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Unsupervised learning is a branch of machine learning that encompasses algorithms used
to discover hidden patterns and structures in data without labeled examples from which

to learn. Unlike supervised learning, there is no “ground truth” to guide the learning pro-
cess, which means that the algorithm must discover hidden patterns and relationships in
data without any explicit guidance from real-word observations regarding what constitutes
the correct answer. Without ground truths, unsupervised learning algorithms must rely on
mathematical principles, such as maximizing likelihood or minimizing error, to capture the
essence of the data. This makes unsupervised learning both an art and a science, requiring
careful consideration of what constitute meaningful patterns versus mere noise.

In financial contexts, unsupervised learning can be particularly useful because financial markets
are often opaque, labeled data are often scarce or expensive to obtain, or such data quickly
become obsolete. In other words, the “correct” answer is often elusive to varying degrees.
Financial markets are also dynamic, and as market regimes change, new patterns emerge and
traditional relationships often break down. In such cases, unsupervised learning methods

can be invaluable in helping practitioners discover structures in financial data that may prove
valuable in their portfolio and risk management efforts.

Clustering

Perhaps the most well-known framework for unsupervised learning is clustering. Simpler
clustering algorithms, such as k-means clustering (Lloyd 1982), operate according to a criterion
of compactness, with observations grouped into different clusters based on their distance from
designated centroids. These centroids are the average (mean) positions of all the data points
that belong to a particular cluster. The algorithm for k-means clustering is shown in Figure 1.

A k-means clustering approach makes a good choice when data are numeric, clusters are
roughly spherical and similar in size, and a fast, scalable clustering for large datasets is needed.
It is mathematically simple, efficient, and easy to interpret. However, k-means also assumes
that clusters are spherical and equal sized, which is not always the case. Further, it is sensitive
to initialization and outliers and requires a specification of the number of clusters, k. Finally,
k-means clustering can detect only clusters that are linearly separable, limiting its usefulness
in applications in which nonlinear or otherwise nuanced relationships are present.

With the foregoing in mind, however, note that k-means has nevertheless been applied to
portfolio construction. For example, Wu, Wang, and Wu (2022) used k-means to cluster stocks
according to their continuous trend characteristics and then used inverse volatility weighting,
risk parity, and mean-variance-type considerations to arrive at final portfolio weights.
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Figure 1. Algorithm: k-Means Clustering
Input: Dataset X with n points, number of clusters k, maximum iterations
Output: Cluster assignments and centroids

Begin:

Initialize k centroids randomly: |, L, ..., 1
2. Foriteration =1 to max iterations:
a. For each data point x; in X:
e Calculate distance to each centroid: d(x; p;) forj=1to k
e Assign x; to closest centroid: ¢; = argmin; d(x; L)
b. Foreach clusterj=1to k:
e Update centroid: yi; = mean of all points assigned to cluster j
c. If centroids have not changed significantly:
e Break (convergence achieved)

3. Output: Cluster assignments and final centroids (see Exhibit 1)

An alternative clustering algorithm that provides a remedy to the limitations of k-means cluster-
ing is spectral clustering, which involves using matrix representations of finite graphs in order
to determine the similarity between observations in a dataset (see Figure 2). Indeed, any set of
observations or set of vectors of observations may be represented in graphical form. Spectral
clustering can thus be viewed as a graph partition problem, in which clusters correspond to
connected graph components.

The basic ideas behind spectral clustering were introduced in important papers by Hall (1970),
Donath and Hoffman (1973), and Fiedler (1973). For a historical overview of spectral clustering,
see Spielman and Teng (2007). Spectral clustering has also been applied in finance. In portfolio
management and financial network analysis, spectral clustering excels at identifying groups of
correlated assets, detecting market sectors based on complex interdependencies, and analyzing
systemic risk by revealing the underlying network structure of financial markets where assets
may be connected through indirect relationships that are not apparent in the original feature
space. For example, Simonian and Wu (2019) used spectral clustering to build a regime-based
trading model. They showed that their framework both produces predictively effective macro
signals and classifies regimes in an economically intuitive way. In their framework, graph com-
ponents are composed of vectors, with each vector consisting of respective values for growth,
inflation, and leverage factors.

Hierarchical clustering creates a tree-like structure of clusters by merging smaller clusters
into larger ones (agglomerative) or by splitting larger clusters into smaller ones (divisive).
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Exhibit 1. Clustering Output (k-means)
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Source: All synthetic data created by author.

