
© 2025 CFA Institute Research Foundation. All rights reserved.    1

UNSUPERVISED LEARNING I: 
OVERVIEW OF TECHNIQUES
Joseph Simonian, PhD
Senior Affiliate Researcher
CFA Institute

Unsupervised learning is a branch of machine learning that encompasses algorithms used 
to discover hidden patterns and structures in data without labeled examples from which 
to learn. Unlike supervised learning, there is no “ground truth” to guide the learning pro-
cess, which means that the algorithm must discover hidden patterns and relationships in 
data without any explicit guidance from real-word observations regarding what constitutes 
the correct answer. Without ground truths, unsupervised learning algorithms must rely on 
mathematical principles, such as maximizing likelihood or minimizing error, to capture the 
essence of the data. This makes unsupervised learning both an art and a science, requiring 
careful consideration of what constitute meaningful patterns versus mere noise.

In financial contexts, unsupervised learning can be particularly useful because financial markets 
are often opaque, labeled data are often scarce or expensive to obtain, or such data quickly 
become obsolete. In other words, the “correct” answer is often elusive to varying degrees. 
Financial markets are also dynamic, and as market regimes change, new patterns emerge and 
traditional relationships often break down. In such cases, unsupervised learning methods 
can be invaluable in helping practitioners discover structures in financial data that may prove 
valuable in their portfolio and risk management efforts.

Clustering
Perhaps the most well-known framework for unsupervised learning is clustering. Simpler 
clustering algorithms, such as k-means clustering (Lloyd 1982), operate according to a criterion 
of compactness, with observations grouped into different clusters based on their distance from 
designated centroids. These centroids are the average (mean) positions of all the data points 
that belong to a particular cluster. The algorithm for k-means clustering is shown in Figure 1.

A k-means clustering approach makes a good choice when data are numeric, clusters are 
roughly spherical and similar in size, and a fast, scalable clustering for large datasets is needed. 
It is mathematically simple, efficient, and easy to interpret. However, k-means also assumes 
that clusters are spherical and equal sized, which is not always the case. Further, it is sensitive 
to initialization and outliers and requires a specification of the number of clusters, k. Finally, 
k-means clustering can detect only clusters that are linearly separable, limiting its usefulness 
in applications in which nonlinear or otherwise nuanced relationships are present.

With the foregoing in mind, however, note that k-means has nevertheless been applied to 
portfolio construction. For example, Wu, Wang, and Wu (2022) used k-means to cluster stocks 
according to their continuous trend characteristics and then used inverse volatility weighting, 
risk parity, and mean–variance-type considerations to arrive at final portfolio weights.



AI in Asset Management: Tools, Applications, and Frontiers

2    CFA Institute Research Foundation

An alternative clustering algorithm that provides a remedy to the limitations of k-means cluster-
ing is spectral clustering, which involves using matrix representations of finite graphs in order 
to determine the similarity between observations in a dataset (see Figure 2). Indeed, any set of 
observations or set of vectors of observations may be represented in graphical form. Spectral 
clustering can thus be viewed as a graph partition problem, in which clusters correspond to 
connected graph components.

The basic ideas behind spectral clustering were introduced in important papers by Hall (1970), 
Donath and Hoffman (1973), and Fiedler (1973). For a historical overview of spectral clustering, 
see Spielman and Teng (2007). Spectral clustering has also been applied in finance. In portfolio 
management and financial network analysis, spectral clustering excels at identifying groups of 
correlated assets, detecting market sectors based on complex interdependencies, and analyzing 
systemic risk by revealing the underlying network structure of financial markets where assets 
may be connected through indirect relationships that are not apparent in the original feature 
space. For example, Simonian and Wu (2019) used spectral clustering to build a regime-based 
trading model. They showed that their framework both produces predictively effective macro 
signals and classifies regimes in an economically intuitive way. In their framework, graph com-
ponents are composed of vectors, with each vector consisting of respective values for growth, 
inflation, and leverage factors.

Hierarchical clustering creates a tree-like structure of clusters by merging smaller clusters 
into larger ones (agglomerative) or by splitting larger clusters into smaller ones (divisive). 

