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Foreword

Term-structure models are essential for the valuation of interest rate
dependent claims. Although term-structure experts have produced a variety
of useful models, they involve complex mathematics, which limits their
accessibility to investment practitioners who are not engaged in this area of
specialization. Moreover, the original “journal” versions of these models and
their subsequent descriptions in text books often abstract from many
important details necessary for implementation. These circumstances make
it difficult for investors to compare the prices of interest rate dependent claims,
to assess the appropriateness of alternative term-structure software products,
and to build their own term-structure models. 

With this monograph, Gerald W. Buetow, Jr., CFA, and James Sochacki
go a long way toward ameliorating this problem. They begin with a concise
but hardly superficial overview of interest rate modeling, and they introduce
the binomial tree framework. Having thoroughly prepared the reader, they
next present the five most important no-arbitrage term-structure models:

• Ho–Lee Model. This model was the first no-arbitrage term-structure
model. It assumes constant and identical volatility for all spot and forward
rates and does not incorporate mean reversion.

• Hull–White Model. This model extends the Ho–Lee model to allow for
mean reversion. 

• Kalotay–Williams–Fabozzi Model. This model assumes a lognormal
distribution and eliminates the problem of negative short rates, which can
occur with the Ho–Lee and Hull–White models.

• Black–Karasinski Model. An extension of the Kalotay–Williams–
Fabozzi Model, this model controls the growth in the short rate. 

• Black–Derman–Toy Model. This model permits independent and time-
varying spot-rate volatilities.

Buetow and Sochacki explain clearly and precisely the strengths and
weaknesses of each model and how these models relate to one another. In
addition, they generate binomial trees for each of the models to demonstrate
the implications of their different features. Perhaps of most interest to the
investment practitioner, they provide all of the detailed information necessary
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to implement these models, along with an easy-to-follow numerical example.
For the first time in a single source, Buetow and Sochacki remove the
opaqueness of the important no-arbitrage term-structure models, rendering
them available for use by investment practitioners. The Research Foundation
is pleased to present Term-Structure Models Using Binomial Trees.

Mark Kritzman, CFA
Research Director

The Research Foundation of the
Association for Investment Management and Research
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Preface

This monograph was a by-product of the Fixed-Income Specialization Project
(FISP) sponsored by AIMR. Throughout the FISP and the corresponding
application development, called the Fixed-Income Specialization Application
Project (FISAP), it became evident that most users of interest rate models do
not have a very good understanding of them. This is largely due to the lack of
available literature in this area. More specifically, existing readings require
the reader to have an advanced understanding of mathematics. The demand
for a readable source was evident from our discussions with both the
participants and other investment professionals. This monograph is our
attempt to meet that demand. While mathematics is unavoidable in this area,
we have tried to concentrate more on the finance so that the reader will not
get lost in the algebra. We have also tried to outline the specifics required if
an analyst needs to implement his or her own model. We hope this monograph
provides an intelligible and useful guide on term-structure models for readers,
thus eliminating the frustration often associated with this area.

In Memory of

Captain William F. Burke, Jr. 
Engine Company 21, FDNY

A Leader, Comedian, Friend, and Hero

You paid the supreme sacrifice to ensure the safety of your men and countless
others on the morning of September 11, 2001. Men of your courage,
leadership, kindness, intelligence, and humor are far too rare in this world. I
am forever indebted to you for helping me navigate the labyrinth of
adolescence and helping me solve the numerous personal and professional
dilemmas that come with age. The current value of that counsel has no metric.
My memories of our friendship are more precious than a pure arbitrage. You
will be missed but never forgotten.

GWB
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1. Interest Rate Modeling

Many models are available for modeling the short rate—that is, the forward
rate for the short time period—and many papers and books have been written
on these models. Models for the short rate come in various forms: No-
arbitrage, equilibrium, Markov, and non-Markov are some examples. These
frameworks often involve intimidating mathematics. For the practitioner, the
no-arbitrage models seem to be the most widely accepted, but unfortunately,
implementing these models can be challenging. This monograph explains
many of the financial and mathematical features of no-arbitrage models.

Using any of these models on security or contingent-claim valuation is not
as straightforward as it first may appear. What makes implementation even
more difficult is the lack of guidance in the extant literature. The original
articles assume, when it comes to actual implementation, that the user has a
lot of mathematical knowledge of the models. That is, when a user actually
sits down to generate the appropriate code to implement the model, the
articles are found wanting. Jamishidian (1991), Rebonato (1996), Tuckman
(1996), Bjerksund and Stensland (1996), Sundaresan (1997), and Hull (2000)
offer some additional insight into implementation. Still, these studies do not
explain either the equations or the properties of the models in enough detail
to give the user the information needed to implement the models properly.
We hope to fill that need with this work.

In this monograph, we develop the models and the mathematical equa-
tions and approximations for them, and we give examples of the models. We
then present the strengths and weaknesses of the models and indicate how
the models can be used to model the short rate.

First, we develop the terminology and notation used in this monograph.
Because interest rates are stated at certain times and act over a period of time,
we need to formulate how time is measured. Calendar time is measured in
years from a certain starting time. That is, if we start measuring interest rates
on January 15, 1970, then t = 0 on January 15, 1970, t = 1 on January 15, 1971,
t = 2 on January 15, 1972, and so on. For example, the interest rate may be
effective at t = 1 for a time period of six months. We can divide the calendar
time into increments called “time steps.” If the time step is six months, or 0.5
years, then there are two time steps in t = 1 and four time steps in t = 2. We
number the time steps consecutively. The time steps do not have to be of the
same length. For example, the first time step could be six months, the second
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could be five months, and the third could be four months. In that case, t = 1 is
in the third time step.

We always choose t0 = 0 as the starting time for our interest rate models.
If the calendar times for modeling the interest rate are chosen to be 0 = t0 < t1
< t2 <, . . . ,< tn, then the time steps are calculated to be

τ1 = t1 – t0,

τ2 = t2 – t 1, . . . ,

and

τn = tn – tn– 1.

If the time steps are constant, then τ1 = τ2 = . . . = τn = τ, and we calculate that

t1 = t0 + τ,

t2 = t1 + τ = t0 + 2τ, . . .,

and

tn = tn– 1 + τ = t0 + nτ.

If the time steps are not constant, then

t1 = t0 + τ1,

t2 = t1 + τ2

= t0 + τ1 + τ2, . . .,

and

tn = tn– 1 + τn

= t0 + τ1 + τ2 + . . . τn.

We present the models for a constant time step and treat the nonconstant, or
variable, time steps in Appendix A. We use τ to denote a constant time step.

In addition to a formula for measuring time, we need to define our notation
for the spot rate. The spot rate is the rate that corresponds to a particular point
in time measured from t = 0. It is compounded at a certain time step for a fixed
number of years. We use R1 for the spot rate at time t = 0 for one time period,
R2 for the spot rate at time t = 0 for two time periods, and so on. That is, Rn is
the spot rate at time t = 0 for n time periods.1 The spot rates used in this
presentation were obtained from zero-coupon bonds. Such information can be

1For a complete discussion of the spot rate, see Tuckman, or Sundaresan, or Buetow and
Fabozzi 2001.
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found in any number of sources, including the Wall Street Journal. The spot
rates up to time t = tn = nτ compounded at given time periods are referred to
as the term structure of interest rates.

Forward Rates
Suppose we invest A2 dollars at t = 0 for two time periods; at the end of the
second time period, t = t2 = 2τ, we have

P2 = A2(1 + R2τ)2 (1)

or

. (2)

That is, A2 is the present value of P2 dollars two time periods from now under
a spot rate of R2 compounded every period. (We treat the case of continuous
compounding in Appendix B.) 

The discount factor is

.

Now, suppose we want to invest A2 dollars in one time period and then
invest the proceeds, P1, for another period. At t = 0, we invest A2 dollars for
one time period. At the end of the time period, we have

P1 = A2(1 + R1τ). (3)

That is,

. (4)

Now, we invest these P1 dollars for another time period. We want to
determine the interest rate, r1, that lands us at the end of this process with the
same P2 dollars as in the first scenario. We have from Equation 1 and Equation
3 that

P1(1 + r1τ) = P2

= A2(1 + R2τ)2. (5)

Using Equation 2 and Equation 4 with Equation 5, we have 

A2
P2

1 R2τ+( )
2

--------------------------=

1

1 R2τ+( )
2

--------------------------

A2
P1

1 R1τ+
------------------=
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(6)

The interest rate r1 that gives us the same present value under both
scenarios (i.e., makes Equations 5 and 6 true) is called “the forward rate for
the short time period” or “the short rate at the first time period.” The forward
rate at t = 0 is r0, and r0 = R1. In particular, rn is the short rate n time periods
in the future.

Under the usual market assumptions, if

or

,

then an arbitrage opportunity exists. That is, a risk-free profit is available
without any initial investment. Because the models we are considering are no-
arbitrage models, Equation 6 must be satisfied. In particular, from Equation
6, we must have

(7)

Because the short rate is the forward rate at a given t for a short time
period, we can denote it as r(t). That is, r(t) is the short (forward) rate at time
t for a short time period, τ. This short time period for the short rate is usually
fixed over calendar time. In the models we consider, the short rates are usually
for a fixed six-month period.

Financial analysts are interested in determining possible short rates at
future points in time. For example, they are interested in knowing what the
six-month short rate will be seven years from now. Suppose the graph in
Figure 1 is a plot of the six-month (fixed-time-period) short rate for a calendar

A2
P2

1 R2τ+( )
2

--------------------------=

P1
1 R1τ+
------------------=

P2 1 r1τ+( )⁄

1 R1τ+
-------------------------------- .=

P2
1 r1τ+( )

---------------------- A2 1 R1τ+( )>

P2
1 r1τ+( )

---------------------- A2 1 R1τ+( )<

1

1 R2τ+( )
2

--------------------------

1 1 r1τ+( )⁄

1 R1τ+
-----------------------------=

1 1 r1τ+( )⁄

1 r0τ+
-----------------------------.=
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time of 30 years. The graph indicates that the six-month short rate at Year 7
is 6 percent, which we would write as r(7) = 0.06.2 

The graph in Figure 1 shows that the short rate can have significant up
and down movement. This movement is called “the volatility of the short rate.”
Figure 1 also shows that the volatility is a function of the calendar time, t.
Therefore, a model of the interest rate must be able to incorporate volatility.
The models we present incorporate the volatility of the short rate, which we
call “the local volatility” to distinguish it from yield volatility.

The no-arbitrage models we discuss attempt to answer the following
question: Can a model be developed that incorporates the parameters affect-
ing the short rate that will produce graphs consistent with the actual short
rate? An elementary knowledge of calculus and probability is all that is
necessary to learn and understand the processes that are commonly used to
model the short rate within the no-arbitrage framework. The model must
make intuitive sense. 

Figure 1. Six-Month Short Rate (Forward Rate) for 30 Years

2For a semiannual model, when t = 7 years and τ = 0.5 years, there are 14 periods.
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The models we present are some of the most commonly used models in
the finance literature. Our objective is for readers to understand the models
so that they can implement them properly. Once analysts understand the
appropriate use of the models, they can apply them to contingent-claim
valuation, as in Buetow and Fabozzi (2001), or to risk-metric computation, as
in Buetow and Johnson (2000).

Introduction to Binomial Models
Consider the following simple example of a volatile short rate for a two-period
bond that pays $100 at the end of the second time period. Because many
unpredictable events can change market conditions (including short rates and
spot rates), the spot rates at time t = τ will be different from the spot rates at
time t = 0. Suppose we believe that at time t = τ, the short rate for the next time
period can have only one of two possible values, ru or rd, with ru > rd. If there
is a probability q that the short rate will be ru, then there is a probability 1 – q
that the short rate will be rd (because the total of the probabilities must be 1). 

With these conditions in mind, from Equation 2, the present value of the
bond is

,

and from Equation 4, the present value at time period τ is either

or

.

Therefore, the present value at t = 0 is either

or

.

Thus, within the no-arbitrage framework, either

A2
$100

1 R2τ+( )
2

--------------------------=

pu
$100

1 ruτ+
-----------------=

pd
$100

1 rdτ+
-----------------=

pu
1 r0τ+
-----------------

pd
1 r0τ+
-----------------
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(8a)

or

(8b)

Equations 8a and 8b are similar to Equation 7. A2 is now set equal to the
expected value of Equations 8a and 8b, which gives

or, after dividing by $100 (the value of the bond),

.

Clearing fractions leads to

.

Finally, subtracting the right-hand side from both sides produces

A2
$100

1 R2τ+( )
2

--------------------------=

pu
1 r0τ+
-----------------=

$100 1 ruτ+( )⁄

1 r0τ+
--------------------------------------=

A2
$100

1 R2τ+( )
2

--------------------------=

pd
1 r0τ+
-----------------=

$100 1 rdτ+( )⁄

1 r0τ+
-------------------------------------- .=

A2
$100

1 R2τ+( )
2

--------------------------=

q
pu

1 r0τ+
----------------- 1 q–( )

pd
1 r0τ+
-----------------+=

q
$100 1 ruτ+( )⁄

1 r0τ+
-------------------------------------- 1 q–( )

$100 1 rdτ+( )⁄

1 r0τ+
--------------------------------------+=

1

1 R2τ+( )
2

-------------------------- q
1 1 ruτ+( )⁄

1 r0τ+
----------------------------- 1 q–( )

1 1 rdτ+( )⁄

1 r0τ+
-----------------------------+=

1

1 R2τ+( )
2

-------------------------- 1 r0τ+( ) 1 rdτ+( ) 1 ruτ+( ) q 1 rdτ+( ) 1 q–( ) 1 ruτ+( )+=
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(9a)

or

A2(1 + r0τ)(1 + rdτ)(1 + ruτ) – q(1 + rdτ) – (1 – q)(1 + ruτ) = 0. (9b)

Equation 9b is the fundamental equation used in no-arbitrage binomial
models to determine the possible short rates. To use Equation 9b, one has to
model ru and rd. 

In the following chapters, we discuss five models that give formulas for ru
and rd. The models are the Ho–Lee (HL; Ho and Lee 1986), Hull–White (HW;
Hull and White 1994), Kalotay–Williams–Fabozzi (KWF;3 Kalotay, Williams,
and Fabozzi 1993), Black–Karasinski (BK; Black and Karasinski 1991), and
Black–Derman–Toy (BDT; Black, Derman, and Toy 1990). These models
build on Equation 9b. Historically, the HL model was introduced first, then
the BDT model, then the BK model, then the KWF model, and then the HW
model. We, however, present the models in such a way that each one arises
mathematically from the previous model. Thus, for example, a computer
program designed to implement the HL model could easily be adapted for the
other models. 

In Chapter 3, we explain binomial short-rate models and their correspond-
ing price trees. We cover many of the commonly used models for several
reasons. First, each model has different properties, and these properties must
be understood before the model is applied for valuation purposes. Second, the
models require different input parameters. These inputs must also be properly
understood before the model is implemented. Third, all the models have
limitations that need to be appreciated prior to their use. Finally, interpreting
outputs (values or risk metrics) from the model is impossible unless the
underlying model and its corresponding characteristics are understood.4 

Our goal for this monograph is to help readers gain an appreciation for
the complexity and power of binomial models. But keep in mind that, although
binomial models require far less computing than higher-order tree models,
such as trinomial and tetranomial models, these higher-order models do have
some advantages, which the reader should also appreciate after completing
this monograph. Fortunately, despite the interest rate lattice used in the
higher-order models, the mechanics are similar to the mechanics of the

3The actual KWF model is a slight variation of the model we present. Other names are also
associated with this model.
4Many other reasons exist, but they do not need to be listed here.

