the number of
outgoing edges is referred to as out-degree. A node with a high in-degree is one that receives

a lot of connections or attention, such as a bank that borrows a lot and is therefore at risk of
lender distress or a stock with a lot of buy recommendations. In contrast, a node with a high
out-degree is a source of influence or risk, such as a bank lending to numerous people, which
could spread distress if it fails.

Degree is often used as a measure of a node's connectedness in networks. In real-world net-
works, the average degree typically exceeds 1, indicating that a node is connected to more than
one other node. A higher average degree or greater overall connectedness increases the likeli-
hood of forming communities within the network.

One limitation of degree centrality is its exclusive focus on direct, immediate connections.
This approach does not account for a node's position within the broader network or its indirect
influence via the connections of its neighbors. A node may have a high degree but be linked
only to minor, peripheral nodes, limiting its actual influence. Furthermore, standard degree
centrality ignores the weights of the edges, although this shortcoming can be addressed by
defining a weighted degree centrality.

As noted by Konstantinov and Fabozzi (2025), the key advantage of degree centrality—and
metrics that assess the degree of all nodes in a network—is its ability to measure the immedi-
ate impact of risk at the node level. In contrast, eigenvector centrality captures both direct and
indirect long-term influence across the network.

Importantly, many mathematical models in network science place a central focus on degree
distribution, which plays a foundational role in understanding the structure and dynamics of
complex networks.

CFA Institute Research Foundation
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Betweenness Centrality

The extent to which a node is situated on the shortest routes between any other pair of nodes
in the network is measured by betweenness centrality. Developed by Linton C. Freeman, it
gauges a node's function as a bridge or middleman. The fraction of shortest paths between
each pair of nodes (u,v) that pass through node s is added up using the following formula:

cw)-y, 2o,

U#V#S o
u,v

where ¢, (s) is the number of shortest paths that go through s and ¢, is the total number of
shortest paths between u and v.

The application of betweenness centrality in financial networks depends on the underlying
flow processes within the network. Unlike such metrics as closeness centrality, which assume
random path selection, betweenness centrality is particularly appropriate for networks in which
the flow of resources or information follows specific, predetermined paths.

A key assumption when applying betweenness centrality is that transactions or flows tend to
follow the shortest paths between nodes. This assumption does not always hold in financial
markets, however, where flows may follow more complex, indirect routes. As such, the applica-
tion of closeness centrality in financial contexts requires careful consideration and may not be
universally appropriate.

Nodes with high betweenness centrality are identified as critical intermediaries that control or
facilitate the movement of capital, information, or risk across the network. These may include
banks that bridge market segments, clearinghouses, or major dealers in the financial industry.
Betweenness centrality can also highlight bottlenecks or key links between otherwise discon-
nected institutions or investor groups.

A node with low betweenness is typically not essential for linking other nodes in the network.
Although high betweenness scores often indicate influence, they may also reflect peripheral
connectors between clusters. Therefore, interpreting these scores depends heavily on the
context and structure of the specific financial network being analyzed.

Closeness Centrality

Closeness centrality measures the average distance between a node and every other reachable
node in the network. This metric, based on the foundational work of Linton C. Freeman, is
grounded in the idea that a node's importance is inversely related to its geodesic distance from
other nodes. It is calculated as the reciprocal of the sum of the shortest path distances from the
node to all other nodes in the network.

A node with a higher closeness score (i.e., a lower average distance) can reach other nodes
more quickly, indicating greater efficiency in communication or influence across the network.

In the context of financial networks, assets or institutions with high closeness centrality are
assumed to respond more rapidly to information, shocks, or risk events compared with those
that have lower scores. For example, a financial institution that is well positioned to quickly
disseminate or receive contagion would likely exhibit a high closeness centrality value.

24 e« CFAInstitute Research Foundation



Unsupervised Learning Il: Network Theory

The conventional formula for closeness is the inverse of the sum of distances:
N -1

Zuw’d(u'u’) ’

where N is the number of nodes and d(u,u’) is the shortest path distance between the
two nodes.