Figure 1. Algorithm: k-Means Clustering
Input: Dataset X with n points, number of clusters k, maximum iterations

Output: Cluster assignments and centroids

Begin:

1.	 Initialize k centroids randomly: μ1, μ2, … , μk

2.	 For iteration = 1 to max iterations:

a.	 For each data point xi in X:

	● Calculate distance to each centroid: d(xi, μj) for j = 1 to k

	● Assign xi to closest centroid: ci = argminj d(xi, μj)

b.	 For each cluster j = 1 to k:

	● Update centroid: μj = mean of all points assigned to cluster j

c.	 If centroids have not changed significantly:

	● Break (convergence achieved)

3.	 Output: Cluster assignments and final centroids (see Exhibit 1)



Unsupervised Learning I: Overview of Techniques

CFA Institute Research Foundation    3

Exhibit 1. Clustering Output (k-means)

10.0

7.5

5.0

2.5

0.0Fe
at

ur
e 

2

–7.5

–8 –6 –4 –2
Feature 1

0 2 4 6

–5.0

–2.5

Cluster 1 Cluster 2 Cluster 3 Centroids

Source: All synthetic data created by author.

Figure 2. Algorithm: Spectral Clustering
1.	 Construct similarity matrix W:

	● For each pair (i, j): W[i, j] = exp[−||xi − xj||2/(2σ2)]

2.	 Compute degree matrix D:

	● D[i, i] = ΣjW[i, j], D[i, j] = 0 for i ≠ j

3.	 Compute normalized Laplacian:

	● Lnorm = D(−1/2) × (D − W) × D(−1/2)

4.	 Find k smallest eigenvectors of L: v1, v2, … , vk

5.	 Form matrix V = [v1, v2, … , vk] (n × k matrix)

6.	 Normalize rows of V to unit length

7.	 Apply k-means clustering to rows of V

8.	 Output: Cluster assignments



AI in Asset Management: Tools, Applications, and Frontiers

4    CFA Institute Research Foundation

Agglomerative clustering is more common and works “bottom up” by initially treating each 
data point as a separate cluster and then iteratively merging the closest pair of clusters until 
all points belong to a single cluster or a desired number of clusters is reached (see Figure 3). 

Exhibit 2. Hierarchical Clustering Dendrogram
60

50

40

30

D
is

ta
nc

e

10

0

20

Note: Different colors represent different clusters at different distance cutoffs.

Figure 3. Agglomerative Clustering Algorithm
1.	 Initialize: Each point as its own cluster C = {{x1}, {x2}, … , {xn}}

2.	 Compute distance matrix D between all pairs of points

3.	 While |C| > 1:

a.	 Find closest pair of clusters (Ci, Cj) using linkage method:

	● Single: min{d(x, y) : x ∈ Ci, y ∈ Cj}

	● Complete: max{d(x, y) : x ∈ Ci, y ∈ Cj}

	● Average: mean{d(x, y) : x ∈ Ci, y ∈ Cj}

b.	 Merge Ci and Cj into new cluster Ck = Ci ∪ Cj

c.	 Update C by removing (Ci, Cj) and adding Ck

d.	 Update distance matrix D for new cluster Ck

e.	 Record merge in dendrogram

4.	 Output: Dendrogram structure (Exhibit 2)



Unsupervised Learning I: Overview of Techniques

CFA Institute Research Foundation    5

The algorithm requires a distance metric between data points as well as a linkage criterion to 
measure distances between clusters—for example, single linkage (minimum distance), complete 
linkage (maximum distance), average linkage (average distance), or Ward linkage (minimizes 
within-cluster variance).

A well-known investment application of hierarchical clustering is Hierarchical Risk Parity (HRP), 
introduced by López de Prado (2016). HRP uses hierarchical clustering to infer relationships 
between assets, which are then used directly for portfolio diversification, addressing three 
major concerns of quadratic optimizers: instability, concentration, and underperformance. The 
approach departs from classical mean–variance optimization by using a three-step process that 
organizes assets into hierarchical clusters based on their correlation structure, reorganizes the 
correlation matrix according to this tree structure, and then allocates capital recursively through 
the hierarchy using inverse variance weighting within each cluster.

Another prominent technique is DBSCAN (density-based spatial clustering of applications with 
noise), a density-based clustering algorithm that groups together points in high-density areas 
while marking points in low-density regions as noise or outliers, making it particularly effective 
for discovering clusters of arbitrary shapes and sizes (Ester, Kriegel, Sander, and Xu 1996). The 
algorithm requires two parameters: epsilon (ε), which defines the neighborhood radius, and 
minimum points (MinPts), required to form a dense region. Core points have at least MinPts 
neighbors within ε distance, border points within ε distance of core points, and noise points 
not meeting either criterion. In contrast to k-means, DBSCAN does not require advance spec-
ification of the number of clusters and can identify clusters with irregular shapes, making it 
robust against outliers and noise. In financial applications, DBSCAN excels at fraud detection 
by identifying unusual transaction patterns, market anomaly detection, and customer behavior 
analysis where normal clustering algorithms might fail because of the presence of outliers or 
nonspherical cluster shapes that are common in financial data distributions.