1

1 R2τ+( )
2

-------------------------- 1 r0τ+( ) 1 rdτ+( ) 1 ruτ+( ) q 1 rdτ+( ) 1 q–( ) 1 ruτ+( )–– 0=
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binomial models, so the concepts developed here are easily extrapolated to
the other lattice structures. 

What we develop in this monograph can also be straightforwardly modi-
fied to work for trinomial and tetranomial models. A trinomial model would
have three possible values for the short rate r1—say, ru, rm, and rd— with the
respective probabilities qu, qm, and qd (where qu + qm + qd = 1). Equation 9b
would become

A2(1 + r0τ)(1 + rdτ)(1 + rmτ)(1 + ruτ) 
– qu(1 + rdτ)(1 + rmτ) – qm(1 + rdτ)(1 + ruτ) – qd(1 + rmτ)(1 + ruτ) = 0. (10)

We briefly discuss trinomial models at the end of Chapters 3 and 4.
The models we present are the basic models. Advanced readers may

suggest that the more sophisticated models are more useful. Undoubtedly,
they are. But the more complicated models cannot be properly understood
without an understanding of the fundamental models. Moreover, despite the
refinements of the sophisticated models, the models we discuss are still widely
used by practitioners.

Uses of Term-Structure Models
At this point, the reader may think that binomial models for the short rate are
severely limited, but they are not. Binomial models exhibit many of the
desirable properties of the short rate. Additionally, they are commonly used
as valuation models for both bonds and fixed-income contingent claims.5 

The concepts presented in this monograph have far-reaching applications
throughout the investment arena. Almost every interest rate product in exist-
ence can be analyzed by using the models presented, so to reach an accurate
conclusion about an investment, investment professionals must understand
these models. Securities that particularly lend themselves to analysis by way
of lattice models are those with option characteristics, such as swap options,
caps, floors, callable bonds, putable bonds, bonds with sinking-fund provi-
sions, bond options, options on bond futures, capped floaters, and credit
options. Even securities without embedded options, however, can be analyzed
within this framework as part of credit-spread or scenario analysis. The
applicability of the models within the fixed-income area is almost endless.

Another important application of these models for the investment profes-
sional is the measurement of interest rate sensitivity. Specifically, effective
duration, effective convexity, partial duration, key-rate duration, option-

5Two good sources on how to use short-rate binomial models and their corresponding price
trees are Fabozzi (2000) and Buetow and Fabozzi.
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adjusted spread, slope duration, and curvature duration are easily evaluated
with these models. Before the proper interpretation of the model’s output,
however, the model generating the metrics must be understood because each
model generates different values. We cannot overemphasize this point. An
investment professional must be very comfortable with the characteristics of
these models before interpreting any of the valuation or sensitivity results.
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2. Models for the Short Rate

Short-term interest rates change through time, so we model the short-term
rate using a mathematical process. Specifically, we use differential equations
or differential processes to capture the dynamics of the short-term interest
rate. The model must also incorporate empirical and intuitive characteristics
of interest rates, which the models presented in this chapter attempt to do.

The models we consider have the general form

df [r(t)] = {θ(t) + ρ(t)g[r(t)]}dt + σ[r(t), t]dz, (11)

where f and g are suitably chosen functions, θ (which we will show is the drift
of the short rate) is determined by the market, and ρ (the tendency to an
equilibrium short rate) can be chosen by the user of the model or dictated by
the market. The term σ is the local volatility of the short rate. In Equation 11,

, where ε ~ N(0,1) and N(0,1) is the normal distribution with a mean
of 0 and a standard deviation of 1.6 This component is incorporated in the
differential equation to model the randomness (volatility) of interest rates.7

Differential equations with this type of term are called stochastic differen-
tial equations (SDEs). The models based on Equation 11 are known as “one-
factor models” because they model only the short rate (one factor).

The right-hand side of Equation 11 is the sum of two components. The
first component is contained in the braces and is multiplied by the term dt.
This component is the expected or average change in rates over a short time
period, dt. This component is where certain characteristics of interest rates,
such as mean reversion (MR), are incorporated. Interest rates are expected
to change by what this term suggests. The second component models the
randomness (or risk) of interest rates. This component is a product of the
terms σ[r(t),t] and dz. This component dictates the distribution characteris-
tics of interest rates. Depending on the model, interest rates are either
normally or lognormally distributed. As explained, on average, this compo-
nent is zero, which is why the first component, the expected value, needs to
be thoroughly understood.

6The variable z follows a Wiener process. This means  and that the values of ∆z for
any two different time intervals ∆t are independent. 
7Throughout the manuscript, we will take liberties with terminology, but this will not detract
from the financial implications of the development.

dz ε dt=

dz ε dt=
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We will not study the technical issues of SDEs in this monograph, but we
will use Equation 11 to develop five one-factor models for the short rate. To
study Equation 11 in full detail, one needs a good background in stochastic
calculus.8 

Because analytic (or closed-form solutions) to Equation 11 are not feasible
even when stochastic calculus is used, numerical approximations to Equation
11 that incorporate the stochastic term σ[r(t),t]dz are usually applied. Numer-
ical calculations can be done only at discrete calendar times; therefore,
calendar times at which the short rate will be calculated must be chosen. In
this monograph, the chosen times are denoted as indicated in Chapter 1, and
the times are usually chosen so that the time steps will match the time period
for the spot rates of the term structure. This approach makes it easier to
incorporate the no-arbitrage condition (bond prices from the model must
match the bond prices from the term structure of spot rates). We later explain,
however, that some models do not allow the time step to match the time
periods for the spot rates. In those cases, the analyst has to use interpolation
to match the model time steps with the time periods of the term structure. 

We let r(tk) denote the exact solution to Equation 11 at time t = tk. Because
we cannot (in general) generate an analytic form for r(tk), we develop a
numerical (or discrete) process that will approximate r(tk). We denote this
approximation by rk. That is, our numerical algorithm will generate a value rk
that approximates r(tk). We write rk ≈ r(tk).

We now use calculus to develop a numerical approximation for Equation
11. We have that

dr ≈ ∆r = r(tk+ 1) – r(tk) ≈ rk+1 – rk (12a)

when 
dt ≈ ∆t = tk+1 – tk (12b)

is close to zero. In many cases, ∆r is a fairly good approximation of dr, even if
dt is different from zero. (We will use rk both as r(tk) and as the approximation
of r(tk). The context will make clear whether we are using the exact value or
the approximation.) We will use τ for ∆t. If the time steps vary, τ will also
depend on k. We use Equations 12 on Equation 11 to develop our numerical
approximation for Equation 11.

8Determining solutions to Equation 11 is generally difficult. Stochastic calculus must be used
to obtain closed-form solutions. A good textbook on the mathematical theory behind Equation
11 is Neftci (1996). For example, to focus attention on the first term of the SDEs (Equation 11),
we state that we are taking the expectation of the SDE. We are not really applying the
expectations operator to both sides of the equation. We are simply eliminating the second term
of the SDE to analyze the first component of the equation. If we did apply the expectations
operator, the only difference to our analysis would be a scaling factor; the dynamics do not
change. Applying the operator unnecessarily complicates the analysis.
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As stated earlier, because the expected value of the random term is zero,
we analyze the properties of Equation 11 with only the first component
included. In other words, we set the second component equal to its expected
value of zero and study the resulting equation. Most of the properties of this
resulting equation (without the stochastic term) will apply to Equation 11
(with the stochastic term). A basic understanding of calculus is all that is
needed to study this equation. 

Inputs into the model must satisfy the mathematical properties of both
the SDEs and their approximations. We assume the time step is constant and
make adjustments when it is not. The five models are now developed.

Ho–Lee Model
In the HL model or process f(r) = r, g(r) = 0, and ρ = 0 in Equation 11. The HL
process is, therefore, given by

dr = θdt + σdz. (13)

Because  is normally distributed, the HL process models the short
rate as normal. The solution to Equation 13, assuming r(0) = r0 is given by

, (14a)

where the integral involving σ is a stochastic integral. If θ is constant, the
solution can be expressed as

. (14b)

Equation 14b shows that the HL process models an interest rate that can
change proportionally with time t through the constant of proportionality θ
and a random disturbance determined by σ. That is, the larger the magnitude
of θ, the larger the average change in the short rate over time. This effect is
why θ is called the drift in the short rate. Also, the smaller θ is, the larger the
influence of the random disturbance is. A shortcoming of the HL process is
that the short rate can be negative. Hull shows that θ is related to the slope of
the term structure.

A numerical approximation for Equation 13 can be obtained by using
Equations 12a and 12b. Letting tk = kτ and rk ≈ r(kτ) gives

rk+1 – rk = θkτ + σk∆zk

as an approximation for Equation 13 or
rk+1 = rk + θkτ + σk∆zk, (15)

where ∆zk is a numerical (discrete) approximation of dz. Because ,
we can further approximate Equation 15 by

dz ε dt=

r t( ) r0 θ
0
t

∫ ds σ
0
t

∫ dz+ +=

r t( ) r0 θt σ
0
t

∫ dz+ +=

dz ε dt=
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, (16)

where εk is a random number generated from a normal distribution N(0,1). 
Equation 16 is the form of the expression that is used for rk+1 to build the

HL binomial tree. In the HL process, Equation 16 is used for the formula for
ru and rd in Equation 9. We address the issues of this approximation for the
binomial tree in the next chapter.

We first consider the expected value solution to Equation 16 when θ is
constant. Equation 16 under these requirements is

rk+1 = rk + τθ, (17a)

and the solution is given by

rk = c + kδ, (17b)

where c and δ are constants. In particular, c = r0 = R1 and δ = θτ. The last
equation shows that the mean short rate in the HL process increases or
decreases at a constant rate θ over time, depending on the sign of θ. As a matter
of fact, Equation 17b shows that the short rate grows without bound if θ > 0
and decreases without bound (i.e., becomes extremely negative) if θ < 0. The
binomial tree examples considered in Chapter 4 illustrate this effect.

For now, look at solutions to Equation 13 and Equation 16. We use a
random number generator to model the normal distribution. Figure 2 depicts
a Ho–Lee example with σ = 10 percent averaged over 1,000 simulations (the
multiple runs line) and the corresponding expected value solution from Equa-
tions 16 and 17b with c = r0 = R1 = 0.05. The slope of the curve for the expected
value solution is the drift, θ. As expected, the expected value solution curve
and the curve for the average over 1,000 simulations have the same general
trend. Clearly, the single random run is highly volatile. For the numerical
approximations using Equation 16, we used τ = 0.5. (Unless specified other-
wise, we use τ = 0.5 in all our numerical approximations.) 

Hull– White Model
In the HW model or process, f(r) = r, g(r) = r, and ρ = –φ. Therefore, the
stochastic process for the HW model for the short rate is

dr = (θ – φr)dt + σdz. (18)

The short-rate process in the HW models is seen to be normal as in the HL
process. We consider the case where the parameters θ and φ are constant over
time. Note that if φ = 0, the HW process reduces to the HL process. (The HW
process will be similar to the HL process, if φ is close to zero.) The introduction

rk +1 rk θkτ σkεk τ+ +=
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of φ in the HW model is an attempt to incorporate mean reversion and to
correct for the uncontrolled growth (or decline) in the HL model; φ is the mean
reversion rate. Note that, despite this term, the HW model can still result in
negative interest rates.

The expected value of Equation 18 leads to the ordinary differential
equation

dr = (θ – φr)dt, (19)

whose solution is given by

, (20)

where

. (21)

Figure 2. Example Ho– Lee Solutions
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If φ > 0, we see from Equation 20 that

Therefore, for positive mean reversion (φ > 0), the HW process will converge
to the short rate, µ = θ/φ. Thus, the term µ is called the target or long-term
mean rate. For negative mean reversion (φ < 0) the short rate grows exponen-
tially over time. 

Equation 21 indicates that c in the HW process gives the distance of the
initial short rate from the target short rate. Therefore, the closer the initial
short rate is to the target rate, the smaller c will be and the smaller changes
in r(t) will be through time. In particular, Equation 21 shows that if r(0) = µ,
then c = 0, and from Equation 20 that r(t) = µ for all t. That is, under this
scenario, the short rate is always the target rate. 

Consider the following examples that give qualitative information for c
and µ. Factoring φ in Equation 18 leads to

dr = φ(µ – r)dt + σdz,

the expected value of which leads to

dr = φ(µ – r)dt.

We see that if r > µ, then dr is negative and r will decrease, and if r < µ, then
dr is positive and r will increase. That is, r will approach the target rate µ. The
larger φ is, the faster this approach is to the target rate µ. This is why φ is called
the mean reversion or mean reversion rate. It regulates how fast the target
rate is reached.

Since the target rate µ is equal to θ/φ, we can solve for the drift, θ, or the
mean reversion, φ. That is,

θ = µφ (22)

or

. (23)

It is seen from Equation 22 and Equation 23 that there is a strong
relationship between the drift and mean reversion that can be used to reach
any desired target rate. How large the mean reversion should be is an
important financial question. Equations 22 and 23 can be used to set target

r t( )
t ∞→

lim θ

φ
---=

µ .=

φ
θ

µ
---=
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rates. Equations 20 and 21 allow one to determine how long it takes to reach
the target rate. We consider examples of these properties below.

Using Equations 12a and 12b to approximate Equation 18 gives us

. (24)

If θ and φ are constant, then the solution to the expected value of Equation 24
has the form

rk = αβk + γ.

To determine α, β, and γ, we substitute this form for rk into Equation 24
without the stochastic component and obtain that β = (1 – φτ), γ = θ/φ = µ, and
α = r0 – µ. Therefore,

. (25)

Note that if 0 < φτ < 2, then –1 < 1 – φτ < 1 and

which is the same result that is obtained from Equation 20 for the HW SDE
under the same scenario. As will be seen later, the condition 0 < φτ < 2 can be
maintained in modeling the short rate. Equation 24 is the formula that will be
used for ru and rd in Equation 9 for the HW process.

Figure 3 illustrates the results for five HW examples, with r(0) = 5 per-
cent; φ = 0.02 (denoted as “mean reversion” in Figure 3 and other figures);
µ = 6.5 percent; and σ = 5 percent, 10 percent, 15 percent, and 20 percent
averaged over 1,000 simulations. Figure 3 also includes the expected value
solution (σ = 0) from Equations 20 and 21, with c = –0.015. The drift from
Equation 22 is given by θ = µφ = (0.065)(0.02) = 0.0013. Again, as expected, the
average over 1,000 simulations is close to the expected value solution. Note
that the graphs have not reached the target rate of 6.5 percent, because a mean
reversion of 0.02 is small. 

Figure 4 presents five HW examples with r(0) = 0.05; φ = 0, 0.01, 0.02,
0.05, and 0.15294; and σ = 10 percent. The results presented are an average of
1,000 simulations. Because r(0) = 0.05 and µ = 0.065 in all the examples, c is
the same for each case and is equal to –0.015 (from Equation 21). The values
for θ for each case can be calculated from Equation 22. From Equations 20
and 21, φ can be used to determine the time of convergence to the target rate.

rk +1 rk θk φkrk–( )τ σkεk τ+ +=

rk α 1 φτ–( )
k θ

φ
---+=

rkk ∞→

lim θ

φ
---=

µ,=
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We use Equations 20 and 21 to calculate the time it takes to get within 5 percent
of the target rate for each value of φ, as shown in Table 1. Choosing a
meaningful value for φ is critical in modeling interest rates. For example, in
Figure 4, mean reversion of 0.15294 is shown because this value for φ is
necessary to get within 5 percent of the target rate after 10 years. Figure 4
shows this effect, and the curve with φ = 0 grows as expected. The value of φ
clearly has a strong impact on the convergence to the target rate. 