C(v)=

Differentiation can be challenging in highly connected networks because many nodes may have
similar, high closeness scores. This measure is also sensitive to the overall structure of the net-
work. Finding all-pairs shortest paths is necessary for calculations, and for very large networks,
this process can be computationally demanding.

Eigenvector Centrality

The idea behind eigenvector centrality is that a node's significance is determined by the signif-
icance of the nodes it is connected to, not just by the number of connections it has. A node's
eigenvector centrality will be high if it is connected to numerous highly central nodes. The com-
ponents of the principal eigenvector of the network’s adjacency matrix (A), which corresponds
to the largest eigenvalue (1), are mathematically known as the centrality scores (x):

Ax =2x.

The key to identifying systemically significant institutions lies in eigenvector centrality, which
captures nodes that are influential not only through their direct connections but also through
links to other highly connected and influential nodes. Conversely, nodes with low eigenvector
centrality are typically connected only to peripheral or less significant nodes.

An important property of eigenvector centrality is that it is only appropriate for analyzing nodes
that are connected to at least one other node. If a node is completely disconnected from the
rest of the network, eigenvector centrality assigns it a score of zero. This scoring may not
accurately reflect the node's importance, however, because it ignores exogenous factors that
can affect a node's role within the broader system.

A simple example illustrates this limitation. Consider an asset such as the risk-free rate,

which may be temporarily disconnected from other assets in a financial network. In this case,
eigenvector centrality would assign it a score of zero, implying no influence. This implication
is misleading, however, because the risk-free rate is determined by exogenous factors—for
instance, central bank policy—that have significant system-wide effects and influence the con-
nectivity and behavior of other assets in the network. Thus, although eigenvector centrality

is a powerful tool for identifying influential nodes based on endogenous network structure, it
should be interpreted carefully, especially in contexts where external forces play a key role in
shaping network dynamics.

A direct comparison of four widely used centrality metrics provides insight into how importance
scores vary among algorithms. Each centrality measure captures a distinct aspect of a node's
role within the network, resulting in different scores for the same node. In the corresponding
network visualizations in Exhibit 3, larger node sizes represent higher importance scores based
on the respective centrality metric. Exhibit 4 presents the numerical values associated with
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each node under the four centrality measures. Obviously, a node's centrality depends on the
specific centrality metric used. For instance, a node with a high betweenness centrality score
may not necessarily have a high eigenvector centrality score, because each metric captures

different aspects of a node's role within the network.

Exhibit 3. Overview of the Betweenness, Closeness,
Eigenvector, and Degree Centrality of a Dow Jones
Industrial Average Correlation-Based Network
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Exhibit 4. Centrality Scores for Betweenness, Closeness,
Eigenvector, and Degree Centrality of a Dow Jones Industrial
Average Correlation-Based Network

Eigenvector Closeness Betweenness Degree
Goldman.Sachs 0.69 0.71 0.01 34
UnitedHealth.Group 0.71 0.71 0.01 34
Microsoft 0.72 0.71 0.01 34
Home.Depot 0.69 0.69 0.01 32
Caterpillar 0.56 0.64 0.00 26
Sherwin.Williams 0.95 0.85 0.02 48
Salesforce 0.66 0.69 0.01 32
Visa.A 0.77 0.74 0.01 38
American.Express 0.71 0.71 0.01 34
McDonalds 0.65 0.67 0.01 30
Amgen 0.62 0.67 0.01 30
Apple 0.70 0.71 0.01 34
Travelers 0.83 0.76 0.01 40
JPMorgan.Chase 0.79 0.74 0.01 38
Honeywell.International 0.99 0.91 0.03 52
IBM 0.66 0.69 0.01 32
Amazon 0.69 0.71 0.01 34
Boeing 0.75 0.72 0.01 36
Procter.Gamble 1.00 0.91 0.03 52
Johnson.Johnson 0.75 0.74 0.01 38
Chevron 0.88 0.81 0.02 44
NVIDIA 0.77 0.74 0.01 38
3M 0.69 0.71 0.01 34
Disney 1.00 0.88 0.02 50
Merck 0.85 0.78 0.01 42
Walmart 0.94 0.85 0.02 48
NIKE.B 0.84 0.78 0.02 42
Coca.Cola 0.87 0.81 0.02 44
Cisco.Systems 0.81 0.76 0.01 40
Verizon.Communications 0.65 0.67 0.00 30
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A simple comparison illustrates the point. Consider the eigenvector centrality of Goldman
Sachs (GS), and compare it with the degree and closeness centrality that GS has in the net-
work. Recall that eigenvector centrality assigns a higher score to a node that is itself con-
nected to other highly connected nodes. Degree centrality measures the total number of links
that a specific node has to other nodes. In this respect, GS has a relatively high eigenvector
centrality (0.69) and is highly connected to other highly connected nodes, but its degree