Figure 2. Algorithm: Spectral Clustering

1. Construct similarity matrix W:

e For each pair (i, j): W[i, j] = exp[-||x; — x;||*/(252)]
2. Compute degree matrix D:

e DI, i]=%WIi, j], D[i,j] = O for i =]
3. Compute normalized Laplacian:

e L,,.,=D2x(D-W)xD"2

Find k smallest eigenvectors of L: v;, v,, ..., v,

Form matrix V = [v;, v,, ..., v,] (n x k matrix)
Normalize rows of V to unit length

Apply k-means clustering to rows of V

©® N o ow o

Output: Cluster assignments

CFA Institute Research Foundation ¢ 3



Al in Asset Management: Tools, Applications, and Frontiers

Agglomerative clustering is more common and works “bottom up” by initially treating each
data point as a separate cluster and then iteratively merging the closest pair of clusters until
all points belong to a single cluster or a desired number of clusters is reached (see Figure 3).

Figure 3. Agglomerative Clustering Algorithm

1. Initialize: Each point as its own cluster C = {{x;}, {x.}, ..., {x,}}

Compute distance matrix D between all pairs of points
3. While|C|>1:

o & 0 U

Find closest pair of clusters (C;, C) using linkage method:
e Single: min{d(x, y):xe C, ye C}

e Complete: max{d(x, y):xe C, y e C}

e Average: mean{d(x, y):xe C, ye C}

Merge C;and C;into new cluster C, = C;u G

Update C by removing (C, C) and adding C,

Update distance matrix D for new cluster C,

Record merge in dendrogram

4. Output: Dendrogram structure (Exhibit 2)
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The algorithm requires a distance metric between data points as well as a linkage criterion to
measure distances between clusters—for example, single linkage (minimum distance), complete
linkage (maximum distance), average linkage (average distance), or Ward linkage (minimizes
within-cluster variance).

A well-known investment application of hierarchical clustering is Hierarchical Risk Parity (HRP),
introduced by Lépez de Prado (2016). HRP uses hierarchical clustering to infer relationships
between assets, which are then used directly for portfolio diversification, addressing three
major concerns of quadratic optimizers: instability, concentration, and underperformance. The
approach departs from classical mean-variance optimization by using a three-step process that
organizes assets into hierarchical clusters based on their correlation structure, reorganizes the
correlation matrix according to this tree structure, and then allocates capital recursively through
the hierarchy using inverse variance weighting within each cluster.

Another prominent technique is DBSCAN (density-based spatial clustering of applications with
noise), a density-based clustering algorithm that groups together points in high-density areas
while marking points in low-density regions as noise or outliers, making it particularly effective
for discovering clusters of arbitrary shapes and sizes (Ester, Kriegel, Sander, and Xu 1996). The
algorithm requires two parameters: epsilon (g), which defines the neighborhood radius, and
minimum points (MinPts), required to form a dense region. Core points have at least MinPts
neighbors within € distance, border points within € distance of core points, and noise points
not meeting either criterion. In contrast to k-means, DBSCAN does not require advance spec-
ification of the number of clusters and can identify clusters with irregular shapes, making it
robust against outliers and noise. In financial applications, DBSCAN excels at fraud detection
by identifying unusual transaction patterns, market anomaly detection, and customer behavior
analysis where normal clustering algorithms might fail because of the presence of outliers or
nonspherical cluster shapes that are common in financial data distributions.

An extension of DBSCAN is OPTICS (ordering points to identify the clustering structure), which
creates an ordering of data points that represents the density-based clustering structure, pro-
viding more detailed insights into cluster hierarchies and varying density regions within the
dataset (Ankerst, Breunig, Kriegel, and Sander 1999). The algorithm computes core distances
and reachability distances for each point, creating a reachability plot that visualizes the cluster-
ing structure across different density thresholds, allowing analysts to extract clusters at multi-
ple scales without specifying parameters in advance. This hierarchical approach is particularly
valuable when dealing with clusters of varying densities or nested clusters or when the optimal
clustering parameters are unknown because it provides a comprehensive view of the data's
density structure. In high-dimensional financial data analysis, OPTICS proves invaluable for iden-
tifying complex market structures, detecting multiscale patterns in trading data, and analyzing
portfolio correlations where traditional clustering methods might miss important structural rela-
tionships because of varying density patterns for different market conditions or time periods.