As pointed out earlier, if the initial rate and target rate were closer, the
convergence time would also drop. Table 1 shows the drift values and conver-
gence times when the target rate is 5.75 percent. Table 1 clearly demonstrates
that the relationship between r(0) and µ significantly affects the convergence
time.

Kalotay– Williams– Fabozzi Model
For the KWF process, f(r) = ln(r) (where ln is the natural logarithm with base
e ≈ 2.718), g(r) = 0, and ρ = 0 in Equation 11. Thus, the differential process is

d ln(r) = θdt + σdz. (26a)

This model is directly analogous to the HL model. Setting u = ln(r) in equation
26a, the HL process (Equation 13) for u is

du = θdt + σdz. (26b)

Figure 3. Example Hull– White Solutions
(mean reversion equals 0.02; volatility varies)
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Figure 4. Example Hull– White Solutions
(mean reversion varies; volatility equals 10 percent)

Table 1. Determining the Convergence Time to Target Rate for the 
Hull– White Model 

Target Rate (µ) = 6.5% Target Rate (µ) = 5.75%

Mean 
Reversion 
(φ)

Drift Rate 
(θ)
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to Target Rate 
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Drift Rate 

(θ)

Time to Converge 
to Target Rate
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0.01 0.00065 152.94 0.000575 95.86
0.02 0.0013 76.47 0.0015 47.94
0.05 0.00325 30.59 0.002875 19.18
0.15294 0.00994 10.0 0.00879 6.27
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Because u follows a normal process, ln(r) follows a normal process, and so r
follows a lognormal process. Because u is the same as the HL and HW
processes, u can become negative, but u = ln(r) so r = eu; thus, r is always
positive. Therefore, the KWF model eliminates the problems of negative short
rates that occur with the HL and HW models.

Taking the expectation of Equation 26a results in

d ln(r) = θdt,

and for Equation 26b

du = θdt.

The expected value in Equation 14a yields

and because u(0) = ln[r(0)] = ln(r0),

.

Taking the exponential of both sides of this equation gives

, (27)

showing that r(t) > 0 because r(0) > 0. Therefore, for constant θ, if θ > 0, the
short rate in the KWF process grows without bound, and if θ < 0, the short
rate in the KWF process decays to 0.

From Equation 16, the discrete approximation of Equation 26b is

, (28a)

and the exponential of this equation gives the discrete approximation of
Equation 26a:

. (28b)

From Equation 28b, we see that the numerical approximation of the expected
value for Equation 26a has similar properties to the solution to the KWF SDE.
That is, for constant θ, if θ > 0, the short rate grows without bound, and if θ < 0,
the short rate decays to zero. Equation 28b is the formula we will use for ru and
rd in Equation 9 for the KWF process.

ln r t( )[ ] u=

u 0( ) θ s,d
0
t

∫+=

ln r t( )[ ] ln r0( ) θ sd
0
t

∫+=

r t( ) r0e
θ sd

0
t

∫=

uk +1 uk θkτ σkεk τ+ +=

rk +1 rke
θkτ σkεk τ+

=
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Figure 5 is similar to Figure 2 and presents a KWF model example with
σ = 10 percent for one random run, σ = 10 percent averaged over 1,000 random
simulations, and the expected value solution from Equations 27, with c = lnr(0)
= ln(0.05) = –2.995. The value we use for the drift is –0.1366684. Note that the
KWF random run follows the expected value solution more closely than the
HL example did in Figure 2. This pattern is also exhibited in the binomial tree
models in Chapter 3.

The actual KWF model is a variation of the model we have presented.
Because the actual KWF model does not explicitly incorporate the drift, the
model does not always have a solution for the binomial tree. Our presentation
of the KWF model, however, is easily modified to obtain the actual KWF
binomial tree. 

Figure 5. Example Kalotay– Williams– Fabozzi Solutions
Rate (%)

6

0

5

4

3

2

1

0.50 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Expected Value Solution Single Run 1,000 Simulations

Years



Term-Structure Models Using Binomial Trees

22 ©2001, The Research Foundation of AIMR™

Black– Karasinski Model
In the BK model, we set f(r) = ln(r), ρ = –φ, and g(r) = ln(r) in Equation 11 to
obtain the SDE

d ln(r) = [θ – φ ln(r)]dt + σdz. (29a)

We now work with Equation 29a using Equation 18 for the HW process in a
manner similar to the way we used results from the HL process to develop the
KWF process. Setting u = ln(r) in Equation 29a, we obtain

du = (θ – φu)dt + σdz, (29b)

which is the HW process for u. Again, note that u has all the same properties
as r in the HW model. Because r = eu in the BK process, r > 0 in the BK process.
This difference is the advantage the BK model has over the HW model. Thus,
the BK process is an extension of the KWF process, just as the HW process
is an extension of the HL process. The main difference is that the BK process
is a lognormal extension of the lognormal KWF process. As a matter of fact,
if φ= 0, the BK process reduces to the KWF process. The introduction of φ by
Black and Karasinski controls the growth of the short rate in the KWF process.

From Equation 20, we have

,

and after taking exponentials,

(30)

For φ < 0, we see that r grows without bound and that for φ > 0,

The target rate for the BK process is the exponential of the target rate for the
HW process.

As in the HW process from Equation 30 (or Equations 20 and 21), we see
that

(31)

u t( )
θ

φ
--- ce φ t–

+=

r t( ) eu t( )
=

e θ φ⁄( ) ce φt–
+ .=

r t( )
t ∞→
lim eθ φ⁄
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c ln r0( )
θ

φ
---–=



Models for the Short Rate

©2001, The Research Foundation of AIMR™ 23

in the BK process. Again, the closer the initial rate is to the target rate, the
faster the BK process converges to the target rate. From Equations 30 and 31,
we see that if the initial short rate is the target rate, then r(t) = µ for all t in the
BK process, which is analogous to the result we found for the HW process.

As we did for the HW SDE, we present some examples that give qualitative
information about c and µ for the BK model. Given the target rate ,
we can solve for the drift or the mean reversion similarly to Equations 22 and
23 in the HW model. As before, we have

θ = φ ln(µ) (32)

and

. (33)

Later, Equations 32 and 33 will be used to set target rates in the BK models
so that we can compare the target rates of Figure 4 with the HW model.
Equations 30 and 31 are used to determine how long it takes to reach the target
rate.

We discretize u = ln(r) in Equation 29b, just as we did for the HW SDEs,
and then let r = eu. This approach is analogous to the way we used the HL
discrete process to get the KWF discrete process. The equations correspond-
ing to Equation 24 are

(34a)

or, after taking the exponential of both sides of Equation 34a, 

(34b)

Similar to Equation 25, if θ and φ are constant, the solution to the expected
value in Equation 34b is

. (35)

Note that from Equation 35,

µ eθ φ⁄=

φ
θ

ln µ( )
-------------=

uk +1 uk θk φkuk–( )τ σkεk τ+ +=

rk +1 rke
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for 0 < φτ < 2. This result is similar to what we obtain from Equation 25 for the
HW SDEs. Equation 34b is the formula we use for ru and rd in Equation 9 for
the BK process within the binomial framework.

Figure 6 corresponds to Figure 3 and presents five BK solutions with r(0)
= 0.05; φ = 0.02; µ = 6.5 percent; σ = 5 percent, 10 percent, 15 percent, and 20
percent averaged over 1,000 simulations; and the expected value solution from
Equations 30 and 34 with c = ln(r0) – ln(µ) = –0.26236. From Equation 32, the
drift is –0.05467. Note that after 10 years, the target rate of 6.5 percent has not
been reached.

Figure 7 presents five BK examples with r(0) = 0.05; φ =0, 0.01, 0.02, 0.05,
and 0.1632; and σ = 10 percent. Figure 7 for the BK SDE is analogous (under
the u substitution) to Figure 4 for the HW SDEs. The results presented are
an average of 1,000 simulations. The drifts are chosen from Equation 32 to
match the target rate of 6.5 percent. Note that only the graph with φ = 0.1632
is approaching the target rate after 10 years because 0.1632 is the only value
for φ that has the BK SDE short rate get within 5 percent of the target rate

Figure 6. Example Black– Karasinski Solutions
(mean reversion equals 0.02; volatility varies)
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after 10 years. The value is determined from Equations 30 and 31. As in the
HW examples, a target rate closer to 5 percent would greatly reduce the
convergence time to the target rate for the mean reversion values. As in the
HW SDE, it is crucial to choose the mean reversion so that convergence to
the target rate is achieved at the desired time. 

Note that the BK models seem to be more stable than the HW models.
We will compare our binomial models with these results in Chapter 3. These
give us a base for comparison in the sections that follow. 

Black– Derman– Toy Model
The BDT model is a lognormal model with mean reversion, but the mean
reversion is endogenous to the model. That is, the mean reversion is deter-
mined from the input parameters to the model. Historically, the BDT model
came before the BK model, but we can now use the intuition developed from
the HL, HW, KWF, and BK models to help with the development of the BDT
model. The BDT model is the most complicated of the five models.

The equation describing the interest rate dynamics in the BDT model has
f(r) = ln(r) and g(r) = ln(r) in Equation 11, as in the BK model. Therefore, the
short rate in the BDT model follows the lognormal process:

d ln(r) = [θ(t) + ρ(t )ln(r)]dt + σ(t)dz.

In the BDT model, however, ρ(t) = d/dt ln[σ(t)] = σ′(t)/σ(t), giving

. (36a)

Figure 7. Example Black– Karasinski Solutions
(mean reversion varies; volatility equals 10 percent)
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Making the substitution u = ln(r) leads to

. (36b)

Notice the similarity between Equation 36 and Equation 29 of the BK
model. We expect σ′(t)/σ(t) to behave similarly to –φ(t) in the BK model.9
This expression should give mean reversion in the short rate when it is
negative. That is, we expect that, if σ′(t) < 0 (implying σ(t) is decreasing), then
the BDT model will give mean reversion. On the other hand, when σ′(t) > 0
(implying σ(t) is increasing), the short rates in the BDT model will grow with
no mean reversion. If σ(t) is constant in the BDT model, then σ′(t) = 0, so
ρ = 0 and Equation 36a becomes the KWF model (Equation 26). Therefore,
we study only the case of varying local volatility for the BDT model.

We now consider the expected value of Equation 36. Under these condi-
tions, Equation 36 becomes

(37)

Solving this equation for u, as we did in the KWF and BK models, gives us

and substituting u = ln(r) gives

or

(38)

9This is what is meant by mean reversion being endogenous to the BDT model. Mean
reversion is obtained from σ(t) rather than the user dictating φ.
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Note that the expected value of the BDT short rate depends on the local
volatility. If the local volatility has a decreasing structure, the first exponential
term in Equation 38 will have a negative exponent and will cause a decrease
in the short rate—and vice versa if the local volatility has an increasing
structure. It is important to note that mean reversion in the BDT model comes
from the local volatility structure.

Now consider some specific cases for Equation 38. If θ is constant, then
Equation 38 becomes

(39)

Because the volatility of short rates is usually small, the term 1/σ(s) can be a
large number, and integrating over such a function will give a large value.
Therefore, the exponent in the last term of Equation 39 has the possibility of
becoming large, and even if the market volatility is small, the rates in the BDT
model can become unbounded. We now consider some specific cases for the
local volatility in the BDT model.

Suppose

where a is a constant, thus

σ(t) = σ(0)eat = σ0eat,

and under this condition, the solution to Equation 37 is given by

Since u(0) = ln(r0) < 0 (because 0 < r < 1), the expression u(0) + θ/a could be
positive or negative, depending on the sign and magnitude of the drift θ. This
solution shows that if a > 0 and u(0) + θ/a < 0, then u → – ∞ and thus r = eu → 0.
It also shows that if a > 0 and u(0) + θ/a > 0, then u → ∞ and r = eu → ∞. That
is, for a > 0, the BDT short rate could blow up or decay to zero. If a < 0, then
u → –  θ/a, which implies that r → e–θ/a. That is, if the local volatility decays
exponentially over time, the BDT short rate will approach a target rate. The
target rate will depend on the magnitude and sign of θ and a. We will address
this issue when we study the numerical approximations to the BDT model.

Now, consider the case where the local volatility is linear. That is,

σ′(t) = m
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and

σ(t) = mt + σ0,

where m is a constant. Using Equation 39 gives

for a linear local volatility, if θ is constant. This solution is interesting. Because
ln(r0) < 0, we see that, if m < 0, the first exponential term in the solution will
increase. But the second term contains ln[(mt + σ0)/σ0], which is negative if
m is negative. Therefore, if θ is positive, the second term will decrease, and if
θ is negative, the second term will increase. Therefore, r can grow without
bound or tend to a target rate. A similar situation exists for m > 0. Therefore,
for linear local volatility, the short rate in the BDT model can grow without
bound for negative or positive θ. If m < 0, it is possible that σ(t) = mt + σ0 < 0.
In this case, ln is undefined and the BDT short rate does not exist. Therefore,
we suggest that if the BDT model is used to model a T-year bond with a linearly
decreasing volatility structure, the slope m < 0 should satisfy

These types of problems have to be dealt with when considering numerical
solutions (e.g., binomial models) for the BDT model, and examples are shown
in Chapter 4.

We now consider some numerical solutions to the BDT process. To
discretize Equation 36a for the BDT model, we start off again by approximat-
ing du in Equation 36b by using Equations 12a and 12b to get

, (40)

where

We approximate this term by
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That is, we approximate σ′k  by a discrete approximation of the derivative. We
now have

or

(41)

In the expected value case, Equation 41 leads to

. (42)

We consider some of the solutions to Equation 42. Equation 42 gives

.

.

.

We see that u and thus ln(r) depend heavily on the local volatility. In particular,
if

,

where α is a constant, then
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The exponential of this equation gives

This equation is interesting because ln(r0) < 0. If α > 1, the first exponential
term decreases. When θ < 0, the second exponential term also decreases and
the BDT short rate should approach a target rate. Conversely, when θ > 0, the
second exponential term increases. In this case, we can approach a target rate
or the second term can dominate. If α < 1, then a similar situation arises.
Therefore, in order to get meaningful numerical results for the BDT short
rates, we strongly recommend that α be close to 1 and that the term structure
of spot rates not have too large a slope. 

Taking the exponential of Equation 40 gives 

(43)

This expression will be used for ru and rd in Equation 9 to generate the
binomial BDT short rates.

Figure 8 presents BDT solutions with r(0) = 0.05 and θ = –0.05467, as in
the BK examples, with an exponentially increasing, an exponentially decreas-
ing, a linearly increasing, and a linearly decreasing volatility all starting at 10
percent for a single simulation path. Figure 9 presents the average of 1,000
simulations using the same inputs. Figures 8 and 9 illustrate that for the BDT
process, the single simulation exhibits behavior similar to that of the average
from multiple simulations. Figures 8 and 9 show that the solutions decrease
when the volatility is exponentially increasing because a = 0.1 > 0 and

.

In the figures, the solutions appear to grow without bound when the volatility
is exponentially decreasing because the target rate is e–θ/a = e0.05467/–0.1 =
0.5789. We leave the linear examples for the reader to analyze.