of 34 is in the lower percentile of degree connectedness. That is, GS has 34 edges to other
nodes. The eigenvector centrality, however, indicates that GS is not connected to highly
connected nodes.

Community Detection

Network analysis offers powerful tools not only for identifying individually significant nodes

but also for uncovering structural patterns, such as clusters of nodes that are more closely con-
nected to each other than to the rest of the network. These groups are commonly referred to as
modules, communities, or components. Identifying such communities helps reveal the under-
lying structure of a network, providing insights into shared characteristics, functional relation-
ships, and potential vulnerabilities within financial systems.

A community is typically defined as a subset of nodes within a network where the density of
internal connections is significantly higher than the density of connections between that subset
and the rest of the network. The emergence of community structure depends on the network
regime. A network is said to be in a connected regime when it forms cohesive components or
communities. The average degree of nodes in the network plays a critical role in this dynamic:
Once it exceeds a certain threshold, the network begins to form a connected component.

To identify these communities, community detection algorithms aim to maximize the number
of intracommunity links while minimizing intercommunity links. These algorithms divide the
network into distinct (and sometimes overlapping) communities, and at a coarser resolution,
this process effectively reveals the network’s global structural organization.

Finding communities in financial networks enables the discovery of significant clusters that may
not be visible through node-level analysis alone. The following list provides examples:

e Banking groups: Groups of banks with comparable balance sheets or a high level of
interbank activity indicate shared vulnerabilities or concentrated risk.

e Asset communities (clusters): Diversification is aided by identifying sectors or risk expo-
sures by classifying assets based on strong return correlations. Unlike static classifications,
such as GICS, these clusters can capture dynamic market structures.

e Functional modules: Communities in supply chains or financial systems frequently repre-
sent groups carrying out related tasks.

e Shared interest groups: Communities in financial information networks identify groups that
share information sources, tactics, or interests.

Exhibit 5 provides an example for the community detection of the Dow Jones Industrial Average
Index according to a correlation-based network and the Cluster Spinglass algorithm according
to the highest modularity score.
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Exhibit 5. A Correlation-Based Network for the Dow Jones
Industrial Average Index

Source: Bloomberg, LLC.

Measuring Community Structure

Assessing the quality of a particular network partition is a major challenge in community
detection. The most popular metric for this assessment is modularity.

By comparing the number of edges that actually fall within the suggested communities with
the number that would be predicted if edges were dispersed randomly throughout the network
while maintaining each node's degree, modularity quantifies how well a network is divided into
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communities. Strong community structure is indicated by a high modularity score, which means
that the identified communities are much more densely connected internally and sparsely con-
nected externally than would be predicted by chance. Usually, modularity values fall between
-0.5and 1. In real-world networks, values higher than roughly 0.3 are frequently regarded as
suggestive of substantial community structure.