An extension of DBSCAN is OPTICS (ordering points to identify the clustering structure), which 
creates an ordering of data points that represents the density-based clustering structure, pro-
viding more detailed insights into cluster hierarchies and varying density regions within the 
dataset (Ankerst, Breunig, Kriegel, and Sander 1999). The algorithm computes core distances 
and reachability distances for each point, creating a reachability plot that visualizes the cluster-
ing structure across different density thresholds, allowing analysts to extract clusters at multi-
ple scales without specifying parameters in advance. This hierarchical approach is particularly 
valuable when dealing with clusters of varying densities or nested clusters or when the optimal 
clustering parameters are unknown because it provides a comprehensive view of the data’s 
density structure. In high-dimensional financial data analysis, OPTICS proves invaluable for iden-
tifying complex market structures, detecting multiscale patterns in trading data, and analyzing 
portfolio correlations where traditional clustering methods might miss important structural rela-
tionships because of varying density patterns for different market conditions or time periods.

Affinity propagation (AP), introduced by Frey and Dueck (2007), belongs to the family of 
graph-theoretic clustering techniques and is based on the concept of “message passing” 
(Mézard 2007) between the candidate members of a cluster that continues until each candidate 
is sufficiently informed to join the appropriate cluster. AP begins by measuring the similarity, 
s(i, k), between vectors, which represents the similarity of vector k to vector i. Similarity is mea-
sured by a metric chosen by the model builder (e.g., Euclidean distance).



AI in Asset Management: Tools, Applications, and Frontiers

6    CFA Institute Research Foundation

The basic input to AP is a real-valued number s(k, k), called a preference, for each observation. 
Observations with larger preference values are more likely to be selected as cluster centers, also 
known as exemplars. However, cluster selection is a function of not only preference size but 
also the two message-passing operations that are the essence of the AP algorithm. The first—
the responsibility, r(i, k)—is a message transmitted from observation i to a candidate exemplar 
k that expresses the suitability of observation k as an exemplar for observation i given the suit-
ability of other candidate exemplars. The second—the availability, a(i, k)—works in the opposite 
direction and is sent from a candidate exemplar k to an observation i. Availability expresses how 
appropriate it would be for observation i to select observation k as its exemplar, given the exist-
ing support that observation k has from other observations to serve as an exemplar. The AP 
process begins by initializing the availabilities to zero, a(i, k) = 0, and then proceeds to compute 
the responsibilities using the following rule:

	
′ ′ ≠ 

′= ′− +
s.t.

( , ) ( , ) max ( , ) ( , ) .{ }r s a s
k k k

i k i k i k i k � (1)

The following formula then determines whether an observation is a good exemplar:

	
′ ≠′ 

′ = + ∑ 
 s.t. { , }

( , ) min 0, ( , )  max{{0, ( , )}}  a r r
i i i k

i k k k i k � (2)

The “self-availability” of an observation is expressed as follows:

	
′ ≠′

′= ∑
s.t. 

( , ) max{{0, ( , )}}a r
i i k

i k i k � (3)

An investment application of AP is presented by Simonian (2020), who used it to determine the 
level of diversity within a set of investment signals. To classify signals according to their sta-
tistical predictive properties, the author posited a vector consisting of information coefficient 
(IC) and IC variance values in various regime-specific subsamples as inputs into the clustering 
algorithm. Using AP in this manner allows us to gain a multidimensional view of investment 
signal diversity, with each measure providing information on a different aspect of predictive 
effectiveness.

Cluster Evaluation Techniques
Although many clustering algorithms require positing the number of clusters, techniques have 
been developed that allow the user to determine the most suitable clustering scheme. Two 
techniques in particular have become popular. The first is the silhouette score, an internal clus-
tering evaluation metric that measures how similar each point is to points in its own cluster 
compared with points in other clusters, providing both individual point scores and an over-
all clustering quality measure. For each data point, the silhouette coefficient is calculated as 
(b − a)/max(a, b), where a is the mean distance to other points in the same cluster (intracluster 
distance) and b is the mean distance to points in the nearest neighboring cluster (intercluster 
distance). The silhouette coefficient ranges from −1 to 1. Values close to 1 indicate that the 
point is well matched to its cluster and poorly matched to neighboring clusters, values around 0 
suggest that the point is on or very close to the decision boundary between clusters, and 
negative values indicate that the point might have been assigned to the wrong cluster.