Figure 10 presents the same results from Figure 8 except that θ = –0.25.
For the decreasing exponential volatility structure, the target rate of e– θ/a =
e0.25/–0.1 = 0.0821 is approached, but the decreasing linear volatility structure
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does not approach a target rate. Increasing volatility structures still have
decreasing rates. (These phenomena are also discussed for the BDT binomial
examples in Chapter 4.) The BDT model is obviously complicated, but our
rules of thumb should help interpret results from the model. 

The expected value analysis presented in this chapter is important
because the corresponding properties will also hold under the more general
case, which includes the stochastic component. Consequently, the properties
presented within this section will also hold under more general circum-
stances. The random runs for the lognormal models are closer to their
averages than are the random runs for the normal models. These properties
will also be important in studying and using the binomial trees. In fact, we use
what has been learned in this chapter to test and analyze our binomial models
in Chapter 4. The discrete approximations we have developed for the five
models are used to build the binomial models in Chapter 3.

Figure 8. Example Black– Derman– Toy Solutions
(single run; various volatilities)
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Figure 9. Example Black– Derman– Toy Solutions
(1,000 runs; various volatilities)
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Figure 10. Example Black– Derman– Toy Solutions
(1,000 runs; various volatilities)
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3. The Binomial Trees

For each of the five models that we studied and developed in Chapter 2, we
now determine formulas giving the two possible values ru and rd for r1 in
Equation 9. The two values, ru and rd, for the short rate, r1, are called the up-
state, or up-move, and the down-state, or down-move, respectively. This is our
starting point for the algorithm that develops the short rates for the binomial
trees for the Ho–Lee (HL; Equations 13 and 16), Hull–White (HW; Equations
18 and 24), Kalotay–Williams–Fabozzi (KWF; Equations 26 and 28), Black–
Karasinski (BK; Equations 29 and 34), and Black–Derman–Toy (BDT; Equa-
tions 36, 40, and 43) models.

Before we give the formulas for the up-state, ru, and the down-state, rd, in
Equation 9, we develop the basic structure of a binomial tree. Following this,
we give the anticipated formulas for ru and rd in Equation 9 for each of the five
models. Then, we show how to modify these formulas to build an algorithm
to generate the formulas for all the short rates that are used to develop the
binomial tree. During this process, we also show some of the properties that
the numerical solutions to the binomial tree have to satisfy. These are in
addition to the properties we developed in Chapter 2.

A schematic of how we move from r0 to the up-state, ru, and the down-
state, rd, is shown in Figure 11. This schematic is called a binomial tree, or
binomial lattice, because there are only two possible states emanating from
r0. One branch leads to the up-state, ru, and the other to the down-state, rd; r0,
ru, and rd are also referred to as nodes in the tree. 

To make this more concrete, a numerical example of a tree is presented
in Figure 12. We also present the corresponding price tree. The price tree is
based on a zero-coupon bond with a par value of $100. Recall that the rates act
for a period of time and the prices are at the given time. Figure 12 contains
the results for a two-period binomial interest rate tree in which the short rates
are semiannual. 

Figure 11. Example Binomial Tree

r0

ru

rd
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To calculate the prices in Figure 12, one uses backward induction (the
two previous adjacent nodes) and the discount factors. We use q = 0.5, and
because we are assuming semiannual rates, we have t1 = 0.5 and τ = τ1 = 0.5
(six months). For example, to compute $96.70 in the price tree of Figure 12,
we calculate

(44a)

and to get the price of the bond (the first node of the price tree in Figure 12),
we calculate

(44b)

In order to model short rates for more than one time period, we have to
add more branches to the tree in Figure 11. If we are at node ru, the short rate
for the next time period should be able to be one of two values, which we will
denote as ruu and rud. The rate ruu is the up-move for the short rate ru at time
t2, and rud is the down-move for the short rate ru at time t2. Similarly, if we are
at node rd, then the short rate for the next time period will be one of two values,
which are denoted as rdu and rdd. The rate rdu is the up-move for the short rate
rd at time t2, and rdd is the down-move for the short rate rd at time t2.

To determine ruu, rud, rdu, and rdd in a manner similar to that used for
determining ru and rd, we require formulas and/or equations that can be
solved that are similar to those used for ru and rd. Such formulas will give us
an algorithm for calculating possible values for the short rates at the n given
calendar times, t1 < t2 <, . . ., < tn.

Notice that from r0, we went to two possible values for the next short rate
of ru and rd. That is, we increased the number of possible short rates by a

Figure 12. Numerical Example of a Binomial Tree
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factor of two, for which we need two formulas. From ru and rd, we went to two
possible values for each of these short rates at the next time, and thus, we
must have four formulas. In other words, we again increased the number of
formulas by a factor of two. If we continued this process, we would increase
the number of formulas by a factor of two to eight formulas, as seen in Figure
13. If we keep doubling the previous number of possible short rates, we soon
will have too many short rates to be computed. For example, after 10 time
steps, we would have 210 = 1,024 formulas to calculate, and at 30 time steps,
we would have 230 ≈ 109 formulas to calculate, which would be impractical
even for today’s supercomputers. We would be unable to build a 30-year one-
year-time-step binomial tree model. Such a scenario is clearly unacceptable.

To reduce the number of formulas (and thus calculations), we have to put
a restriction on the algorithm. The restriction we implement is called the
recombination condition. This condition simply requires that an up-move from
a down-state equal a down-move from an up-state. For example,

rud = rdu.

The recombination condition reduces the number of possible short rates at t2
from 4 to 3 and at t3 from 8 to 4. The recombination condition is used at each
interior node of the tree. This requirement will permit an increase of only one
node from one time step to the next. So, for a 10-period tree, we only need 10
equations; and for the 30-period tree, we only need 30 equations. This number
of equations is much more manageable. Figure 14 shows a four-period short-
rate binomial tree incorporating the recombination criterion just described. 

Now, a more efficient method is needed for subscripting our nodes in
Figure 14, or the number of subscripts will become ridiculous. We use two
subscripts. The first subscript denotes the time step, and the second subscript
denotes the level on the tree at that time step. That is, node rk,j is the short

Figure 13. Expansion of Binomial Short-Rate Tree without 
Recombination
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rate at time tk at level j. For example, r0,1 = r0, r1,1 = ru, and r1,2 = rd. Figure
15 is the same binomial tree as in Figure 14 except that it uses the new
subscripts. All nodes along the uppermost branch of the tree have the form
rk,1. This set of nodes is called the up-state of the tree. For example, in Figure
15, the up-state of the tree consists of the nodes r0,1, r1,1, r2,1, and r3,1. The
up-state of the tree represents the largest possible values at time tk for the
short rates of the tree. A graph of these values versus time gives the upper
range for the short rates. Similarly, the nodes along the lowest branch of the
tree have the form rk,k+1. This set of nodes is called the down-state of the tree.
For example, in Figure 15, the down-state of the tree has the nodes r0,1, r1,2,
r2, 3, and r3,4. The down-state of the tree represents the smallest possible
values at time tk for the short rates of the tree. A graph of these values versus
time gives the lower range for the short rates. 

The interest rate tree in Figure 15 spans four time steps, and each rk,j
represents a forward rate that spans a short period of time. An up-move from
node rk,j is a move to node rk+1, j, and a down-move is a move to node rk+1,j+1.
As mentioned earlier, it is convenient to work with the price tree derived from
the corresponding discount factors. The corresponding price tree is presented
in Figure 16. As noted earlier, the subscripts on pk,j correspond to those on
rk, j. Notice that the price tree has one more set of nodes than the corresponding
interest rate tree. Because interest rates span time and prices do not, a four-
time-step interest rate tree spans a five-time-step price tree. 

Figure 14. Four-Period Short-Rate Binomial Tree with Recombination 
Condition 

Figure 15. Four-Period Short-Rate Binomial Tree with Recombination 
Condition and Only Two Subscripts 
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Figure 17 shows an example of a four-period short rate tree with period
τ = 0.5 years and its corresponding five-period pricing tree with numerical
values. The pricing trees are derived just like the pricing trees in Figure 12.
The reader can use Equation 44 with q = 0.5, τ = τ1 = τ2 = τ3 = 0.5 and backward
induction to verify these prices. In particular, we note that

(45)

Therefore, to get the prices at time tk, we first need to calculate all the prices
at time tk+1 (which is why it is called backward induction.) To build a binomial
price tree from a binomial rate tree, one programs Equation 45. 

The separation between the up-state and down-state rates, as shown in
Figure 18, is a spread of possible future short rates. Notice that this spread

Figure 16. Corresponding Price Tree for Four-Period Short-Rate 
Binomial Tree 

Figure 17. Four-Period Short-Rate Tree and Corresponding Five-Period 
Pricing Tree
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increases with time. A small spread indicates that our model either has a low
volatility or high mean reversion. Only the HW, BK, and BDT models include
mean reversion. 

The algorithms for generating the short rates for each of the five models
are now developed in a slightly different order than we presented in Chapter
2. The reason for this difference is that, within the binomial lattice framework,
the HW and BK binomial trees must have a variable time step. We first present
the formulas for the up-state, ru, and the down-state, rd, in Equation 9 for each
of the five models of Chapter 2.

Formulas for the Up-State and Down-State
In this section, we derive the necessary formulas required to solve for ru and
rd within the one-period binomial framework. Specifically, a quadratic equa-
tion is developed for each model; the solution to this equation is used to
compute ru and rd for each model within the binomial framework.

Ho– Lee Formulas. From the discrete approximation Equation 16 for the
HL SDE Equation 13, we use

(46a)

for the up-move from r0 and 

(46b)

Figure 18. Up-State and Down-State Rates for Tree Shown in Figure 17 
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for the down-move from r0. We are using m0 for the numerical approximation
to the drift value θ0. Notice that 

.

That is, the volatility, σ, determines the spread in the up-state and the down-
state.

Substituting the formulas for the up-state, ru, and the down-state, rd, from
Equation 46 into Equation 9 gives the following quadratic equation for m0 for
the HL binomial tree

(47)

Many authors suggest using the Newton–Raphson method (Burden and
Faires 1998) on this equation to solve for m0. This method involves differen-
tiating this equation with respect to m0. To avoid this differentiation, we use
the bisection method for m0. See Burden and Faires for a complete description
of the bisection method.

Hull– White Formulas. Following the same development used for the HL
process, we use the discrete approximation Equation 24 for the HW SDE
Equation 18 to get

(48a)

for the up-move from r0 and

(48b)

for the down-move from r0. Notice again that

.

Substituting the formulas for the up-state, ru, and the down-state, rd, from
Equation 48 into Equation 9 gives the following quadratic equation for m0 for
the HW binomial tree

ru rd– 2σ0 τ=

A2 1 r0τ+( ) 1 r0 m0τ σ0 τ–+( )τ+[ ] 1 r0 m0τ σ0 τ+ +( )τ+[ ]

q 1 r0 m0τ σ0 τ–+( )τ+[ ]– 1 q–( ) 1 r0 m0τ σ0 τ+ +( )τ+[ ]– 0.=

ru r1 1,=

r0 m0τ φ0r0τ– σ0 τ+ +=

rd r1 2,=

r0 m0τ φ0r0τ σ0 τ––+=

ru rd– 2σ0 τ=
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(49)

We again solve this equation using the bisection method.

Kalotay– Williams– Fabozzi Formulas. From the discrete approxima-
tion Equation 28b for the KWF SDE Equation 26a, we use

(50a)

for the up-move from r0 and

(50b)

for the down-move from r0 for the KWF process. That is, we use an exponential
of the HL formulas (Equation 46).

Notice that

or, after taking logarithms,

.

That is, the volatility determines the spread in the natural logarithm of the up-
state and the natural logarithm of the down-state. This formula is the log-
normal version of the spread for the normal HL and HW binomial trees.

Substituting the formulas for the up-state, ru, and the down-state, rd, from
Equation 50 into Equation 9 gives the following quadratic equation for m0

(51)

We also solve this equation using the bisection method.
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Black– Karasinski Formulas. Because the BK process adds mean
reversion to the KWF process, from Equation 50 we have

(52a)

for the up-move from r0 and

(52b)

for the down-move from r0. We could also use Equations 29a and 34b. Again,

and

.

Substituting the formulas for the up-state, ru, and the down-state, rd, from
Equation 52 into Equation 9 gives the following quadratic equation for m0

(53)

This equation can also be solved using the bisection method.

Black– Derman– Toy Formulas. The BDT model is similar to the KWF
and BK formulas because the BDT process is lognormal. We use

(54a)

for the up-move from r0 and

ru r1 1,=

r0e
m0τ–φ0ln r0( )τ+σ0 τ

=

rd r1 2,=

r0e
m0τ–φ0ln r0( )τ–σ0 τ

=

ru
rd
----- e

2σ0 τ
=

ln ru( ) ln rd( )– 2σ0 τ=

A2 1 r0τ+( ) 1 r0e
m0τ–φ0ln r0( )τ–σ0 τ

 
  τ+ 1 r0e

m0τ–φ0ln r0( )τ+σ0 τ

 
  τ+

q 1 r0e
m0τ–φ0ln r0( )τ–σ0 τ

 
  τ+–

1 q–( ) 1 r0e
m0τ–φ0ln r0( )τ+σ0 τ

 
  τ+ 0.=–

ru r1 1,=

r0e
m0τ+σ0 τ

=
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(54b)

for the down-move from r0. That is, we use the same formula as in the KWF
formulas (Equation 50), but now we have

.

(One could have also used Equation 36a and Equation 43.) We still have that

and

.

Substituting the formulas for the up-state, ru, and the down-state, rd, from
Equation 54 into Equation 9 gives the following quadratic equation for m0

(55)

As in all the other models, we again solve this equation using the bisection
method for m0. We will obviously get the same answer as in the KWF model,
but the meaning for m0 is different. In the KWF model, m0 is the drift, whereas
in the BDT model, m0 involves the drift, the volatility, and the initial spot rate.
We will see below how local volatility is incorporated into the BDT model for
the remaining short rates in the BDT binomial tree.

We note that we are able to solve for m0 in Equations 47, 49, 51, 53, and
55 using the bisection method. Also, notice that all of these equations have a
similar form. That is, once we had the HL Equation 47, the others were slight
modifications in a sequential manner. In the next section, we focus on an
algorithm that generates all the short rates for each of our five binomial trees.
As in the development of Equations 47, 49, 51, 53, and 55, the HL binomial
tree serves as the base case, and we modify this base algorithm to get the
others.

rd r1 2,=

r0e
m0τ–σ0 τ

=

m0 θ0
σ 0( )

σ′ 0( )
-------------ln r0( )–=

ru
rd
----- e

2σ0 τ

=

ln ru( ) ln rd( )– 2σ0 τ=

A2 1 r0τ+( ) 1 r0e
m0τ–σ0 τ

 
  τ+ 1 r0e

m0τ+σ0 τ

 
  τ+

q 1 r0e
m0τ–σ0 τ

 
  τ+– 1 q–( ) 1 r0e

m0τ+σ0 τ

 
  τ+ 0.=–



Term-Structure Models Using Binomial Trees

44 ©2001, The Research Foundation of AIMR™

Algorithms for Generating Binomial Trees
In the last section, we developed the equations that produce the first two
possible short rates in the binomial tree for each of our five models. In this
section, we show how to develop algorithms that generate all the short rates
for the binomial trees. Because the variable time step creates difficulties in
the binomial models, we present the development of the HL, KWF, and BDT
algorithms first because they do not require a variable time step. We then
show why the HW and BK binomial models require a varying time step. In
Appendix A, we outline an algorithm that will generate short rates for these
two binomial models.