The following formula suggested by Clauset, Newman, and Moore (2004) is used to determine
the modularity, Q, for a network'’s partition C with adjacency matrix A:*

Q ! A k"kfscc
BRI s

where A; is the weight of the edge connecting nodes iandj (1 if co1nnected and unweighted
and 0 otherwise). k; = z A, is the weighted degree of node i. M :Ez A, is the network’s total
J I

number of edges (or weight sum). The community that node i is assigned to is called C.. §(C;,C)
is the Kronecker delta, which is 0 if nodes i and j are not in the same community and 1 other-
wise. In this formula, the difference between the expected and actual edge weights for every
pair of nodes in the same community is added up.

For many community detection algorithms, modularity serves as both an objective function
and an evaluation metric. One widely used algorithm, the Louvain method, specifically seeks
the network partition that maximizes the modularity score. The choice and performance of
community detection algorithms depend significantly on the type of graph (e.g., directed vs.
undirected) and its characteristics.

According to Yang, Algesheimer, and Tessone (2016), algorithm selection should consider
network size (humber of nodes), number of edges, and the mixing parameter—a measure
of how well defined the communities are. Networks with fewer than 1,000 nodes are gen-
erally considered small, and most standard algorithms, including Louvain, Spinglass, and
fast greedy, are well suited for these. For larger networks, such algorithms as Multilevel,
Walktrap, and Infomap may be more appropriate, particularly as computational efficiency
becomes critical.

Community Detection Models

A variety of algorithms have been developed to identify communities in networks. These can be
broadly categorized by their methodology:

e Bottom-up approaches begin with each node as its own community and merge communi-
ties based on such criteria as modularity gain.

e Top-down approaches start with the full network and iteratively split it, often by removing
edges with high betweenness centrality.

e Optimization-based methods aim to maximize a quality function (e.g., modularity) using
heuristics.

4See Newman (2010) and Bech and Atalay (2010).
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Other techniques include random walks, spectral clustering, and statistical inference.
Commonly used algorithms in financial applications include Louvain, Girvan-Newman,
hierarchical clustering, and k-means.

Louvain Method

The Louvain algorithm is a greedy optimization technique that operates in two iterative stages
to maximize modularity:

e Local optimization phase: Each node begins in its own community. Nodes are moved to
neighboring communities if such moves increase modularity. This process continues until
no further improvement is possible.

e Aggregation phase: Identified communities are collapsed into “super-nodes,” forming
a new network with weighted edges reflecting the total connections between groups.
The two-phase process repeats on the new network until modularity no longer increases.

The Louvain method is widely applied in finance to group large sets of stocks based on correla-
tion matrices, identifying risk groups or sectors for portfolio construction.

Girvan-Newman Algorithm

This algorithm identifies communities by progressively removing edges with the highest edge
betweenness centrality—those that frequently appear in the shortest paths between nodes.
In finance, this approach can be useful for detecting correlated asset clusters or uncovering
cohesive subgroups within interbank networks.

Hierarchical Clustering

Hierarchical clustering creates a tree-like structure (dendrogram) of clusters. Variants include
the following:

e Single linkage—based on the minimum distance

e Average linkage—based on the average distance

e Complete linkage—based on the maximum distance

Typically, correlation is used as the similarity metric. This method is popular for asset clustering.

k-Means Clustering

In k-means, nodes are grouped into a predefined number (k) of clusters by minimizing the
distance between each node and its assigned cluster center. Although simple, this process
requires prior specification of k and is commonly used for clustering stocks or clients in the
financial sector.

The optimal choice of algorithm depends on the network size, network type (weighted/
unweighted, directed/undirected), computational resources, and analytical objectives. Because
different algorithms may produce distinct community structures from the same dataset, it is
crucial to understand their assumptions and test the robustness of the results.
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Case Study: Asset Clustering

A well-known application of community detection in finance is grouping financial
assets (usually stocks) for the purpose of portfolio diversification. The central idea

is that assets in different clusters behave more independently, whereas those in the
same cluster exhibit similar behavior (e.g., high return correlation). This strategy can be
implemented as follows:

Compute pairwise correlations between asset returns over a specified period.