The mathematical foundation of the silhouette score relies on distance-based cohesion and 
separation measures. For a point i in cluster C, the intracluster distance, a(i), represents the 



Unsupervised Learning I: Overview of Techniques

CFA Institute Research Foundation    7

average distance between point i and all other points in the same cluster, measuring cluster 
cohesion. The intercluster distance, b(i), is the minimum average distance from point i to points 
in any other cluster, measuring cluster separation. The silhouette coefficient, s(i) = [b(i) − a(i)]/
max[a(i), b(i)], provides a normalized measure that balances cohesion and separation, with 
higher values indicating better clustering quality.

The second popular cluster evaluation technique, the Adjusted Rand Index (ARI), introduced 
by Hubert and Arabie (1985), builds on the measure introduced by Rand (1971) and is a more 
explicitly probabilistic measure of cluster uniqueness. Two important characteristics distinguish 
an ARI value from a silhouette score. The first is that a Rand Index value is relational. Whereas 
a silhouette score tells us how tight a particular clustering scheme is, an ARI value ranges 
from 1 to −1 and tells us how similar two clustering schemes are. A value of 0 represents two 
independent clusters, and a value of 1 represents identical clusters. Negative values indicate 
worse-than-random clustering. Accordingly, the second distinguishing characteristic of an ARI 
value is that lower values indicate more unique pairs of clustering schemes. The metric is partic-
ularly valuable because it adjusts for the expected similarity that would occur by chance alone, 
making it more reliable than the basic Rand Index when comparing clusterings with different 
numbers of clusters or when dealing with imbalanced cluster sizes.

The mathematical foundation of the original Rand Index begins with the contingency table, 
which cross-tabulates the cluster assignments from two different clusterings. Given two clus-
terings U = {U1, U2, … , Ur} and V = {V1, V2, … , Vs}, the contingency table entry nij represents the 
number of objects that are in both cluster Ui and cluster Vj. The Rand Index is calculated by 
counting the number of pairs of objects that are either in the same cluster in both clusterings 
or in different clusters in both clusterings and dividing by the total number of pairs. This raw 
measure does not account for the expected agreement that would occur by random chance, 
however, which is where the adjustment becomes crucial. The mathematical formula for ARI 
can be expressed as ARI = (RI − ExpectedRI)/[max(RI) − ExpectedRI], where RI is the Rand Index, 
ExpectedRI is the expected value of the Rand Index under the null hypothesis of random cluster-
ing, and max(RI) is the maximum possible value of the Rand Index. This adjustment ensures that 
the expected value of ARI is zero when clusterings are independent, making it a more interpre-
table measure than the raw Rand Index.

Dimension Reduction Techniques
Finance is a data-driven enterprise. Indeed, the sheer size of data processed and the number 
of variables considered in financial applications may at times test the limits of mathematical 
models and information technology infrastructure. Given this fact, reducing the dimensions 
of a problem when possible is a critical aspect of any investment process.

Principal component analysis (PCA) is a dimension reduction technique that has been used in 
finance for many years (Pearson 1901; Hotelling 1933). PCA transforms high-dimensional data 
into a lower-dimensional space while preserving maximum variance. PCA works by finding the 
principal components, which are orthogonal directions in the feature space that capture the 
most variance in the data. The algorithm computes the covariance matrix of the data, performs 
eigendecomposition to find eigenvectors (principal components) and eigenvalues (variance 
explained), and then projects the original data onto the space spanned by the top k eigenvec-
tors (see Figure 4). This linear transformation creates uncorrelated features ordered by the 



AI in Asset Management: Tools, Applications, and Frontiers

8    CFA Institute Research Foundation

amount of variance they explain, making PCA particularly useful for data visualization, noise 
reduction, and feature extraction in preprocessing pipelines.