First, we present some notation. We let R1, R2, R3, . . ., Rn be the term
structure of the spot rates, and we let Ak represent the price of the k-period
zero-coupon bond determined by Rk. That is,

In particular, the price tree of the n-period bond we are modeling must give

because of the no-arbitrage condition. Recall that the no-arbitrage condition
requires that the price of the bond through the short rates (i.e., the model)
must equal the price of the bond through the spot rates (i.e., the market). This
check can be done on binomial tree algorithms to make sure they are correct.
In particular, for straight bonds, the HL, KWF, and BDT binomial trees should
give the same price for the same term structure, regardless of the volatility,
σ.10

Ho– Lee Formulas for Short Rates. Equation 16 is used to build the
algorithm for generating the short rates for the HL binomial tree. We develop
the equations for the short rates using the recombination condition to deter-
mine the conditions on the parameters in the HL model. 

In the HL binomial tree, the expressions for rk,j that correspond to
Equation 46 are

(56a)

10The same is true for the HW and BK binomial trees for the constant time step.
Interpolation will give round-off errors in the variable time step case.

Ak
1

1 Rkτ+( )
k

--------------------------.=

An
1

1 Rnτ+( )
n

--------------------------=

rk+1 j, rk j, mkτ σk τ+ +=
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for an up-move and

(56b)

for a down-move. Using Equation 46 or 56 gives

and

.

Equation 56 also gives

(57)

and
.

The two values for r2,2 in Equation 57 arise from the recombination condition.
(A down-move from r1,1 must equal an up-move from r1,2.) We solve this
equation for σ1. Because

,

we have

.

Now using r1,1 and r1,2 from above gives 

The recombination condition has put the stringent condition on the HL
binomial tree that σ is constant over time. That is, σk = σ for 1 ≤ k ≤ n in the
HL binomial model. We must use this condition in Chapter 4, when we build
the HL binomial tree.

rk+1 j+1, rk j, mkτ σk τ–+=

r1 1, r0 m0τ σ0 τ+ +=

r1 2, r0 m0τ σ0 τ–+=

r2 1, r1 1, m1τ σ1 τ,+ +=

r2 2, r1 1, m1τ σ1 τ–+ r1 2, m1τ σ1 τ ,+ += =

r2 3, r1 2, m1τ σ1 τ–+=

r1 1, m1τ σ1 τ–+ r1 2, m1τ σ1 τ+ +=

σ1
r1 1, r1 2,–

2 τ

------------------------=

σ1
2σ0 τ

2 τ

----------------=

σ0.=
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For the HL binomial (recombining) tree, it is required that

(58a)

for an up-move and

(58b)

for a down-move. Also note that

and

.

That is, the HL binomial short rates change by the drift and a constant
(random) disturbance, and the difference between short rates between two
adjacent levels at any time is also a constant. Specifically, the spread in the up-
state and the down-state grows linearly over time because 

.

We now derive the equation that the short rates r2,1, r2,2, and r2,3 must
satisfy. We do this again by applying the no-arbitrage requirement. From the
corresponding prices for r2,1, r2,2, and r2,3, we have

which, after clearing fractions, simplifies to

Substituting for p2,1, p2,2, and p2,3 with the discount factors p2,k = 1/(1 + r2,kτ)
for 1 ≤ k ≤ 3 and again clearing fractions, we have

rk+1 j, rk j, mkτ σ τ+ +=

rk+1 j+1, rk j, mkτ σ τ–+=

rk+1 j, rk j,– mkτ σ τ+=

rk+1 j, rk+1 j+1,– 2σ τ=

rk 1, rk k+1,– 2kσ τ=

A3
1

1 R3τ+( )
3

--------------------------=

qp1 1, 1 q–( )p1 2,+

1 r0τ+
----------------------------------------------=

q
qp2 1, 1 q–( )qp2 2,+

1 r1 1, τ+
-------------------------------------------------- 1 q–( )

qp2 2, 1 q–( )qp2 3,+

1 r1 2, τ+
--------------------------------------------------+

1 r0τ+
------------------------------------------------------------------------------------------------------------------------------------------,=

A3 1 r0τ+( ) 1 r1 1, τ+( ) 1 r1 2, τ+( ) q2 1 r1 2, τ+( )p2 1,–

q 1 q–( ) 1 r1 1, τ+( ) 1 r1 2, τ+( )+[ ]p2 2,– 1 q–( )
2 1 r1 1, τ+( )p2 3,– 0.=
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A3(1 + r0τ)(1 + r1,1τ)(1 + r1,2τ)(1 + r2,1τ)(1 + r2,2τ)(1 + r2,3τ)

–q2(1 + r1,2τ)(1 + r2,2τ)(1 + r2,3τ) – q (1 – q)[(1 + r1,1τ) + (1 + r1,2τ)]
× (1 + r2,1τ)(1 + r2,3τ) –(1 – q)2(1 + r1,1τ)(1 + r2,1τ)(1 + r2,2τ) = 0. (59)

We now substitute in the values for r2,1, r2,2, and r2,3 from Equation 57 or
Equation 58 to get a cubic equation in m1. We again use the bisection method
to find m1 that makes economic sense and determine r2,1, r2,2, and r2,3 from
Equation 57 or Equation 58, using the fact that we already determined r1,1 and
r1,2 in Equation 47.

We now give the algorithm for the HL short rates. Note that Equation 47
can be written as

c1,1(1 + r1,1τ)(1 + r1,2τ) + c1,2(1 + r1,2τ) + c1,3(1 + r1,1τ) = 0 (60)

and that Equation 59 can be written as

c2,1(1 + r2,1τ)(1 + r2,2τ)(1 + r2,3τ) + c2,2(1 + r2,2τ)(1 + r2,3τ)

+ c2,3(1 + r2,1τ)(1 + r2,3τ) + c2,4(1 + r2,1τ)(1 + r2,2τ) = 0. (61)

We now introduce some variables that will help to generate the
coefficients for the polynomials that determine the interest rates at time period
k or time tk = kτ. This process is done in two steps. The first step is to notice
how the coefficients, ck, j, are related to the interest rates at the previous time
periods. Note that if a1,1 = 1 + r0τ, a1,2 = –1, and a1,3 = –1, then c1,1 = A2a1,1,
c1,2 = qa1,2, and c1,3 = (1 – q)a1,3. In the next step, we have b1,1 = a1,2(1 + r1,2τ),
b1,2 = a1,3(1 + r1,1τ), a2,1 = (1 + r0τ)(1 + r1,1τ)(1 + r1,2τ), a2,2 = b1,1, a2,3 =
b1,1 + b1,2, and a2,4 = b1,2. After substituting back, c2,1 = A3a2,1, c2,2 = q2a2,2,
c2,3 = q(1 – q)a2,3, and c2,4 = (1 – q)2a2,4. Let b2,1 = a2,2(1 + r2,2τ)(1 + r2,3τ),
b2,2 = a2,3(1 + r2,1τ)(1 + r2,3τ), and b2,3 = a2,4(1 + r2,1τ)(1 + r2,2τ), and continue

the process. We can generalize this process for k ≥ 2. Let ak,1 =  (1 +

rn, jτ), ak,2 = bk– 1,1, ak, j = bk– 1, j – 2 + bk– 1, j – 1 for j = 3,…, k + 1, ak,k +2 = bk– 1,k,

and ck,1 = Ak +1ak,1, ck, j+1 = qk– j+1  (1 – q)j – 1ak, j +1 for j = 1,…, k + 1. Then bk, j =

ak, j+1  (1 + rk,nτ) for j = 1,…, k + 1. This process will generate the coefficients

ck, j for j = 1,…, k + 2 in the kth degree polynomial

(62)

j=1

n+1

∏
n=0

k–1

∏

n=1
n≠ j

k +1

∏

fk ck 1, 1 rk j, τ+( ) ck j+1, 1 rk n, τ+( ).
n =1
n≠j

k +1

∏
j =1

k +1

∑+
j=1

k+1

∏=
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Solving fk = 0 determines mk– 1 and thus rk,j for j = 1, . . ., k + 1 at the kth period.
Again the bisection method will converge quickly because there is usually
only one root, mk– 1, of Equation 62 between –1.0 and 1.0.

Kalotay– Williams– Fabozzi Formulas for Short Rates. The reason
we do not substitute the formulas for the short rates in Equations 60–62 is that
these equations will also generate the formulas for the short rates for the KWF
binomial tree. For this model, 

(63a)

for an up-move and

(63b)

for a down-move. These equations correspond to Equations 50. From Equa-
tion 63 or 50, we have

and

.

From Equation 63, the short rates for the next time period are

and

.

It is simple to show that the same steps used in the HL formulas lead to a KWF
binomial recombination condition that gives the same requirement as the HL
binomial recombination condition. That is, the volatility must be constant.

Thus, we have

(64a)

and

rk+1 j, rk j, e
mkτ+σk τ

=

rk+1 j+1, rk j, e
mkτ–σk τ

=

r1 1, r0e
m0τ+σ0 τ

=

r1 2, r0 e
m0τ–σ0 τ

=

r2 1, r1 1, e
m1τ+σ1 τ

,=

r2 2, r1 1, e
m1τ–σ1 τ

r1 2, e
m1τ+σ1 τ

,= =

r2 3, r1 2, e
m1τ–σ1 τ

=

rk +1 j, rk j, e
mkτ+σ τ

=
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(64b)

and

.

Therefore, we see that the spread between the up- and down-most states in
the KWF binomial lattice grows exponentially with time. To generate these
KWF short rates, we replace the short rates in Equations 60–62 with the
formulas given by Equation 64 and solve Equations 60–62 for mk– 1 using the
bisection method. Therefore, the basic program for the HL binomial short
rates is easily modified to handle the KWF binomial short rates.

Black– Derman– Toy Formulas for Short Rates. In the BDT model,
the expressions for rk,j corresponding to Equation 54 are

(65a)

for an up-move and

(65b)

for a down-move. For example, we get Equation 54

and

,

and, for r2,1, r2,2, and r2,3,

and

. (66)

rk +1 j +1, rk j, e
mkτ–σ τ

=

rk 1,
rk k +1,
--------------- e2kσ τ

=

rk+1 j, rk j, e
mk j, τ+σk τ

=

rk+1 j+1, rk j, e
mk j, τ–σk τ

=

r1 1, r0e
m0τ+σ0 τ

=

r1 2, r0 e
m0τ–σ0 τ

=

r2 1, r1 1, e
m1 1, τ+σ1 τ

,=

r2 2, r1 1, e
m1 1, τ–σ1 τ

r1 2, e
m1 2, τ+σ1 τ

,= =

r2 3, r1 2, e
m1 2, τ–σ1 τ

=
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The second line in Equation 66 is the recombination condition, which leads to

.

Simplifying gives

or

.

We see that if m1,1 = m1,2, then σ1 = σ0. Because we want the local volatility to
vary over time in the BDT model, the drift m must be a function of both time
and level. In building the BDT binomial model, the drift must have the form
mk, j.

Consider another consequence of the recombination requirement. Equa-
tion 66 also gives

or

(67)

and

or

. (68)

Similarly,

. (69)

r0e
m0τ+σ0 τ

e
m1 1, τ –σ1 τ

r0 e
m0τ –σ0 τ

e
m1 2, τ+σ1 τ

=

2σ0 τ m1 1, m1 2,–( )τ+ 2σ1 τ=

σ1
2σ0 τ m1 1, m1 2,–( )τ+

2 τ
------------------------------------------------------------=

r2 1,
r2 2,
--------- e

2σ1 τ

=

σ1
ln r2 1,( ) ln r2 2,( )–

2 τ
--------------------------------------------=

r2 1,
r1 1,
-------- e

m1 1, τe
σ1 τ

=

m1 1,
ln r2 1,( ) ln r1 1,( )– σ1 τ–

τ
----------------------------------------------------------------=

m1 2,

ln r2 2,( ) ln r1 2,( )– σ1 τ–

τ
-----------------------------------------------------------------=
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We see that from rk, j for 1 ≤ j ≤ k + 1, we can determine the local volatility,
σk–1, and the drift rates, mk–1, j , for 1 ≤ j ≤ k. The general formulas are the
obvious extensions of Equations 67–69.

As pointed out in the discussion of the up-state/down-state formulas for
the Black–Derman–Toy model, another equation is needed in order to incor-
porate yield volatility, sk. Yield volatility is incorporated by using the market
yield volatility structure, s, the up-state and down-state yields, yu and yd, and
prices for time period k. The conditions are

(70)

and

, (71)

where pk,u = 1/(1 + yk,uτ)k is the up-price and pk,d = 1/(1 + yk,dτ)k is the down-
price. This incorporation of yield volatility is illustrated in Figure 19. 

Consider the case for k = 2. Combining Equations 70–71 and the up- and
down-prices leads to

(72)

Notice that Equation 72 is similar to Equations 55 and 60. The solution for yk,d
is obtained from Equation 72 using the bisection method and the fact that
0 < yk,d < 1. 

We now determine the BDT rates r2,1, r2,2, and r2,3. We use p2,u to solve
for the up-state BDT rates and p2,d to solve for the down-state rates. The no-
arbitrage equations are

p2,u(1 + r1,1τ)(1 + r2,1τ)(1 + r2,2τ) – q(1 + r2,2τ) – (1 – q)(1 + r2,1τ) = 0 (73a)

and 
p2,d(1 + r1,2τ)(1 + r2,2τ)(1 + r2,3τ) – q(1 + r2,3τ) – (1 – q)(1 + r2,2τ) = 0, (73b)

Figure 19. Binomial Tree Incorporating 
Volatility 

yu yde
2sk–1 τ

=

Ak +1
qpk u, 1 q–( )pk d,+

1 r0τ+
-----------------------------------------------=

A3 1 r0τ+( ) 1 y2 d, τe
2s1 τ

+ 
 

2
1 y2 d, τ+( )

2

q 1 y2 d, τ+( )
2

– 1 q–( ) 1 y2 d, τe
2s1 τ

+ 
 

2
0.=–

r0

yu

yd
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and from Equation 65,

or

. (73c)

Equations 73a, 73c, and 73b are solved for the rates r2,1, r2,2, and r2,3 by the
Newton–Raphson method (in this order for ease of computation). We then get
the drifts and the local volatility from Equations 67–69.

The process for obtaining the BDT binomial short rates is to first deter-
mine the up-price, pk,u, and the down-price, pk,d, from Equation 72. Equation
72 is easily extended for all k. These two equations for the up-price and down-
price are solved using the bisection method. Equation 73 is also easily
extended. At time tk = kτ, we will have two equations similar to Equations 73a
and 73b for the up-price and the down-price from the no-arbitrage requirement
and k–1 equations similar to Equation 73c. Because Equations 73a, 73c, and
73b are a system of k + 1 nonlinear equations for the BDT short rates, the
bisection method cannot be used. Instead, the Newton–Raphson method for
systems of nonlinear equations must be used.

Hull– White Formulas for Short Rates. In the HW binomial tree, the
expressions for rk,j that correspond to Equation 48 are

(74a)

for an up-move and 

(74b)

for a down-move. For example, Equation 48 is

and

,

and the equations for the HW short rates are

r2 1,
r2 2,
---------

r2 2,
r2 3,
---------=

r2 2,
2 r2 1, r2 3,=

rk+1 j, rk j,

mkτ φkrk j,

τ– σk τ+ +=

rk+1 j+1, rk j,

mkτ φkrk j,

τ– σk τ–+=

r1 1, r0 m0τ φ0r0τ– σ0 τ+ +=

r1 2,

r0 m0τ φ0r0τ– σ0 τ–+=
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and

. (75)

The recombination condition is

.