2. Convert the correlation coefficients (p) into a distance metric (d) using a transfor-
mation such asd, = /2(1—pl.j). This step is necessary because correlation coeffi-

cients should be converted to Euclidean distance metrics.

3. Apply a community detection algorithm (e.g., Louvain, Spinglass, fast greedy,
leading eigenvector, Walktrap, or Multilevel) on the resulting network.

4. Select representative assets from each cluster. Selection criteria may include node
centrality, cluster size, or other financial metrics.

The effectiveness of a cluster-based investment strategy can be assessed by compar-
ing portfolio performance with benchmarks or peer strategies. Standard evaluation
tools include the Sharpe ratio, the information ratio, and factor exposure analysis.
These metrics help determine whether the identified clusters and community
structures contribute meaningfully to risk-adjusted returns.

Network Dynamics

Financial systems are inherently dynamic and evolving. Modeling these dynamics—especially
the spread of shocks and the emergence of systemic risk—is a core application of network
theory. Mathematical models from network analysis provide essential tools for evaluating these
network dynamics across different market cycles. Key structural metrics used to capture and
assess financial network behavior include the following:

e Edge density

e Reciprocity (in directed networks)

e Assortativity degree

o Transitivity

e Mean distance

e Diameter

e Mean degree

These measures help reveal patterns in connectivity and vulnerability, offering insights into how
financial systems adapt and destabilize under stress.
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Systemic Risk

Following Konstantinov and Fabozzi (2025), the focus in assessing systemic risk lies not solely
on its origins—often stemming from external factors, such as macroeconomic shifts, financial
distress among key institutions, or sovereign crises—but also on how it spreads and permeates
through the network. Thus, systemic risk analysis focuses on the potential failure of individual
nodes within the system because their risk exposures can precipitate broader systemic reper-
cussions. Nodes play a pivotal role here because this analysis indicates which nodes are most
susceptible to being affected, either simultaneously or in a specific sequence.

Systemic risk is the possibility that a single shock or failure will set off a series of events that
could cause the financial system to collapse or be severely disrupted, affecting its functionality
and potentially impacting the real economy. It is an emergent characteristic resulting from the
interdependence of financial institutions and their group dynamics.

To properly understand the meaning of systemic risk, financial contagion, and spillover, it is
necessary to understand the metrics that describe networks and capture interconnectedness.
Following Konstantinov and Fabozzi (2025), financial networks are characterized by specific met-
rics. A thorough understanding of these metrics is critical for understanding network dynamics
and interconnectedness. Some common network properties include size, degree, density, and
community structure, among others. According to Konstantinov and Fabozzi (2025), “These
metrics refer to the overall properties of a network and aim to describe its underlying structure.
The structure of network connectedness depends on the underlying information flow process,
or how nodes interact over the edges.” The metrics that describe the concentration of intercon-
nectedness and the degree of nodal connectedness deserve special attention.

e Role of density: Network connectivity and financial stability have a complicated relationship
that is frequently characterized as “robust yet fragile.” Although fully connected networks
offer maximum diversification, moderate connectivity can increase resilience by distrib-
uting minor shocks across more institutions. In other words, a network with few links is
more fragile than a network with a large number of links. However, higher connectivity has
the potential to magnify significant shocks beyond a certain threshold, facilitating quicker
contagion and enhancing systemic fragility. As a result, there is a tipping point at which
additional links cause the system to become unstable rather than stable.

e Role of concentration: Das (2016) showed that even when the overall level of connectivity
is the same, financial systems with highly concentrated exposures are typically more sus-
ceptible to contagion and systemic risk than systems with more dispersed exposures. In a
concentrated system, partners may suffer catastrophic losses if a major counterparty fails.