Affinity propagation (AP), introduced by Frey and Dueck (2007), belongs to the family of
graph-theoretic clustering techniques and is based on the concept of “message passing”
(Mézard 2007) between the candidate members of a cluster that continues until each candidate
is sufficiently informed to join the appropriate cluster. AP begins by measuring the similarity,
s(i, k), between vectors, which represents the similarity of vector k to vector i. Similarity is mea-
sured by a metric chosen by the model builder (e.g., Euclidean distance).
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The basic input to AP is a real-valued number s(k, k), called a preference, for each observation.
Observations with larger preference values are more likely to be selected as cluster centers, also
known as exemplars. However, cluster selection is a function of not only preference size but
also the two message-passing operations that are the essence of the AP algorithm. The first—
the responsibility, r(i, k)—is a message transmitted from observation i to a candidate exemplar
k that expresses the suitability of observation k as an exemplar for observation i given the suit-
ability of other candidate exemplars. The second—the availability, a(i, k)—works in the opposite
direction and is sent from a candidate exemplar k to an observation i. Availability expresses how
appropriate it would be for observation i to select observation k as its exemplar, given the exist-
ing support that observation k has from other observations to serve as an exemplar. The AP
process begins by initializing the availabilities to zero, a(i, k) = 0, and then proceeds to compute
the responsibilities using the following rule:

r(i,k) =s(i k) —kmiék{a(i,k')+s(i,k')}. (1)

The following formula then determines whether an observation is a good exemplar:

a(ik)= min{O,r(k,k) + Y max{{0,r(i’ k)}} } (2)
i's.t.i'={ik}
The “self-availability” of an observation is expressed as follows:
a(i, k) = Xmax{{0,r(i’ k)}} (3)
i's.t.i'zk

An investment application of AP is presented by Simonian (2020), who used it to determine the
level of diversity within a set of investment signals. To classify signals according to their sta-
tistical predictive properties, the author posited a vector consisting of information coefficient
(IC) and IC variance values in various regime-specific subsamples as inputs into the clustering
algorithm. Using AP in this manner allows us to gain a multidimensional view of investment
signal diversity, with each measure providing information on a different aspect of predictive
effectiveness.

Cluster Evaluation Techniques

Although many clustering algorithms require positing the number of clusters, techniques have
been developed that allow the user to determine the most suitable clustering scheme. Two
techniques in particular have become popular. The first is the silhouette score, an internal clus-
tering evaluation metric that measures how similar each point is to points in its own cluster
compared with points in other clusters, providing both individual point scores and an over-

all clustering quality measure. For each data point, the silhouette coefficient is calculated as

(b — a)/max(a, b), where a is the mean distance to other points in the same cluster (intracluster
distance) and b is the mean distance to points in the nearest neighboring cluster (intercluster
distance). The silhouette coefficient ranges from -1 to 1. Values close to 1 indicate that the
point is well matched to its cluster and poorly matched to neighboring clusters, values around 0
suggest that the point is on or very close to the decision boundary between clusters, and
negative values indicate that the point might have been assigned to the wrong cluster.

The mathematical foundation of the silhouette score relies on distance-based cohesion and
separation measures. For a point i in cluster C, the intracluster distance, a(i), represents the

6 ¢ CFA Institute Research Foundation



Unsupervised Learning |: Overview of Techniques

average distance between point i and all other points in the same cluster, measuring cluster
cohesion. The intercluster distance, b(i), is the minimum average distance from point i to points
in any other cluster, measuring cluster separation. The silhouette coefficient, s(i) = [b(i) — a(i)]/
max[a(i), b(i)], provides a normalized measure that balances cohesion and separation, with
higher values indicating better clustering quality.

The second popular cluster evaluation technique, the Adjusted Rand Index (ARI), introduced

by Hubert and Arabie (1985), builds on the measure introduced by Rand (1971) and is a more
explicitly probabilistic measure of cluster uniqueness. Two important characteristics distinguish
an ARl value from a silhouette score. The first is that a Rand Index value is relational. Whereas

a silhouette score tells us how tight a particular clustering scheme is, an ARl value ranges

from 1 to -1 and tells us how similar two clustering schemes are. A value of 0 represents two
independent clusters, and a value of 1 represents identical clusters. Negative values indicate
worse-than-random clustering. Accordingly, the second distinguishing characteristic of an ARI
value is that lower values indicate more unique pairs of clustering schemes. The metric is partic-
ularly valuable because it adjusts for the expected similarity that would occur by chance alone,
making it more reliable than the basic Rand Index when comparing clusterings with different
numbers of clusters or when dealing with imbalanced cluster sizes.