Perhaps the most well-known example of a financial application of PCA appears in the decom-
position of the yield curve by Litterman and Scheinkman (1991). Their application of PCA 
involves constructing a matrix where each row represents a specific date and each column rep-
resents yields at different maturities (such as 3-month, 6-month, 1-year, 2-year, 5-year, 10-year, 
and 30-year rates). PCA then decomposes the yield curve data into orthogonal components 
ranked by their explanatory power. Their study (and others that followed) revealed that three 
principal components explain approximately 95%–99% of yield curve movements:

	● First principal component (level): This component typically accounts for 80%–90% of the 
variance and represents parallel shifts in the yield curve. When this factor moves, all yields 
tend to move up or down together by similar amounts. This behavior reflects broad mone-
tary policy changes, inflation expectations, or general economic conditions.

	● Second principal component (slope): Explaining roughly 5%–15% of variance, this com-
ponent captures the steepening or flattening of the yield curve. It represents the spread 
between long-term and short-term rates, often reflecting expectations about future 
monetary policy or economic growth.

	● Third principal component (curvature): Accounting for 1%–5% of variance, this component 
captures changes in the curve’s convexity or “bow” shape. It reflects relative movements 
in medium-term rates compared with short- and long-term rates, often related to market 
expectations about intermediate-term economic conditions.

Another popular dimension reduction technique is t-distributed stochastic neighbor 
embedding (t-SNE), a powerful dimension reduction technique that can be used to visualize 
high-dimensional data in a lower-dimensional space, typically 2D or 3D (van der Maaten and 
Hinton 2008). It is particularly effective for exploring complex datasets and identifying clusters 

Figure 4. PCA Algorithm
1.	 Center the data: Xcentered = X − mean(X)

2.	 Compute covariance matrix: C = [1/(n − 1)] × Xcentered
T × Xcentered

3.	 Perform eigendecomposition: C = V × Λ × VT

	● V: eigenvectors (principal components)

	● Λ: eigenvalues (variance explained)

4.	 Sort eigenvectors by decreasing eigenvalues

5.	 Select top k eigenvectors: W = V[:, 0:k]

6.	 Transform data: Y = Xcentered × W

7.	 Output: Y, W, explained variance ratio



Unsupervised Learning I: Overview of Techniques

CFA Institute Research Foundation    9

or patterns that might not be apparent in raw data. In finance, t-SNE can be applied to analyze 
and visualize market segmentation, such as grouping stocks or assets based on their historical 
performance, risk profiles, or other features. The algorithm for t-SNE appears in Figure 5.

To provide a supervised counterpoint, we mention linear discriminant analysis (LDA), a tech-
nique that finds linear combinations of features that best separate different classes, making it 
particularly useful for classification preprocessing (Fisher 1936). LDA can serve as a powerful 
classification tool in financial applications, particularly for identifying trading signals. In credit 
risk modeling, LDA can help separate borrowers into distinct risk categories using financial 
ratios and other predictive variables, optimizing the linear combination of features that best dis-
criminates between default and nondefault cases. For algorithmic trading, LDA can be used to 
classify market conditions into bullish, bearish, or neutral regimes based on technical indicators 
and market microstructure variables.

Another technique, independent component analysis (ICA), assumes that data are generated 
by mixing independent source signals and attempts to recover these original independent 
components, making it valuable for blind source separation problems such as audio signal pro-
cessing (Comon 1994; Bell and Sejnowski 1995). ICA is therefore useful in financial applications 
that require blind source separation, particularly in identifying independent market factors from 
mixed signals. For example, in multiasset portfolio analysis, ICA separates returns into inde-
pendent components that may represent different economic factors (inflation, growth, senti-
ment) that are not directly observable but drive asset performance. For high-frequency trading, 

Figure 5. t-SNE Algorithm
1.	 Compute high-dimensional similarities:

	● For each point xi, calculate conditional probabilities: p{j|i} = exp(−||xi − xj||2/2σi
2)/

Σk≠i exp(−||xi − xk||2/2σi
2)

	● Symmetrize: pij = (p{j|i} + p{i|j})/2n

2.	 Initialize low-dimensional embedding:

	● Randomly place points yi in target dimensional space

3.	 Iterative optimization: For each iteration, compute low-dimensional similarities:

	● Use t-distribution: qij = (1 + ||yi − yj||2)−1/Σk≠l (1 + ||yk − yl||2)−1

	 Calculate gradient:

	● Minimize Kullback–Leibler (KL) divergence: KL(P||Q) = Σij pij log(pij/qij)

	● Gradient: ∂C/∂yi = 4Σj (pij − qij)(yi − yj)(1 + ||yi − yj||2)−1

	 Update positions:

	● Apply gradient descent with momentum to move points yi

4.	 Output: Final low-dimensional embedding Y



AI in Asset Management: Tools, Applications, and Frontiers

10    CFA Institute Research Foundation

ICA helps isolate genuine price signals from market noise by identifying independent sources 
of price movement. The technique is particularly valuable in emerging markets, where tradi-
tional factor models may not apply, because ICA can discover country-specific or sector-specific 
independent factors that influence asset returns without requiring prior assumptions about 
factor structure.