High-centrality nodes often play a critical role in systemic risk. Hubs—measured by degree,

or eigenvector—are systemically important financial institutions whose failure can trigger
widespread contagion, making their identification essential for regulation. Bridges, character-
ized by high betweenness centrality, act as key intermediaries, and their failure can disrupt the
flow of capital or information across the network.

Because of both confidentiality and complexity, a major barrier to financial network modeling is
limited data. Regulators frequently have access to only a portion of the data, such as aggregate
exposures. Although such methods as sparse reconstruction and maximum entropy aid in esti-
mating network structure, they may understate systemic risk if they fail to account for network
sparsity or assume uniform link weights.
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Financial Contagion and Spillover

Risk propagation in financial networks has been studied using mathematical epidemiology
models because of the similarities between financial contagion and disease spread. Financial
contagion occurs when a shock or distress event originating in one part of the financial system
(e.g., an institution, market segment, or asset class) spreads across the network, potentially
causing systemic failures or widespread instability. This process is often compared with epi-
demic spread or a domino effect, driven by the intricate interconnectedness of financial entities.
There are two broad channels of contagion:

e Directlinkages: These arise from explicit contractual obligations between financial institu-
tions. For example, if Institution A defaults on a loan owed to Institution B (as in interbank
lending), Institution B may suffer direct financial losses. These losses can impair its ability
to meet obligations, possibly triggering further defaults.

e Indirect linkages: These occur without direct contractual ties, operating through market-
wide mechanisms, such as liquidity herding, fire sales of assets, information contagion,
or common asset exposures.

Indirect and direct channels often interact. For instance, a direct counterparty loss may induce
fire sales, which depress asset values and spark funding runs, escalating the contagion.
Network models aim to capture and simulate these complex interactions, offering regulators
and analysts a way to assess vulnerability propagation paths.

Case Study: Global Financial Crisis in 2008

Financial shocks can be amplified by network structure, as the 2008 crisis showed.
Through a highly interconnected system that included repos, interbank lending, and
complex derivatives, such as mortgage-backed securities, collateralized debt obliga-
tions, and CDSs, what started as losses in the US subprime mortgage market swiftly
spread throughout the world. The September 2008 collapse of Lehman Brothers,

a major market node, sparked widespread concerns about counterparty risk. This
heightened concern resulted in repos and interbank lending being frozen, demonstrat-
ing how the collapse of a major institution can cause systemic instability. The risk of
direct contagion was also made evident by AlG's near default. Because AlG had sold
significant amounts of CDS protection to big banks, its failure would have resulted in
massive losses all at once, necessitating a government bailout to stop further collapse.
The crisis was made worse by fire sales.

The global financial crisis emphasized how important it is to adopt a regulatory approach
that goes beyond the solvency of individual institutions and specifically takes into
account both network interconnectedness and systemic risk. Tools for network analysis
became crucial for comprehending these weaknesses. The crisis brought to light the
system's “robust-yet-fragile” nature: Interconnectedness that could withstand minor

shocks turned into a pathway for catastrophic failure when those shocks grew too big.
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Investment Management

Network theory provides useful tools and perspectives for investment management prac-
titioners engaged in portfolio construction, market prediction, and pattern recognition,
in addition to risk management and regulatory oversight.

Diversification in Portfolio Construction: Modern Portfolio
Theory vs. Network Theory

Expected returns, variances, and the pairwise covariance matrix of assets are the main compo-
nents of traditional portfolio construction, which is dominated by Markowitz's mean-variance
optimization (MVO). MVO has real-world drawbacks, however, such as sensitivity to errors in
input estimation (particularly expected returns) and potentially unstable or unduly concentrated
allocations. Through the explicit incorporation of the richer structure of asset relationships
uncovered by network analysis, network-based approaches seek to improve or offer alterna-
tives. A direct relationship exists between the MVO framework and network centrality scores,
which is extensively discussed in Zareei (2019), Ciciretti and Pallotta (2024), and Konstantinov
and Fabozzi (2025), among others.