The mathematical foundation of the original Rand Index begins with the contingency table,
which cross-tabulates the cluster assignments from two different clusterings. Given two clus-
terings U={U;, U, ..., U}and V={V;, V,, ..., V.}, the contingency table entry n; represents the
number of objects that are in both cluster U, and cluster V.. The Rand Index is calculated by
counting the number of pairs of objects that are either in the same cluster in both clusterings
or in different clusters in both clusterings and dividing by the total number of pairs. This raw
measure does not account for the expected agreement that would occur by random chance,
however, which is where the adjustment becomes crucial. The mathematical formula for ARI
can be expressed as ARI = (Rl — Expectedg)/[max(RI) — Expectedg], where Rl is the Rand Index,
Expectedg, is the expected value of the Rand Index under the null hypothesis of random cluster-
ing, and max(RI) is the maximum possible value of the Rand Index. This adjustment ensures that
the expected value of ARl is zero when clusterings are independent, making it a more interpre-
table measure than the raw Rand Index.

Dimension Reduction Techniques

Finance is a data-driven enterprise. Indeed, the sheer size of data processed and the number
of variables considered in financial applications may at times test the limits of mathematical
models and information technology infrastructure. Given this fact, reducing the dimensions
of a problem when possible is a critical aspect of any investment process.

Principal component analysis (PCA) is a dimension reduction technique that has been used in
finance for many years (Pearson 1901; Hotelling 1933). PCA transforms high-dimensional data
into a lower-dimensional space while preserving maximum variance. PCA works by finding the
principal components, which are orthogonal directions in the feature space that capture the
most variance in the data. The algorithm computes the covariance matrix of the data, performs
eigendecomposition to find eigenvectors (principal components) and eigenvalues (variance
explained), and then projects the original data onto the space spanned by the top k eigenvec-
tors (see Figure 4). This linear transformation creates uncorrelated features ordered by the
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Figure 4. PCA Algorithm

1. Center the data: X, ,...q = X — mean(X)

Compute covariance matrix: C=[1/(n — 1)] X X_cptered’ * Xcentered
Perform eigendecomposition: C=V x A x VT

e V:eigenvectors (principal components)

e A:eigenvalues (variance explained)

Sort eigenvectors by decreasing eigenvalues

Select top k eigenvectors: W = V[:, 0:k]

Transform data: Y= X__,.c.cq X W

N oo ow o

Output: Y, W, explained variance ratio

amount of variance they explain, making PCA particularly useful for data visualization, noise
reduction, and feature extraction in preprocessing pipelines.

Perhaps the most well-known example of a financial application of PCA appears in the decom-
position of the yield curve by Litterman and Scheinkman (1991). Their application of PCA
involves constructing a matrix where each row represents a specific date and each column rep-
resents yields at different maturities (such as 3-month, 6-month, 1-year, 2-year, 5-year, 10-year,
and 30-year rates). PCA then decomposes the yield curve data into orthogonal components
ranked by their explanatory power. Their study (and others that followed) revealed that three
principal components explain approximately 95%-99% of yield curve movements:

e First principal component (level): This component typically accounts for 80%-90% of the
variance and represents parallel shifts in the yield curve. When this factor moves, all yields
tend to move up or down together by similar amounts. This behavior reflects broad mone-
tary policy changes, inflation expectations, or general economic conditions.

e Second principal component (slope): Explaining roughly 5%-15% of variance, this com-
ponent captures the steepening or flattening of the yield curve. It represents the spread
between long-term and short-term rates, often reflecting expectations about future
monetary policy or economic growth.

e Third principal component (curvature): Accounting for 1%-5% of variance, this component
captures changes in the curve's convexity or "bow” shape. It reflects relative movements
in medium-term rates compared with short- and long-term rates, often related to market
expectations about intermediate-term economic conditions.