Using r1,1 and r1,2 from above gives

, (76)

which we write as

This says that φ1 must be chosen to satisfy

. (77)

Equation 77 indicates that if σ1 = σ0, then φ1 = 0. This is clearly not acceptable.
In order to incorporate mean reversion for a constant local volatility, the time
step must be allowed to vary with k in Equation 74. This gives us

(78a)

for an up-move and

(78b)

for a down-move. For example, Equation 48 is

and

,

and the equations for the HW short rates for the next time period are

r2 1, r1 1, m1τ φ1r1 1, τ– σ1 τ ,+ +=

r2 2, r1 1, m1τ φ1r1 1, τ– σ1 τ r1 2, m1τ φ1r1 2, τ– σ1 τ ,+ +=–+=

r2 3,

r1 2, m1τ φ1r1 2, τ– σ1 τ–+=

r1 1, r1 2,–( ) 1 φ1τ–( ) 2σ1 τ=

2σ0 τ 1 φ1τ–( ) 2σ1 τ=

1 φ1τ–( )
σ1
σ0
------ .=

φ1
1 σ1 σ0⁄( )–

τ
------------------------------=

rk+1 j, rk j, mkτk φkrk j, τk– σk τk+ +=

rk+1 j+1, rk j, mkτk φkrk j, τk– σk τk–+=

r1 1, r0 m0τ0 φ0r0τ0– σ0 τ0+ +=

r1 2, r0 m0τ0 φ0r0τ0– σ0 τ0–+=
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and

. (79)

The recombination condition is

.

Using r1,1 and r1,2 from above gives

,

which upon some algebraic manipulation becomes

.

This is a quadratic equation in  whose solution is

. (80)

For example, if σ1 = σ0, τ0 = τ = 0.5, and the mean reversion is φ1 = 0.01, then
τ1 ≅ 0.495. From Equation 80, it is seen that increasing φ will decrease the time
step, τ1. We can also use Equation 80 to solve for the mean reversion, φ1, or
the local volatility, σ1. Doing this gives us

(81)

and

. (82)

In order to keep the time step constant at τ and let the local volatility vary,
then, according to Equation 81, the mean reversion must be

. (83)

r2 1, r1 1, m1τ1 φ1r1 1, τ1– σ1 τ1,+ +=

r2 2, r1 1, m1τ1 φ1r1 1, τ1– σ1 τ1–+ r1 2, m1τ1 φ1r1 2, τ1– σ1 τ1,+ += =

r2 3, r1 2, m1τ1 φ1r1 2, τ1– σ1 τ1–+=

r1 1, r1 2,–( ) 1 φ1τ1–( ) 2σ1 τ1=

2σ0 τ0 1 φ1τ1–( ) 2σ1 τ1=

σ0 τ0φ1τ1 σ1 τ1 σ0 τ0–+ 0=

τ1

τ1 τ0
4 σ0 σ1⁄( )

2

1 1 4 σ0 σ1⁄( )
2
τ0φ1++

2
----------------------------------------------------------------------=

φ1
σ0 τ0 σ1 τ1–

σ0 τ0τ1

---------------------------------------=

σ1
σ0 τ0 1 φ1τ1–( )

τ1

-----------------------------------------=

φ1
σ0 σ1–

σ0τ
------------------=
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If the mean reversion is to be chosen and the time step is to be kept constant
at τ, then, according to Equation 82, the local volatility must be

σ1 = σ0(1 – φ1τ). (84)

In Equations 80, 83, and 84, it is easily shown that the subscript 0 can be
replaced by k – 1, the subscript 1 can be replaced by k, and the subscript 2 by
k + 1. Using these replacements in Equation 80 gives

(85)

for the variable time step. Similarly, Equation 83 becomes

, (86)

and Equation 84 is now

σk+1 = σk(1 – φk+1τ). (87)

Black– Karasinski Formulas for Short Rates. The BK model expres-
sions for rk,j that correspond to Equation 52 are

(88a)

for an up-move and

(88b)

for a down-move. Showing that the recombination conditions for the BK
binomial tree are the same as for the HW recombination condition is straight-
forward. In order to obtain Equations 80–87, simply follow the steps for the
HL recombination condition, the steps for the BDT recombination condition,
or the steps for the HW recombination condition with Equation 88. Conse-
quently, the BK binomial algorithm is obtained by modifying the HW binomial
algorithm, which is obtained by modifying the HL binomial algorithm.
Because the BK SDE is a lognormal process, one can build a BK binomial tree
that parallels the BDT binomial tree. The variable time step must be incorpo-
rated in these binomial trees (as addressed in Appendix A). If one always
chooses the mean reversion and the input volatility to satisfy Equation 86 or
87, then the time step is always constant. Such a choice, however, places a
strong restriction on the HW and BK models. These two equations show that

τk+1 τk
4 σk σk+1⁄( )

2

1 1 4 σk σk+1⁄( )
2
τkφk+1++

2
--------------------------------------------------------------------------------=

φk+1
σk σk+1–

σkτ
-----------------------=

rk+1 j, rk j, e
mkτk–φkln rk j,( )τk+σk τk=

rk+1 j+1, rk j, e
mkτk–φk ln rk j,( )τk–σk τk=
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an increasing input volatility structure requires a negative mean reversion to
get a constant time step.

Another problem with a variable time step is that market pricing data are
difficult to acquire at the varying time steps. Therefore, we have to interpolate
the known market prices to get the values at the variable time step in order to
implement the no-arbitrage condition. Additionally, the short rates given by
the binomial model will be at the variable time steps, and this tree will have
to be interpolated to get the short rate at the fixed time steps. Consequently,
meeting the no-arbitrage condition is more difficult. We iterate on the HW and
BK solutions until a time step is achieved that almost matches the time steps
of the known market data. In the next chapter, we look at some examples that
highlight these difficulties.

Trinomial Framework. One way to avoid the issues of a variable time
step is to use a trinomial tree for the HW and BK SDEs. Adding a third rate
allows for another degree of freedom and releases the requirement of the
variable time step. The trinomial trees are based on the trinomial version of
Equation 10 at the end of Chapter 1.

The nodes in the trinomial tree will be labeled rk, j as they are in the
binomial tree. The rates in the trinomial tree must follow the expected value
and the variance of the HW and BK SDEs. The trinomial tree must recombine
just as the binomial tree did, and the recombination conditions are derived in
a similar manner, except now three moves are possible instead of two. The
trinomial tree should also give a spread in the rates as the binomial tree did.
The price tree is built in an analogous manner from the trinomial rate tree as
the binomial price tree was built (Equation 45), except now three prices and
three probabilities exist.

The nodes in the HW trinomial tree would be denoted
ru = rk+1,j = rk,j + δk,j + αk

for an up-move,

rm = rk+1,j+1 = rk,j + δk,j

for a middle-move, and

rd = rk+1,j+2 = rk,j + δk,j – αk

for a down-move, where δk,j would approximate the expected value compo-
nent, αk would approximate the distributional component of the HW SDE
(Equation 18), and the index j would run from 1 to 2k + 1. The trinomial trees
would be developed using these equations in a manner analogous to the
development in this chapter. The BK trinomial tree would use the exponenti-
ation of this equation as it did in the binomial case presented in this chapter.
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4. Examples of the Binomial 
Models

This chapter presents some specific examples of binomial lattices. Obviously,
all of the interesting phenomena that occur in these models cannot be covered.
So, we provide some examples that highlight the more salient financial and
mathematical properties of the processes introduced in Chapters 2 and 3. We
also offer some examples to show why trinomial models for the Hull–White
(HW) and Black–Karasinski (BK) processes are necessary. Finally, we set
q = 0.5.11

In this chapter, all short rates are assumed to be semiannual rates. That
is, we use τ = 0.5 as our fixed time step. The bonds modeled are five-year bonds.
Thus, there are 10 time periods. Time is always measured in years.

Because the Ho–Lee (HL), Kalotay–Williams–Fabozzi (KWF), and Black–
Derman–Toy (BDT) models can use the constant time step τ = 0.5, we consider
examples of these models first. We analyze the models using the same inputs
so that we can compare the differences between the models. For this reason,
we have more than one model, which allows the user to select the one that
either best captures a particular interest rate environment or can most easily
be used to evaluate securities (e.g., caps and floors can be priced using the
implied cap curve so that only models that allow for control over local volatility
make sense). Next, we explain similar models for the HW and BK processes
that explicitly incorporate mean reversion. Because the HL and KWF pro-
cesses can be obtained from the HW and BK processes, respectively, by
setting φ = 0, the same is true of the algorithms for generating the binomial
trees. We do these comparisons for completeness and to show the develop-
ment process involved in binomial models. The chapter concludes with exam-
ples of the BK model using Equation 62, the BDT method using Equation 73,
and a comparison of the HW and BK binomial models. The latter comparison
is accomplished by incorporating a constant time step through Equation 86.
That is, we choose φ in the BK process to guarantee a constant time step.

11See Jarrow (1996) for a more thorough explanation of the use of risk neutrality in
term-structure modeling. More rigorous development can be found in Harrison and
Pliska (1981) and Harrison and Kreps (1979). Realize that q = 0.5 is not a necessary
or sufficient condition for risk neutrality. In order to get the expected value and
variance in the binomial trees, however, q must be 0.5.
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Table 2 and Table 3 show the input data for our examples. Table 2 shows
the three term structure of spot rates. FTS is a flat term structure of 5 percent.
ITS is a linearly increasing term structure with R(0) = 0.05 and a slope of 0.005.
DTS is a decreasing term structure with R(0) = 0.05 and a slope of –0.005. We
have chosen R(0) = 0.05 so that a comparison can be made between the
binomial trees with the examples presented in Chapter 2 for each of the five
models. Because the HL and KWF models require a constant volatility, we
define the volatility in the examples. The volatility structures in Table 2 are
for the BDT, HW, and BK models. LDV20 is a linearly decreasing volatility
starting at 20 percent with a slope of –0.025 per year. LIV is a linearly increasing
volatility starting at 10 percent with a slope of 0.005 per year. LDV is a linearly
decreasing volatility starting at 10 percent with a slope of –0.005 per year. EIV
is an exponentially increasing volatility given by 0.1e0.1t. EDV is an exponen-
tially decreasing volatility given by 0.1e – 0.1t. 

Users of the HW and BK models are free to choose the volatility and the
mean reversion, but then the time steps have to be given by Equation 85. In
Table 3, we have presented what φ has to be in order to keep the time step
constant at τ = 0.5 in the HW and BK models for each of LDV20, LIV, LDV,
EIV, and EDV. In Table 3, MRLDV20 (mean reversion with linearly decreasing
volatility starting at 20 percent) corresponds to LDV20. The other mean
reversion structures in Table 3 correspond to the other volatility structures
(e.g., MREIV is the mean reversion structure required for the exponentially
increasing volatility structure, etc.). Recall that φ has to be negative for an

Table 2. The Term Structures and Volatility Structures for the 
Binomial Examples

Spot Rates 
(percent)

Volatilities
(percent)

Time 
(years) FTS ITS DTS LDV20 LIV LDV EIV EDV

0.0 5.0 5.00 5.00  20.0000  10.0000  10.0000  10.0000  10.0000
0.5 5.0 5.25 4.75  19.8750  10.2500  9.7500  10.5127  9.5123
1.0 5.0 5.50 4.50  19.7500  10.5000  9.5000  11.0517  9.0484
1.5 5.0 5.75 4.25  19.6250  10.7500  9.2500  11.6183  8.6071
2.0 5.0 6.00 4.00  19.5000  11.0000  9.0000  12.2140  8.1873
2.5 5.0 6.25 3.75  19.3750  11.2500  8.7500  12.8403  7.7880
3.0 5.0 6.50 3.50  19.2500  11.5000  8.5000  13.4986  7.4082
3.5 5.0 6.75 3.25  19.1250  11.7500  8.2500  14.1907  7.0469
4.0 5.0 7.00 3.00  19.0000  12.0000  8.0000  14.9182  6.7032
4.5 5.0 7.25 2.75  18.8750  12.2500  7.7500  15.6831  6.3763



Examples of the Binomial Models

©2001, The Research Foundation of AIMR™ 59

increasing volatility structure. We present some examples with these mean
reversions. It is interesting to note that for an exponentially changing volatility
structure, the time step is constant for a constant mean reversion. One can
use Equations 86 and 87 to find this relationship. This sort of analysis can be
used to model the implied volatility from cap prices, which is known as the
cap curve.

Examples for HL, KWF, and BDT Processes
Figure 20 presents four examples of the HL process that verify the results
we developed in Chapter 2 and presented in Figure 2. Figure 20 also includes
a price tree. Panel A of Figure 20 shows a binomial tree for the FTS with a
constant volatility of 1 percent. Negative interest rates are possible, even with
this small volatility, because, as shown by Equation 58 in Chapter 3, the spread
in the HL binomial short rates at t = tk is given by

. 

For example, in Panel A of Figure 20 at t = t7 = 3.5 years,

The difference is caused by the round-off in the results presented in Panel A.
For the FTS with a constant volatility of 10 percent, Panel B of Figure 20 shows
that the magnitude of the rates is greater and that there are more negative
rates, as expected (and as demonstrated in Figure 2). In Panel C of Figure 20,

Table 3. The Mean Reversions Required to Keep a Constant Time 
Step of 0.5 Years for the Volatility Structures in Table 2
(percent)

Time
(years) MRLDV20 MRLIV MRLDV MREIV MREDV

0.0 1.00 5.00 5.00 –10.25 9.75
0.5 1.25 –5.00 5.00 –10.25 9.75
1.0 1.26 –4.88 5.13 –10.25 9.75
1.5 1.27 –4.76 5.26 –10.25 9.75
2.0 1.27 –4.65 5.41 –10.25 9.75
2.5 1.28 –4.55 5.56 –10.25 9.75
3.0 1.29 –4.44 5.71 –10.25 9.75
3.5 1.30 –4.35 5.88 –10.25 9.75
4.0 1.31 –4.26 6.06 –10.25 9.75
4.5 1.32 –4.17 6.25 –10.25 9.75

rk 1, rk k+1,– 2kσ τ=

r7 1, r7 8,– 0.1002 0.0012–=

0.099 2 7( ) 0.01( ) 0.5 0.098995.≈≈=
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Figure 20. HL Binomial Trees
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Figure 20. HL Binomial Trees
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Figure 20. HL Binomial Trees
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we have a binomial tree for the ITS with a constant volatility of 1 percent, and
we see that, as expected from the results in Chapter 2, there are no negative
interest rates. Because the drift is related to the slope and the slope is positive,
we expect the rates to grow in the HL process. Panel D of Figure 20, which is
a binomial tree for the DTS with a constant volatility of 1 percent, has more
negative interest rates than Panel A because Panel D has a negative drift and
thus the rates should decrease over time. As pointed out in Chapter 3, the
negative rates are not completely detrimental, because we average over the
rates to get the price of the bond. As a matter of fact, as long as the HL rates
satisfy

(1 + rk,jτ) > 0,

they can be used to price bonds and contingent claims. Panel E of Figure 20
presents the corresponding price tree for Panel D, which shows that the price
of the bond is given by the final spot rate. That is, the price of the bond is

Figure 21 presents the lognormal version of the results in Figure 20. That
is, it presents KWF binomial trees. We see that the rates are positive but that
they grow over time. But the growth and the spread in the rates are much
smaller than in the HL case, even for the higher volatilities. Panel A of Figure
21 presents the binomial tree for the same data used to create Panel B of Figure
20. In Panel B of Figure 21, a constant volatility of 20 percent is used, leading
to an increase in the value of the up-state rates and a decrease in the value of
the down-state rates. Remember that the spread in the rates follows from
Equation 64 in Chapter 3. That is, 

.