Deep Learning Approaches
Autoencoders are neural networks designed to learn efficient data representations in an 
unsupervised manner by training the network to reconstruct its input data (Hinton and 
Salakhutdinov 2006). The architecture consists of an encoder that compresses the input into a 
lower-dimensional latent representation and a decoder that reconstructs the original input from 
this compressed representation. The network is trained to minimize reconstruction error, which 
forces it to learn meaningful features that capture the most important aspects of the data. 
Applications of encoders include dimensionality reduction, denoising, feature learning, and data 
compression. The algorithm for autoencoders is shown in Figure 6.

Variations of standard encoders include denoising autoencoders that learn to reconstruct clean 
data from corrupted inputs, variational autoencoders (VAEs) that learn probabilistic latent 

Figure 6. Autoencoder Algorithm
1.	 Initialize networks:

	 Encoder: fenc(x; θenc) → z with parameters θenc

	 Decoder: fdec(z; θdec) → x̂ with parameters θdec

2.	 Training loop (for each epoch):

	 For each mini-batch:

	 Forward pass:

	 Encode: z = fenc(x; θenc)—compress input to latent code

	 Decode: x̂ = fdec(z; θdec)—reconstruct from latent code

3.	 Loss computation:

	 Reconstruction loss: L = ||x − x̂||2 (mean squared error)

4.	 Backward pass:

	 Compute gradients with respect to both networks: ∇θencL, ∇θdecL

	 Update encoder: θenc ← θenc − α∇θencL

	 Update decoder: θdec ← θdec − α∇θdecL

5.	 Output: Trained encoder and decoder networks



Unsupervised Learning I: Overview of Techniques

CFA Institute Research Foundation    11

representations, and sparse autoencoders that enforce sparsity constraints on the hidden layer 
activations to learn more interpretable features (Kingma and Welling 2014). Unlike traditional 
autoencoders, which compress data into a deterministic latent space, VAEs model the latent 
space as a probability distribution (typically Gaussian). This probabilistic approach allows VAEs 
to generate realistic synthetic data by sampling from the learned latent distribution. VAEs con-
sist of two main components:

	● Encoder: Maps input data to a latent space by learning the parameters (mean and variance) 
of a probability distribution

	● Decoder: Reconstructs the original data from samples drawn from the latent distribution

The key innovation of VAEs is the use of variational inference, where the model learns a latent 
distribution that captures the underlying structure of the data. The training process involves 
minimizing a loss function that combines reconstruction error (how well the decoder recon-
structs the input) and a regularization term (how close the learned latent distribution is to 
a prior, typically a standard normal distribution). Examples of how VAEs are used in finance 
include synthetic data generation for testing trading strategies or stress-testing models, uncov-
ering latent factors driving asset prices or market behavior, and identifying unusual patterns in 
financial data by comparing reconstructed data with the original input.

Another algorithm used to generate synthetic data is known as a generative adversarial net-
work (GAN; Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio 
2014). GANs are a class of generative models that use a game-theoretic framework to learn and 
generate new data that mimic the distribution of a given dataset. GANs consist of two neural 
networks:

	● Generator: Creates synthetic data from random noise, attempting to mimic the real data 
distribution

	● Discriminator: Distinguishes between real data (from the dataset) and fake data (produced 
by the generator)

The generator and discriminator are trained simultaneously in a zero-sum game: The generator 
attempts to “fool” the discriminator by producing realistic data, and the discriminator tries to 
correctly identify real versus fake data. Over time, the generator improves its ability to create 
realistic data, and the discriminator becomes better at distinguishing real from fake. When the 
GAN converges, the generator produces data that are indistinguishable from the real data. 
GANs are widely used in finance for tasks that involve generating realistic synthetic data, mod-
eling complex distributions, and simulating market scenarios. Simonian (2024) describes how 
the synthetic data generated by GANs can be used in the model validation process.