For a minimization of portfolio risk, the mathematical algorithm searches for all possible
weights w that minimize the portfolio risk captured by the portfolio variance 6%, which is
a weighted product of the individual weights and the variance-covariance matrix, X = [o;]

(see Konstantinov, Fabozzi, and Simonian 2023). That is,

min o7, =w'Ew

s.t.x>L,
where w is a transposed n-dimensional vector of portfolio weights and X is the n-dimensional
variance-covariance matrix of the portfolio assets. The variable x represents the portfolio

return, while L represents the minimum return value that the portfolio must satisfy. The weights
that satisfy the optimizations are

-1
1

1
w_. = z
mn 1M
where 7 is the inverse covariance matrix and 1 represents vectors of ones.
Using the notion of the covariance matrix, X, that it is a product of the correlation matrix, Q, and

the diagonal matrix, A, whose entries are the variances with ¢, = /csij , then the relationship is
¥ = AQA and the weights subject to the correlation matrix are

1

—_51Q,
Tz

Considering the mean-variance framework, the diversification, or minimum risk given the
expected level of return as measured by the portfolio variance and return E(r), is computed
as follows:

min 62, =w'Zw with R, =w'E(r).
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As a result, the weights of the mean-variance framework are a function of the expected
portfolio returns and the covariance matrix of the assets, which gauges risk:

w :#Z‘T(r),
™ E(r)Z7E(r)

where X7 is the inverse covariance matrix, E(r) represents vectors of expected asset returns, and
Rer is the portfolio return. Similarly, we can obtain the weights in the mean-variance framework
using the correlation matrix.

In contrast, in network theory, diversification in a network context is identified by weaker
relationships between nodes in a graph. The shorter the distances between nodes, the

greater the potential impact of risk transmission. This limitation, as noted by Peralta and
Zareei (2016) and Zareei (2019), has been addressed and relaxed by Konstantinov (2022),
whose approach has found broader application in portfolio allocation, as discussed later in

this chapter. Fundamentally, the transfer of risk between nodes is central when using networks
for portfolio allocation.

It is important to highlight that centrality scores—such as degree, eigenvector, or alpha central-
ities—are critical here because they help identify how risk might flow and affect nodes. Degree
centrality is not the preferred score, however, because it measures only the immediate connect-
edness of a node, whereas other centrality metrics capture the more nuanced interconnected-
ness and influence of a node within the network.

When network theory is applied to portfolio construction, several methods can be used to
heighten the diversification of asset portfolios, including the following:

e Network-based asset selection: These techniques seek to combine related assets to ensure
diversified portfolio exposure across various sources of risk and return.

e« Community detection on association, probabilistic, or statistical networks: To find clusters
of co-moving assets, such algorithms as Louvain, Spinglass, leading eigenvector, or fast
greedy provide efficient ways to detect community affiliations with differing factor expo-
sures. Hierarchical clustering or k-means methods are applied to asset correlation or dis-
tance matrices. Instead of relying on static classifications, selecting representative assets
from each cluster can improve diversification and better capture changing market struc-
tures. This approach does not require a specific network formulation and is widely used
in finance.

e Graph filtering: The minimum spanning tree (MST) method highlights important relation-
ships and hierarchies by extracting simplified structures from dense correlation matrices.
MST connects all assets with the smallest possible total edge distances. Asset selection
can be guided by examining these structures (e.g., central versus peripheral nodes). Some
research has shown that portfolios constructed from peripheral MST nodes exhibit strong
performance. However, a major drawback of using MST to visualize graphs is that important
links might be omitted. Therefore, MST should be used with great caution.

e Network-based weighting schemes: Network principles can also guide capital distribution
among assets after selection.