Panel C of Figure 21 presents the results for the ITS with a volatility of 10
percent, and the rates are larger throughout the lattice. Panel D of Figure 21
presents the results for the DTS, with rates that are significantly smaller and
approaching zero. These trees verify the results developed in Chapter 2. Note
that the price tree (Panel E) corresponding to the binomial tree in Panel D in
Figure 21 gives the same price as the HL price tree in Panel E of Figure 20,
as guaranteed by the no-arbitrage property. Also note that the prices in the
KWF tree are all under $100, and the prices in the KWF tree have much less
spread than the prices in the HL price tree.

100

1 R 10( )τ+[ ]
10

-------------------------------------

100

1 0.0275( ) 0.5( )+[ ]
10

----------------------------------------------------- $87.24.≈=

rk 1,
rk k+1,
-------------- e2kσ τ
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Figure 21. KWF Binomial Trees
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Figure 21. KWF Binomial Trees
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Figure 21. KWF Binomial Trees
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The difference in the size of the spread between the HL and the KWF
models is a result of the distributional properties of the two models. The short
rate in the HL model is normally distributed, allowing for negative rates and,
subsequently, a wider spread between the down- and up-states. Conversely,
because the short rates in the KWF model are lognormally distributed, not
allowing for negative rates, the spread is smaller. It is the difference in the rate
spreads that leads to the wider price spreads. The distributional properties
are evident by analyzing the figures more closely. The HL rate lattices are
symmetric around the center nodes, whereas the KWF rate lattices are
asymmetric and skewed to higher rates around the center nodes. This differ-
ence is the result of the different distributions implied by the stochastic
differential equations that are used to implement the binomial models, as
explained in Chapter 2.

Figure 22 presents the BDT binomial trees resulting from the input data
in Table 2. These BDT binomial trees verify the results presented in Chapter
2 and demonstrated in Figures 8–10. Panel A of Figure 22 presents the results
for the DTS with a volatility starting at 20 percent and decreasing at 0.005 per
year. The rates and the spread in the rates decrease significantly because of
the large decrease in the volatility structure, as pointed out in Chapter 2. Note
that Panel B of Figure 22, which presents the corresponding price tree, gives
the same price as the HL and KWF trees for the DTS, as guaranteed by the
no-arbitrage property. The three price trees are for significantly different
volatilities. We see that the prices in the BDT price tree are more in line with
the prices in the KWF tree, as expected from the fact that both models are
lognormal. Also, note the asymmetric and skewed nature of the rate spreads,
which is similar to the KWF because of the lognormality. 

Panel C of Figure 22 presents a BDT binomial tree for the ITS with a
volatility starting at 10 percent and decreasing linearly at 1 percent per year.
Note the significant decrease in the spread of the rates over the KWF binomial
tree in Panel C of Figure 21. This result is expected because there is mean
reversion from the decreasing volatility structure. Panel D presents the BDT
binomial tree for the ITS with a volatility starting at 10 percent and increasing
linearly at 1 percent per year. Note the increase in the rates and the spread of
the rates as expected. In Panel E, the BDT binomial tree is for the ITS with
EIV, and in Panel F, the binomial tree is for the ITS with EDV. The change in
the rates and the spread of the rates is as expected. For the DTS, the BDT
process cannot give short rates for EDV, a possibility that was pointed out in
Chapter 2. 

The BDT and the KWF models will be almost identical when the volatility
structure is flat (horizontal) because of the lognormal nature of both models,
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Figure 22. BDT Binomial Trees
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Figure 22. BDT Binomial Trees
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Figure 22. BDT Binomial Trees
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as shown in Chapter 2. In fact, the only difference between the two models is
the mean reversion implicitly incorporated into the BDT through the shape
of the volatility structure. So, only when the volatility structure has signifi-
cantly changed through time do the two models give very different results.

Examples for HW and BK Processes 
Exhibit 1 and Exhibit 2 present the up-state and down-state short rates for
the HW and BK binomial-tree methods, respectively, for φ = 0, 0.05, 0.10, and
0.15 (denoted by MR in the Exhibits) using the modification of Equation 62
for a variable time step. Also presented is the cubic interpolation of the up-
and down-states that fit the constant-time-step time periods. Figure 23 and
Figure 24 show the graphs of the up-state and down-state short rates for the
HW and BK binomial trees, respectively. Notice that the size of the time steps
decreases with time for a fixed φ. Also, note that the size of the time steps
decreases with increasing φ. In Figure 4 of Chapter 2, the mean reversion in
the HW process does not become apparent until φ is close to 0.16. Similar
results are presented for the BK process in Figure 7 of Chapter 2. 

The binomial tree results presented in Exhibits 1 and 2 and Figures 23–
26 should be considered and used as only first approximations for binomial
trees to the HW and BK processes. These trees are actually accurate approx-
imations only for small mean reversion in which the time step is almost
constant. These first approximations are intended to illustrate the difficulties
of the inclusion of mean reversion. They show that large mean reversion leads
to a significantly decreasing time step, but they also show how mean reversion
affects the rates in the binomial tree (especially in the spread of the rates).
For the mean reversion values presented in the examples, iteration on the
binomial tree is required to get more accurate approximations of the HW and
BK SDEs. The binomial trees presented for these two processes show that an
algorithm can be developed for building accurate HW and BK binomial trees.
These difficulties (resulting mostly from the variable time step) are the
reasons why trinomial lattices are usually developed for the HW and BK
processes.

Despite these drawbacks, binomial models for the HW and BK processes
do have financially meaningful applications. Consider the following examples
of how these two models can be used effectively in the binomial framework.
Figure 25 presents the BK binomial tree obtained from using the BDT
method of Chapter 3 on the BK short rates for the FTS and a constant volatility
of 10 percent and φ = 5 percent. Comparing the spreads against the BDT
lattices shows that there is mean reversion in this binomial tree. Our studies
show that the BK process, using the BDT method for solving the binomial
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Exhibit 1. Up-State and Down-State Short Rates for the HW Binomial Tree Method 

MR = 0
Time (years) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state  0.050 0.123 0.199 0.277 0.357 0.440 0.525 0.613 0.703 0.796
Down-state  0.050  –0.018  –0.084  –0.148  –0.209  –0.267  –0.323  –0.377  –0.428  –0.477

MR = 0.05
Time (years) 0.0 0.5  0.9765  1.4315  1.8669  2.2844  2.6852  3.0708  3.4422  3.8004  4.1463
Up-state 0.05  0.1202  0.1934  0.2602  0.3273  0.3931  0.4575  0.5207  0.5825 0.643  0.7022
Down-state 0.05  –0.018  –0.076  –0.136 –0.19 –0.24  –0.288  –0.332  –0.375  –0.416  –0.454

Cubic int
Time (years) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state 0.05  0.1202 0.197  0.2705  0.3481  0.4276 0.509  0.5922  0.6771  0.7636
Down-state 0.05  –0.018  –0.079  –0.144  –0.206  –0.266  –0.324  –0.382  –0.438  –0.494

MR = 0.10
Time (years) 0.0 0.5  0.9555  1.3737  1.7602  2.1194  2.4549  2.7696 3.066 3.346  3.6113
Up-state 0.05  0.1175  0.1892  0.2469  0.3047  0.3599  0.4124  0.4625  0.5104  0.5563  0.6004
Down-state 0.05  –0.017  –0.069  –0.126  –0.175  –0.219  –0.261 –0.3  –0.336  –0.371  –0.404

Cubic int
Time (years) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state 0.05  0.1175  0.1957  0.2652  0.3415  0.4195  0.4997  0.5818  0.6659  0.7521
Down-state 0.05  –0.017  –0.075  –0.143  –0.205  –0.266  –0.328 –0.39  –0.453  –0.516
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Exhibit 1. Up-State and Down-State Short Rates for the HW Binomial Tree Method 
(continued)

MR = 0.15
Time (years) 0.0 0.5  0.9366 1.324 1.672  1.9878  2.2768  2.5432  2.7902  3.0205  3.2361
Up-state 0.05  0.1151  0.1857  0.2358  0.2869  0.3348  0.3796  0.4217  0.4614 0.499  0.5347
Down-state 0.05  –0.017  –0.063  –0.118  –0.163  –0.203 –0.24  –0.274  –0.306  –0.337  –0.366

Cubic int
Time (years) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state 0.05  0.1151  0.1946  0.2608  0.3366  0.4148  0.4956  0.5793  0.6659  0.7559
Down-state 0.05  –0.017  –0.071  –0.141  –0.204  –0.269  –0.334  –0.402  –0.472  –0.545
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Exhibit 2. Up-State and Down-State Short Rates for the BK Binomial Tree Method 

MR = 0
Time (years) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state  0.050 0.054 0.057 0.061 0.066 0.070 0.075 0.081 0.087 0.093
Down-state  0.050 0.046 0.043 0.040 0.037 0.035 0.032 0.030 0.028 0.026

MR = 0.05
Time (years)  0.000 0.500 0.976 1.431 1.867 2.284 2.685 3.071 3.442 3.800 4.146
Up-state  0.050 0.056 0.060 0.063 0.067 0.070 0.074 0.078 0.082 0.086 0.090
Down-state  0.050 0.049 0.045 0.042 0.039 0.037 0.035 0.033 0.031 0.029 0.028

Cubic int
Time (years)  0.000 0.500 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state  0.050 0.056 0.06 0.064 0.068 0.072 0.077 0.082 0.088 0.094
Down-state  0.050 0.049 0.045 0.042 0.038 0.036 0.033 0.031 0.028 0.026

MR = 0.10
Time (years) 0.0 0.5  0.9555  1.3737  1.7602  2.1194  2.4549  2.7696 3.066 3.346  3.6113
Up-state 0.05  0.0588  0.0609  0.0633  0.0659  0.0687  0.0714  0.0742  0.0771 0.08  0.0829
Down-state 0.05 0.051  0.0465 0.043  0.0401  0.0377  0.0356  0.0338  0.0323  0.0308  0.0296

Cubic int
Time (years) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state 0.05  0.0588  0.0611  0.0642  0.0677  0.0718  0.0764  0.0816  0.0874  0.0939
Down-state 0.05 0.051 0.046 0.042  0.0385  0.0354  0.0326  0.0301  0.0278  0.0257
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Exhibit 2. Up-State and Down-State Short Rates for the BK Binomial Tree Method (continued)
(continued)

MR = 0.15
Time (years) 0.0 0.5  0.9366 1.324 1.672  1.9878  2.2768  2.5432  2.7902  3.0205  3.2361
Up-state 0.05  0.0613  0.0614  0.0629  0.0647  0.0667  0.0689  0.0711  0.0734  0.0757  0.0779
Down-state 0.05  0.0532  0.0471  0.0433  0.0403 0.038  0.0361  0.0345  0.0331  0.0319  0.0308

Cubic int
Time (years) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Up-state 0.05  0.0613  0.0614  0.0638  0.0668  0.0708  0.0754  0.0809  0.0872  0.0949
Down-state 0.05  0.0532  0.0463  0.0418 0.038  0.0348 0.032  0.0295  0.0272  0.0251
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trees, gives a more accurate first approximation of mean reversion than the
BK method presented in Chapter 3. 

Figure 26 presents the HW and BK binomial trees for the FTS with LDV 
and MRLDV so that the time step remains constant at 0.5 years. Comparing 
the interest rate spreads in the binomial tree in Panel A of Figure 26 with the 
binomial tree in Panel B of Figure 20 and the corresponding data in Exhibit 1 
shows that there is mean reversion in this example. Similarly, the binomial 
tree in Panel B of Figure 26 shows mean reversion when compared with Figure 
24 and the corresponding data in Exhibit 2 and also with Figure 25. It is also 
interesting to point out that the BDT binomial tree will give the same results 
as Panel B of Figure 26 for this volatility structure. 

Figure 23. Up-State and Down-State Short Rates for the HW Binomial 
Tree
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Figure 24. Up-State and Down-State Short Rates for the BK Binomial 
Tree
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Figure 25. Example of a BK Binomial Tree
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Figure 26. Examples of HW and BK Binomial Trees with Flat Term Structures
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57.94%

46.27%

34.61%

22.97%

11.33%

  0.30%

  11.92%

  23.53%

  35.13%

4.0

63.35%

52.03%

40.73%

29.44%

18.15%

6.88%

  4.38%

  15.64%

  26.89%

  38.13%

4.5

5.00%

Years

Panel B. 

0

5.71%

4.98%

4.34%

1.0

6.08%

5.31%

4.65%

4.06%

1.5

5.35%

4.65%

0.5

6.45%

5.66%

4.96%

4.35%

3.82%

2.0

6.81%

6.00%

5.28%

4.65%

4.10%

3.61%

2.5

7.18%

6.34%

5.61%

4.95%

4.38%

3.87%

3.42%

3.0

7.54%

6.69%

5.93%

5.26%

4.66%

4.13%

3.67%

3.25%

3.5

7.89%

7.02%

6.25%

5.56%

4.95%

4.40%

3.92%

3.49%

3.10%

4.0

8.23%

7.35%

6.56%

5.86%

5.24%

4.68%

4.18%

3.73%

3.33%

2.97%

4.5
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5. Conclusion

We have presented five models, each with different strengths and weak-
nesses. The Ho–Lee (HL) and Hull–White (HW) models are based on nor-
mally distributed rates, as is evident in the symmetry of the resulting binomial
lattices. They both allow negative interest rates. The HW model incorporates
mean reversion in an attempt to prevent negative rates. The degree of freedom
used by the inclusion of the mean reversion term forces the HW model to have
a changing time step within the binomial framework.

The Kalotay–Williams–Fabozzi (KWF), Black–Karasinski (BK), and
Black–Derman–Toy (BDT) models are all based on lognormally distributed
rates. This basis is evident in the asymmetry and skewness of the resulting
binomial lattices. Accordingly, none of these allows negative rates, which is
an improvement over the HW and the HL models. The KWF model is the
simplest of these three models and is really no more than a lognormal version
of the HL model. The BK model is analogous to the HW model in that it
includes a mean reversion term. Similarly, the degree of freedom used by the
inclusion of the mean reversion term forces the BK model to have a changing
time step within the binomial framework. To avoid using up a degree of
freedom on mean reversion, the BDT implicitly incorporates mean reversion
through the volatility structure, which allows for a constant time step while
including mean reversion. The incorporation of mean reversion, however,
makes the BDT model far more difficult than the other models and also limits
the interest rate scenarios that allow for a solution in the BDT framework.

Because each model has strengths and weaknesses and slightly different
characteristics, the characteristics must be thoroughly understood before the
models are implemented. Otherwise, valuation and risk-measurement results
cannot be analyzed for different dealers (see Buetow, Hanke, and Fabozzi,
forthcoming 2001). Moreover, knowledge of the various characteristics of
each model is critical for the evaluation of software packages.
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Appendix A. Variable Time Step

Because we are measuring calendar time by 

0 = t0 < t1 < t2 <, . . ., tn,

the time steps are 

τ1 = t1 – t0, τ2 = t2 – t1, . . ., τn = tn – tn– 1.

If the time steps are not constant (they vary), then

t1 = t0 + τ1, t2 = t1 + τ2 = t0 + τ1 + τ2, . . .,

and

tn = tn– 1 + τn = t0 + τ1 + τ2 + . . . + τn.