Another popular dimension reduction technique is t-distributed stochastic neighbor
embedding (t-SNE), a powerful dimension reduction technique that can be used to visualize
high-dimensional data in a lower-dimensional space, typically 2D or 3D (van der Maaten and
Hinton 2008). It is particularly effective for exploring complex datasets and identifying clusters
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Figure 5. t-SNE Algorithm

1. Compute high-dimensional similarities:

e For each point x; calculate conditional probabilities: py; = exp(-||x; - x;||*/25:2)/
Tk#i exp(=||x; = x>/ 207)

e Symmetrize: p; = (py3 + Pyip)/2n
2. Initialize low-dimensional embedding:
e Randomly place points y; in target dimensional space
3. Iterative optimization: For each iteration, compute low-dimensional similarities:
e Use t-distribution: g; = (1 + ||y; = y;||2)/Zk=l (1 + ||y, — yil[2)
Calculate gradient:
e Minimize Kullback-Leibler (KL) divergence: KL(P||Q) = %; p; log(p;/q;)
e Gradient: C/dy; = 4%; (p; = qy)(y: = ) (1 + |ly; = y|19)™
Update positions:
e Apply gradient descent with momentum to move points y;

4. Output: Final low-dimensional embedding Y

or patterns that might not be apparent in raw data. In finance, t-SNE can be applied to analyze
and visualize market segmentation, such as grouping stocks or assets based on their historical
performance, risk profiles, or other features. The algorithm for t-SNE appears in Figure 5.

To provide a supervised counterpoint, we mention linear discriminant analysis (LDA), a tech-
nique that finds linear combinations of features that best separate different classes, making it
particularly useful for classification preprocessing (Fisher 1936). LDA can serve as a powerful
classification tool in financial applications, particularly for identifying trading signals. In credit
risk modeling, LDA can help separate borrowers into distinct risk categories using financial
ratios and other predictive variables, optimizing the linear combination of features that best dis-
criminates between default and nondefault cases. For algorithmic trading, LDA can be used to
classify market conditions into bullish, bearish, or neutral regimes based on technical indicators
and market microstructure variables.

Another technique, independent component analysis (ICA), assumes that data are generated
by mixing independent source signals and attempts to recover these original independent
components, making it valuable for blind source separation problems such as audio signal pro-
cessing (Comon 1994; Bell and Sejnowski 1995). ICA is therefore useful in financial applications
that require blind source separation, particularly in identifying independent market factors from
mixed signals. For example, in multiasset portfolio analysis, ICA separates returns into inde-
pendent components that may represent different economic factors (inflation, growth, senti-
ment) that are not directly observable but drive asset performance. For high-frequency trading,
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ICA helps isolate genuine price signals from market noise by identifying independent sources
of price movement. The technique is particularly valuable in emerging markets, where tradi-
tional factor models may not apply, because ICA can discover country-specific or sector-specific
independent factors that influence asset returns without requiring prior assumptions about
factor structure.

Deep Learning Approaches

Autoencoders are neural networks designed to learn efficient data representations in an
unsupervised manner by training the network to reconstruct its input data (Hinton and
Salakhutdinov 2006). The architecture consists of an encoder that compresses the inputinto a
lower-dimensional latent representation and a decoder that reconstructs the original input from
this compressed representation. The network is trained to minimize reconstruction error, which
forces it to learn meaningful features that capture the most important aspects of the data.
Applications of encoders include dimensionality reduction, denoising, feature learning, and data
compression. The algorithm for autoencoders is shown in Figure 6.

Variations of standard encoders include denoising autoencoders that learn to reconstruct clean
data from corrupted inputs, variational autoencoders (VAEs) that learn probabilistic latent

Figure 6. Autoencoder Algorithm

1. Initialize networks:

Encoder: f,

enc

(; 04nc) = z with parameters 6.,
Decoder: f,..(z; 0,4..) — X with parameters 0,
2. Training loop (for each epoch):
For each mini-batch:
Forward pass:
Encode: z=f,,.(x; 0,,.)—compress input to latent code
Decode: X = f . (z; 84, )—reconstruct from latent code
3. Loss computation:
Reconstruction loss: L = ||x - X||? (mean squared error)
4. Backward pass:
Compute gradients with respect to both networks: V6,,.L, V6,..L
Update encoder: 6,,. < 0., — aV0,,L
Update decoder: 0, < 04 — VO, L