Anomaly Detection
Anomaly detection is an important part of finance because extreme outliers, such as stock 
market crashes, can have outsized financial and economic implications. However, anomaly 
detection is important not only for investors but also in such areas as credit card fraud detec-
tion, identifying unusual trading patterns, detecting market manipulation, and monitoring port-
folio performance for abnormal behavior patterns that could indicate operational risks or model 
failures. Although other types of machine learning models, such as DBSCAN and support vector 



AI in Asset Management: Tools, Applications, and Frontiers

12    CFA Institute Research Foundation

machines, can perform anomaly detection, dedicated algorithms have also been developed for 
outlier detection. Isolation Forest uses decision trees to isolate anomalies by randomly select-
ing features and splitting the data according to threshold values, operating under the principle 
that anomalies are few and different—hence, easier to isolate (Liu, Ting, and Zhou 2008). The 
algorithm constructs an ensemble of isolation trees by randomly selecting features and split 
values, with anomalies requiring fewer splits to be isolated and thus having shorter average 
path lengths in the trees, whereas normal points require more splits and have longer paths. 
This approach is particularly effective because it directly targets anomalies rather than profiling 
normal instances, making it computationally efficient with linear time complexity and effective 
in high-dimensional spaces.

Another popular anomaly detection technique is the local outlier factor (LOF), which detects 
anomalies by comparing how densely packed each point is relative to its local neighborhood 
(Breunig, Kriegel, Ng, and Sander 2000). The key insight is that outliers exist in sparser regions 
compared with their neighbors. As a rough analogy, think of data points as houses in a city: 
In dense neighborhoods, houses are close together, and in less populated areas, houses are 
spread out. An outlier is like a house that is unusually isolated compared with the density of its 
surrounding neighborhood. The LOF algorithm is shown in Figure 7.

Conclusion
In this chapter, I have provided an overview of some major unsupervised learning algorithms 
along with examples of how they are applied in various areas of finance. I have shown that unsu-
pervised learning plays a major role in classification, anomaly detection, and synthetic data gen-
eration—all major application areas in finance. The next chapter will delve deeper into an area of 
unsupervised learning—network theory—that has become popular in recent years because of its 
flexibility and power to illuminate various types of connections that exist between financial and 
economic entities and actors.

Figure 7. LOF Algorithm
1.	 Find k-nearest neighbors for each point

2.	 Calculate reachability distance:

	 rdist(A, B) = max[k-distance(B), d(A, B)]

3.	 Compute local reachability density:

	 Localrd(A) = 1/(ΣReachdist(A, B)/|Nk(A)|)

4.	 Output: LOF(A) = [Σlrd(B)/lrd(A)]/|Nk(A)| for B in Nk(A)



Unsupervised Learning I: Overview of Techniques

CFA Institute Research Foundation    13

References
Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999. “OPTICS: 
Ordering Points to Identify the Clustering Structure.” SIGMOD Record 28 (2): 49–60. 
doi:10.1145/304181.304187.

Bell, Anthony J., and Terrence J. Sejnowski. 1995. “An Information-Maximization Approach to 
Blind Separation and Blind Deconvolution.” Neural Computation 7 (6): 1129–59. doi:10.1162/
neco.1995.7.6.1129.

Breunig, Markus M., Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. “LOF: 
Identifying Density-Based Local Outliers.” Proceedings of the 2000 ACM SIGMOD Record: 
93–104. doi:10.1145/342009.335388.

Comon, Pierre. 1994. “Independent Component Analysis, a New Concept?” Signal Processing 
36 (3): 287–314. doi:10.1016/0165-1684(94)90029-9.

Donath, W. E., and A. J. Hoffman. 1973. “Lower Bounds for the Partitioning of Graphs.” 
IBM Journal of Research and Development 17 (5): 420–25.

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. “A Density-Based 
Algorithm for Discovering Clusters in Large Spatial Databases with Noise.” KDD’96: Proceedings 
of the Second International Conference on Knowledge Discovery and Data Mining: 226–31.

Fiedler, M. 1973. “Algebraic Connectivity of Graphs.” Czechoslovak Mathematical Journal  
23 (98): 298–305.

Fisher, Ronald A. 1936. “The Use of Multiple Measurements in Taxonomic Problems.” Annals of 
Eugenics 7 (2): 179–88. doi:10.1111/j.1469-1809.1936.tb02137.x.

Frey, Brendan J., and Delbert Dueck. 2007. “Clustering by Passing Messages Between Data 
Points.” Science 315 (5814): 972–76. doi:10.1126/science.1136800.