In this case, the discount factor for the zero-coupon bond is given by

,

where τ is the time period corresponding to the spot rates contained in the term
structure and  is the spot rate during the time periods containing the time
tk. That is, there is an l such that lτ ≤ tk ≤ (l + 1)τ, and  is the spot rate during
this time period.

This adjustment must also be made for the short rates. For example, if we
are using Equation 62 for the Hull–White (HW) and Black–Karasinski (BK)
binomial short rates with a variable time step, then we have to replace the
(1 + rk,jτ) terms by  and the (1 + rk,nτ) terms by .
If we are using the Black–Derman–Toy (BDT) binomial short rate method for
the BK binomial short rates with a variable time step, then we must replace
Equation 72 with

Ak
1

1 Rkτ+( )
tk τ⁄

--------------------------------=

Rk
Rk

1 rk j, τ+( )τk τ⁄ 1 rk n, τ+( )τk τ⁄

Ak +1 1 r0τ+( ) 1 y k d, τe
2s k–1 τ

+
 
 

tk τ⁄

1 y k d, τ+( )
tk τ⁄

q 1 y k d, τ+( )
tk τ⁄

– 1 q–( ) 1 y k d, τe
2s k–1 τ

+
 
 

tk τ⁄

– 0,=
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where is the interpolated value from the inputted market-yield volatilities,
and use  as the up-price and 
as the down-price. In Equations 73a and 73b, we replace (1 + rk,jτ) terms with

 terms. We use the Newton–Raphson method to solve for these
BK short rates, just as for the BDT binomial short rates.

The Newton–Raphson method can be used to solve the single equation
f(w) = 0 for w. An initial guess for w is made. Call this guess w0. The Newton–
Raphson algorithm is defined by 

. 

This method (usually) converges quickly to w. If you have a system of
equations, the Newton–Raphson method is applied to each equation in the
system. See Burden and Faires for the details.

s k–1
pk u, 1 1 y k d, τ+( )

tk τ⁄
⁄= pk d, 1 1 y k d, τ+( )

tk τ⁄
⁄=

1 rk j, τ+( )τk τ⁄

wm+1 wm
f wm( )

f ′ wm( )
-----------------–=
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Appendix B. Continuous 
Compounding of 
Interest Rates

In Equation 1 of the manuscript, P2 = A2(1 + R2τ)2, and in Equation 2, A2 =
P2/(1 + R2τ)2. These equations are the formulas for interest being com-
pounded once every time period. That is, the interest is compounded at t1 = τ

and again at t2 = 2τ. If the interest were being compounded continuously, the
corresponding equations would be

(B1)

and

(B2)

Therefore, if we want to use continuous compounding, we replace the discount
factors in the text, 1/(1 + rm,nτ), by the discount factors  and we replace
the 1 + rm,nτ expressions by .

We would still use the bisection method to solve for the short rates, rk, j,
except in the Black–Derman–Toy (BDT) methods, where we would use the
Newton–Raphson method. Significant differences in these two forms of com-
pounding will show up only for long-period bonds, high interest rates, or high-
premium bonds.

P2 A2e
R2t2=

A2e
2R2τ=

A2 P2e
R– 2t2=

P2e
–2R2τ.=

e rm n, τ–

erm n, τ
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Appendix C. Implementation and 
Calibration Issues for 
the Binomial Models

This appendix presents an overview of implementation and calibration issues.
In particular, we present a few numerical examples so that the reader can
obtain a better appreciation of the algorithm required to properly implement
no-arbitrage interest rate models. We also offer an overview of calibration
techniques commonly employed to adapt the models to various market infor-
mation. This discussion coverage is by no means exhaustive.

Implementation Examples
Equation 9 is used to find the first two rates in the binomial model for each of
the five models presented. The inputs to the Ho–Lee (HL) and Kalotay–
Williams–Fabozzi (KWF) binomial models are the term structure of zero rates
and the short-rate volatility. The short-rate volatility can be obtained in various
ways. Nonconstant volatilities are at the heart of calibration issues and are
presented in the next section of the appendix.

To illustrate the implementation of these models, we assume a semiannual
periodicity with r0 = R1= 3.5 percent, R2 = 4.25 percent, and R3 = 5.5 percent.
We also assume a constant short-rate volatility of 5 percent (σ = 5 percent).
We now consider an example for each of the HL and KWF binomial trees using
these data.

The two rates emanating from r0 are found from Equations 46a and 46b,

for the up-move and

for the down-move. Now, we substitute these two rates, R2, and q = 0.5 into
Equation 9a to get the rather ugly expression 

ru r1 1, 0.035 0.5m0 0.05 0.5+ += =

rd r1 2, 0.035 0.5m0 0.05 0.5–+= =
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which upon simplification (and roundoff) becomes

(0.976)(1 + 0.25m0)(1.035 + 0.25m0) – 0.5(1 + 0.25m0) – 0.5(1.035 + 0.25m0) = 0.

This is a quadratic equation that has the following two solutions:

m0 = 0.03127

and

m0 = –4.071.

The economically feasible solution is obviously m0 = 0.03127. That is, the first
drift value in this HL binomial model is 0.03127, or 3.127 percent. Substituting
this drift value into the formulas gives ru = 8.6 percent and rd = 1.53 percent.
Also note that ru –  rd = 2σ  = 2(0.05)  = 0.07. Because r1,1 = 8.60 percent
and r1,2 = 1.53 percent, we get (from Equation 57)

and

.

We combine these with P3 = 1/(1 + R3τ)3 = 0.9218 and substitute into Equation
59. The bisection method is used on the resulting cubic expression to obtain
the feasible solution, m1= 0.0628, which results in r2,1 = 15.28 percent,
r2,2 = 8.20 percent, and r2,3 = 1.13 percent. We leave it to the reader to show
that .

We now use these data to generate the KWF rates. The two rates emanat-
ing from r0 are found from Equation 50,

1

1 0.0425( ) 0.5( )+[ ]
2

--------------------------------------------------

1 0.035( ) 0.5( )+[ ]× 1 0.035 0.5m0 0.05 0.5–+( ) 0.5( )+[ ]

1 0.035 0.5m0 0.05 0.5+ +( ) 0.5( )+[ ]×

0.5 1 0.035 0.5m0 0.05 0.5+ +( ) 0.5( )+[ ]–

0.5 1 0.035 0.5m0 0.05 0.5–+( ) 0.5( )+[ ]– 0,=

τ 0.5

r2 1, r1 1, m1τ σ τ+ + 0.086 0.5m1 0.035,+ += =

r2 2, r1 1, m1τ σ τ–+ 0.086 0.5m1 0.035,–+= =

r2 3, r1 2, m1τ σ τ–+ 0.0153 0.5m1 0.035–+= =

r2 1, r2 3,– 4σ τ=
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for the up-move and

for the down-move. Substituting into Equation 9a, as we did in the HL model,
we get

Again, using the bisection method, we find the first drift, m0 = 0.7133, which
gives ru = 5.18 percent and rd = 4.83 percent. We again see that ln(ru/rd) =

 (or ru/rd = ), as shown in Chapter 3.
Because r1,1 = 5.18 percent and r1,2 = 4.83 percent, we get (from Equation 64)

and

.

We combine these with P3 = 1/(1 + R3τ)3 = 0.9218 and substitute into
Equation 59. The bisection method is used on the resulting cubic expression
to obtain the feasible solution, m1 = 0.9436. This results in r2,1 = 8.60 percent,
r2,2 = 8.01 percent, and r2,3 = 7.47 percent. We leave it to the reader to show

.
For both models, this propagation process is continued until we span the

desired maturity. The equations that are solved at each period are polynomials
that are easily solved using the bisection technique. A robust algorithm will

ru r1 1,=

r0e
m0τ+σ0 τ

=

0.035e
0.5m0+0.035

=

rd r1 2,=

r0e
m0τ–σ0 τ

=

0.035e
0.5m0–0.035

=

0.976( ) 1 0.0175e
0.5m0+ 0.035

+( ) 1 0.0175e
0.5m0–0.035

+( )

0.5 1 0.0175e
0.5m0–0.035

+( )– 0.5 1 0.0175e
0.5m0+ 0.035

+( )– 0.=

2σ τ 2= 0.05( ) 0.5 0.07= e2σ τ

r2 1, 0.0518e
0.5m1+ 0.035

,=

r2 2, 0.0518e
0.5m1–0.035

,=

r2 3, 0.0483e
0.5m1–0.035

=

r2 1, r2 3,⁄ e4σ τ=
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incorporate the simple algebraic structure of these polynomials. The following
six-step procedure outlines the implementation process.

1. Obtain the term structure of zero rates.
2. Determine a constant volatility from market conditions.
3. Obtain the first drift, m0, for r1,1 and r1,2, using Equation 9 and the

bisection method, and obtain r1,1 and r1,2.
4. Generate the equations for r2,1, r2,2, and r2,3.
5. Generate the polynomials at each time step using Equation 62.
6. Repeat Step 5, propagating forward in the lattice.
The Hull–White (HW) and Black–Karasinski (BK) binomial tree approxima-
tions presented in Chapters 3 and 4 follow the outline above, except that the
time step must vary in order to have enough degrees of freedom to solve the
equations. The details of the variable time step are discussed in Appendix A.
Equations 48a and 48b are substituted into Equation 9 for the HW model, and
Equations 52a and 52b are substituted into Equation 9 for the BK model. The
tree evolves in a similar manner as in the HL and KWF models (except that
Equations 78 are used for the HW model and Equations 88 are used for the
BK model). 

We now present the implementation procedure for the Black–Derman–
Toy (BDT) model. The inputs for the BDT model are the term structure of
zero rates and the yield volatility corresponding to each time step of the input
vectors.

The BDT model uses the same term structure as in the HL and KWF
examples. For the yield volatilities, we use s0 = σ0 = 0.05 and let s1 = 0.06.
Because the first two rates in the binomial tree for the BDT model are the
same as the KWF model, we use r1,1 = 5.18 percent and r1,2 = 4.83 percent to
generate r2,1, r2,2, and r2,3 for the BDT model.

Equation 70 gives

and Equation 72 results in

0.9218[1 + (0.035)(0.5)](1 + 0.5yde0.08485)2(1 + 0.5yd)2 

– 0.5(1 + 0.5yd)2 – 0.5(1 + 0.5yde0.08485)2 = 0.

yu yde
2s1 τ

=

yde2 0.06( ) 0.5
=

yde0.08485,=
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The feasible solution to this equation is yd = 0.0623197 and yu = 0.678385.
Therefore, pd = 0.94048 and pu = 0.93546. Equations 73a, 73b, and 73c become,
respectively,

0.93546[1 + (0.0518)(0.5)](1 + 0.5r2,1)(1 + 0.5r2,2) 
– 0.5(1 + 0.5r2,2) – 0.5(1+0.5r2,1) = 0,

0.94048[1 + (0.0483)(0.5)](1 + 0.5r2,2)(1 + 0.5r2,3) 
– 0.5(1 + 0.5r2,3) – 0.5(1 + 0.5r2,3) = 0.

and

.

Using the Newton–Raphson method, the feasible solution to this system is
r2,1 = 8.80 percent, r2,2 = 8.01 percent, and r2,3 = 7.29 percent. This input
information will result in a local volatility. Specifically, from Equation 67, the
local volatility is σ1 = [ln(0.088) – ln(0.0801)]/(2 ) = 6.64 percent. This can
be used as the local volatility in the HW or BK binomial models.

The following seven-step process outlines the implementation procedure
for the BDT binomial model.

1. Obtain the term structure of zero rates.
2. Determine the yield volatility from market conditions for each time step.
3. Obtain the first drift, m0, for r1,1 and r1,2 using Equation 9a and the

bisection method, and obtain r1,1 and r1,2.
4. Using Equation 70 through Equation 72, determine yu,yd and then pu,pd.
5. Set up Equation 73 for the rates at each time step in the binomial tree.
6. Use the Newton–Raphson method to find the feasible rates for the equa-

tions derived in Step 5.
7. Repeat Steps 5 and 6, propagating forward in the lattice.

If the user wants to incorporate yield volatility in the BK model and use
the above outline for the BK model, the process is similar. But the variable
time step outlined in Appendix A must be used.

Calibration Issues
For the HL and KWF models, a constant short-rate volatility is used through-
out the interest rate lattice. Because the volatility is constant, an estimate of
the appropriate current short-rate volatility is usually used. The model explic-
itly assumes that this volatility is the same throughout the lattice. Numerous
econometric techniques exist to estimate this parameter. Regardless of the
sophistication of the modeling technique used, experience plays a critical role.

r2 2,
2 r2 1, r2 3,=

0.5
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The inputs to the HW and BK models are φ and σ. Analytic solutions
presented in Chapter 2 for the ordinary differential equations (ODEs) can be
used to generate a first approximation for the forward rates, and then the input
can be “adjusted” according to some minimization-of-error formula for the
expected forward rates by using the market prices of forward contracts. One
can also use the discrete approximations to the SDEs presented in Chapter 2
to generate many first approximate solutions with varying inputs and use the
inputs that give the results closest to known market conditions.

Another calibration procedure is suggested in Black and Karasinski
(1991). They suggest starting with constant inputs, building a short-term
binomial tree, pricing the options from these inputs (as was shown in Chapter
4), and then comparing these prices with prices given by Black’s formula for
options (Black 1976). Iterate on this procedure until the two models are
consistent. That is, if the price of the option is off, calibrate the parameters
until a desirable result is reached. A minimization-of-error method is often
employed. Hull (2000) also suggests this approach.

A common minimization-of-error method is obtained from using the
market prices of interest rate caps. A cap is a portfolio of short-term interest
rate options called caplets. These prices are used to compute the implied
volatility for each caplet. The resulting vector of short-rate volatilities is often
called the cap curve. These implied volatilities are then used as the short-rate
volatilities throughout the interest rate lattice. The interest rate lattice is then
calibrated to retain the no-arbitrage property and ensure that the local volatil-
ities throughout the tree match the cap curve.

Following the presentation in Hull, a caplet can be exercised at time tk
with payoff at time tk+1 given by

Aτk+1max(ρk – ρx,0),

where A is the principal, ρk is the forward rate at time tk for the period
 at time tk, and ρx is the option exercise forward rate at time

tk for the period τk+1 at time tk. If ρk is lognormal with volatility, σk, the value
of this option according to Black’s formula is easily shown to be

c = Aτk+1pk+1[rkN(d1) – ρxN(d2)],

where

and

τk+1 tk+1 tk–=

d1
ln rk( ) ln ρ x( ) 1 2⁄( )σk

2tk+–

σk tk

---------------------------------------------------------------------=
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,

where rk is the forward rate and pk+1 is the discounted zero coupon price.
Because we know the value of the option and all of the other input information,
we can solve each of these for the implied volatility, σk.1 This gives a local
volatility that can be used in the BDT or BK binomial models. Black and
Karasinski also discuss some of these issues in using the cap curve to calibrate
input parameters. Calibrating models to the cap curve requires an additional
degree of freedom because it necessitates an additional input into the model.
This added input often leads to the use of trinomial models instead of binomial
models. The BDT model can be used, however, if we replace the yield volatility
curve with the cap curve as an input. This approach retains the fixed-time
increment and allows for the inclusion of the cap curve. The solution method-
ology outlined in the previous section is then modified slightly so that the cap
curve results, instead of the yield volatilities, are incorporated at each time
step. This method will sometimes result in situations for which no solution
exists. The trinomial approach is a more robust framework if the user wants
to calibrate the interest rate lattice to the cap curve.

1 We actually use the Newton–Raphson method to compute the volatility because no analytic
expression exists for σk.

d2 d1 σk tk–=
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