5. Output: Trained encoder and decoder networks
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representations, and sparse autoencoders that enforce sparsity constraints on the hidden layer
activations to learn more interpretable features (Kingma and Welling 2014). Unlike traditional
autoencoders, which compress data into a deterministic latent space, VAEs model the latent
space as a probability distribution (typically Gaussian). This probabilistic approach allows VAEs
to generate realistic synthetic data by sampling from the learned latent distribution. VAEs con-
sist of two main components:

e Encoder: Maps input data to a latent space by learning the parameters (mean and variance)
of a probability distribution

e Decoder: Reconstructs the original data from samples drawn from the latent distribution

The key innovation of VAEs is the use of variational inference, where the model learns a latent
distribution that captures the underlying structure of the data. The training process involves
minimizing a loss function that combines reconstruction error (how well the decoder recon-
structs the input) and a regularization term (how close the learned latent distribution is to

a prior, typically a standard normal distribution). Examples of how VAEs are used in finance
include synthetic data generation for testing trading strategies or stress-testing models, uncov-
ering latent factors driving asset prices or market behavior, and identifying unusual patterns in
financial data by comparing reconstructed data with the original input.

Another algorithm used to generate synthetic data is known as a generative adversarial net-
work (GAN; Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio
2014). GANs are a class of generative models that use a game-theoretic framework to learn and
generate new data that mimic the distribution of a given dataset. GANs consist of two neural
networks:

e Generator: Creates synthetic data from random noise, attempting to mimic the real data
distribution

e Discriminator: Distinguishes between real data (from the dataset) and fake data (produced
by the generator)

The generator and discriminator are trained simultaneously in a zero-sum game: The generator
attempts to “fool” the discriminator by producing realistic data, and the discriminator tries to
correctly identify real versus fake data. Over time, the generator improves its ability to create
realistic data, and the discriminator becomes better at distinguishing real from fake. When the
GAN converges, the generator produces data that are indistinguishable from the real data.
GANs are widely used in finance for tasks that involve generating realistic synthetic data, mod-
eling complex distributions, and simulating market scenarios. Simonian (2024) describes how
the synthetic data generated by GANs can be used in the model validation process.

Anomaly Detection

Anomaly detection is an important part of finance because extreme outliers, such as stock
market crashes, can have outsized financial and economic implications. However, anomaly
detection is important not only for investors but also in such areas as credit card fraud detec-
tion, identifying unusual trading patterns, detecting market manipulation, and monitoring port-
folio performance for abnormal behavior patterns that could indicate operational risks or model
failures. Although other types of machine learning models, such as DBSCAN and support vector
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Figure 7. LOF Algorithm

1. Find k-nearest neighbors for each point
2. Calculate reachability distance:
r4st(A, B) = max[k-distance(B), d(A, B)]
3. Compute local reachability density:
Local 4(A) = 1/(EReach (A, B)/|N(A)|)
4. Output: LOF(A) = [Z/4(B)/1.4(A))/|N(A)| for Bin N(A)

machines, can perform anomaly detection, dedicated algorithms have also been developed for
outlier detection. Isolation Forest uses decision trees to isolate anomalies by randomly select-
ing features and splitting the data according to threshold values, operating under the principle
that anomalies are few and different—hence, easier to isolate (Liu, Ting, and Zhou 2008). The
algorithm constructs an ensemble of isolation trees by randomly selecting features and split
values, with anomalies requiring fewer splits to be isolated and thus having shorter average
path lengths in the trees, whereas normal points require more splits and have longer paths.
This approach is particularly effective because it directly targets anomalies rather than profiling
normal instances, making it computationally efficient with linear time complexity and effective
in high-dimensional spaces.

Another popular anomaly detection technique is the local outlier factor (LOF), which detects
anomalies by comparing how densely packed each point is relative to its local neighborhood
(Breunig, Kriegel, Ng, and Sander 2000). The key insight is that outliers exist in sparser regions
compared with their neighbors. As a rough analogy, think of data points as houses in a city:

In dense neighborhoods, houses are close together, and in less populated areas, houses are
spread out. An outlier is like a house that is unusually isolated compared with the density of its
surrounding neighborhood. The LOF algorithm is shown in Figure 7.

Conclusion

In this chapter, | have provided an overview of some major unsupervised learning algorithms
along with examples of how they are applied in various areas of finance. | have shown that unsu-
pervised learning plays a major role in classification, anomaly detection, and synthetic data gen-
eration—all major application areas in finance. The next chapter will delve deeper into an area of
unsupervised learning—network theory—that has become popular in recent years because of its
flexibility and power to illuminate various types of connections that exist between financial and
economic entities and actors.
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