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, 
Aaron Courville, and Yoshua Bengio. 2014. “Generative Adversarial Nets.” Proceedings of the 
27th International Conference on Neural Information Processing Systems 2: 2672–80.

Hall, K. M. 1970. “An r-Dimensional Quadratic Placement Algorithm.” Management Science  
17 (3): 219–229.

Hinton, Geoffrey E., and Ruslan Salakhutdinov. 2006. “Reducing the Dimensionality of Data with 
Neural Networks.” Science 313 (5786): 504–07. doi:10.1126/science.1127647.

Hotelling, Harold. 1933. “Analysis of a Complex of Statistical Variables into Principal 
Components.” Journal of Educational Psychology 24 (6): 417–41. doi:10.1037/h0071325.

Hubert, Lawrence, and Phipps Arabie. 1985. “Comparing Partitions.” Journal of Classification  
2 (1): 193–218. doi:10.1007/BF01908075.

Kingma, D. P., and M. Welling. 2014. “Auto-Encoding Variational Bayes.” arXiv: 1312.6114.

https://doi.org/10.1145/304181.304187
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1145/342009.335388
https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1126/science.1136800
https://doi.org/10.1126/science.1127647
https://doi.org/10.1037/h0071325
https://doi.org/10.1007/BF01908075


AI in Asset Management: Tools, Applications, and Frontiers

14    CFA Institute Research Foundation

Litterman, Robert B., and Josè Scheinkman. 1991. “Common Factors Affecting Bond Returns.” 
Journal of Fixed Income 1 (1): 54–61. doi:10.3905/jfi.1991.692347.

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. 2008. “Isolation Forest.” Proceedings of the  
8th IEEE International Conference on Data Mining: 413–22. doi:10.1109/ICDM.2008.17.

Lloyd, S. P. 1982. “Least Squares Quantization in PCM.” IEEE Transactions on Information Theory 
28 (2): 129–137.

López de Prado, Marcos. 2016. “Building Diversified Portfolios That Outperform Out of Sample.” 
Journal of Portfolio Management 42 (4): 59–69. doi:10.3905/jpm.2016.42.4.059.

Mézard, Marc. 2007. “Where Are the Exemplars?” Science 315 (5814): 949–51. doi:10.1126/
science.1139678.

Pearson, Karl. 1901. “On Lines and Planes of Closest Fit to Systems of Points in Space.” 
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (11): 559–72. 
doi:10.1080/14786440109462720.

Rand, William M. 1971. “Objective Criteria for the Evaluation of Clustering Methods.” Journal of 
the American Statistical Association 66 (336): 846–50. doi:10.1080/01621459.1971.10482356.

Simonian, Joseph. 2020. “Modular Machine Learning for Model Validation: An Application to 
the Fundamental Law of Active Management.” Journal of Financial Data Science 2 (2): 41–50. 
doi:10.3905/jfds.2020.1.027.

Simonian, Joseph. 2024. Investment Model Validation: A Guide for Practitioners. Charlottesville, 
VA: CFA Institute Research Foundation. doi:10.56227/24.1.15.

Simonian, Joseph, and Chenwei Wu. 2019. “Minsky vs. Machine: New Foundations for Quant-
Macro Investing.” Journal of Financial Data Science 1 (2): 94–110. doi:10.3905/jfds.2019.1.004.

Spielman, D.A. and S.-H. Teng. 2007. “Spectral Partitioning Works: Planar Graphs and Finite 
Element Meshes.” Linear Algebra and its Applications 421 (2): 284–305.

van der Maaten, Laurens, and Geoffrey Hinton. 2008. “Visualizing Data Using t-SNE.” Journal of 
Machine Learning Research 9 (86): 2579–605.

Wu, Dingming, Xialong Wang, and Shaocong Wu. 2022. “Construction of Stock Portfolios 
Based on k-Means Clustering of Continuous Trend Features.” Knowledge-Based Systems  
252 (27 September). doi:10.1016/j.knosys.2022.109358.

https://doi.org/10.3905/jfi.1991.692347
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.3905/jpm.2016.42.4.059
https://doi.org/10.1126/science.1139678
https://doi.org/10.1126/science.1139678
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.3905/jfds.2020.1.027
https://doi.org/10.56227/24.1.15
https://doi.org/10.3905/jfds.2019.1.004
https://doi.org/10.1016/j.knosys.2022.109358