36 -« CFA Institute Research Foundation



Unsupervised Learning Il: Network Theory

e Centrality-based weighting: The position of an asset in the network is directly used for
weighting. There is an inverse relationship between centrality scores and the weights
assigned in the minimum-variance framework. Consequently, peripheral assets are favored,
potentially lowering contagion risk. This decision, however, may vary depending on market
conditions. Expected returns also play an essential role because centrality-based algorithms
focus on risk and interconnectedness but do not account for expected return impacts.
Other centrality metrics can be applied to better integrate expected returns.

e Fundamental networks: These link assets not only by price movements but also by financial
fundamentals (such as profits). To enhance diversification, more capital is allocated to
assets that are fundamentally distinct from others. Financial research offers examples of
leveraging such information with centrality metrics and risk management tools.

e Hierarchical risk parity of a community structure: By using clustering to group similar
assets, this model distributes capital among groups to achieve a more balanced risk
allocation (see Raffinot 2018).

o Network risk parity: A variant of hierarchical risk parity, this method uses an asset's degree
of network connectivity based on risk. To reduce exposure to systematic risks that might
become systemic, assets less central in the network are given more weight.

As the number of assets increases, these network-based techniques aim to achieve more robust
diversification and potentially better risk-adjusted performance than traditional methods rely-
ing solely on pairwise statistics. They do so by explicitly leveraging the topological structure of
asset relationships.

Market Prediction

Network theory offers frameworks and inputs for forecasting market movements and creating
innovative trading tactics. Profitable opportunities or information about future price behavior
can be found in the structure of connections between entities. Predictive signals can also be
derived from network properties, such as reciprocity, edge density, clustering coefficients, and
change in degree centralities.> Variations in network density or structure may indicate changes
in market volatility or regimes. Spillover effects, in which the actions of related entities affect
the performance of a target entity in the future, can be captured by network analysis and
applying appropriate network metrics, such as network nodal entropy, Ricci curvature, fragility,
or criticality indicators.®

One area of quantitative finance that is expanding quickly is the fusion of network science

and artificial intelligence, specifically machine learning and deep learning. Although more
straightforward techniques can still be competitive, deep neural networks (DNNs) frequently
outperform conventional models in forecasting stock returns. Adjusting to shifting market
conditions is a major challenge in these models; by modifying regularization according to recent
performance, however, such strategies as online early stopping are helpful.

5See Das (2016) and Konstantinov, Chorus, and Rebmann (2020) for several network-based indicators to predict
market behavior.

¢See Konstantinov and Fabozzi (2025) for extensive discussion and estimation of risk indicators in portfolio
management.
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Graph neural networks (GNNs) are a category of DNNs that are perfect for modeling financial
relationships such as stock interdependencies because they can learn from both node fea-
tures and network structure, modeling the dependencies between entities. A trading GNN,
for instance, has been proposed as a way to calculate the impact of assets, dealers, and their
relationships on prices (Wu 2025).

By using attention scores to weight neighbors differently, graph attention networks outperform
GNNs in identifying the most pertinent connections. This ability helps with stock prediction and
portfolio optimization in financial networks where relationships are complex and have different
levels of importance.

Conclusion

As this chapter has shown, applying network theory to financial markets and institutions offers
finance professionals useful tools and insightful perspectives. The intricate reality of inter-
connectedness is not captured by the conventional perspective of isolated actors or homo-
geneous systems. Network theory provides a strong framework for explicitly modeling these
connections.

The integration of Al, the use of multiplex and multilayer networks, developments in explainable
Al (XAl) for improved interpretability, and the inclusion of alternative data sources are some new
trends in the application of network theory to finance.

Although network analysis provides insightful information, some obstacles exist for applying
it in finance. Because data on exposures such as loans or derivatives are often confidential,
practitioners are forced to work with partial or proxy data, which introduces potential biases.
Complexity, speed, and interpretability must all be balanced in advanced models, which can be
computationally taxing, particularly for dynamic or Al-driven models. Additionally, there is no
one-size-fits-all tool. The data, research question, and objectives must all be considered when
selecting a network structure, metrics, or algorithms. Drawing reliable conclusions requires an
understanding of each tool’s limitations.
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