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Is there a relatively simple way to view duration and immunizaGon when nonparallel shifts occur 
in the term structure of interest rates? What happens to duration calculations when the shift in 
interest rates is large? Is convexity all that it is implied to be? These are some of the questions 
addressed in this study. Closed-form duration measures are the vehicle for finding the answers. 

Lacey and Nawdkha present us with the major closed-form duration formulas and several 
significant applications for bond analysts. The intuition and techniques for calculating duration 
are presented concisely and systematically. 

Recall that duration measures an asset's price sensitivity to interest-rate changes. Remember 
also that duration calculations require the solution to a sum of a Iong series of present values of 
weighted, multiperiod cash flows. Closed-form formulas not only calculate duration but also 
eliminate the need for tedious summations. 

You do not need to be mathematically sophisticated to use closed-form formulas. If you 
understand the basic intuition and own a calculator with a yX function, you are able to solve even 
a seemingly overwhelming problem with comparative ease. Take equations 27 and 32, for 
example. They may appear formidable, but they require only three and four inputs, respectively, 
to be solved. Fortunately, with closed-form duration formulas, most of the inputs-such as 
coupon rate, yield to maturity, and the number of periods to maturity-are readily available. 

Lacey and Nawalkha's analysis is meaningful to all practitioners, even though it focuses 
primarily on bonds. Its most obvious import is on duration of pension assets and liabilities-the 
immunization process. Yet, bond duration also lays the foundation for estimates of equity 
duration, a concept that is becoming more and more prominent. The Research Foundation is 
pleased to present this practical analysis to its constituents. 

Charles A DJArnbrosio, CFA 
The Research Foundation of the 

Institute of Chartered Financial Analysts 



Introduction 

Introduction 

Bond-price volatility has increased dramatically over the past decade. Over the 1977-86 period, 
for example, the dispersion of bond returns, as measured by their standard deviation around 
long-term U.S. government bond returns, was twice that of any previous 10-year period and three 
to four times greater than in most other 10-year periods over the past 40 years. Recently, swings 
in the values of bond portfolios have been in ranges previously reserved for the Standard & Poor's 
500 Composite Index, 

With greater volatility ita. bond markets, participants in those markets--especially pension 
funds, insurance companies, and depository institutions-have sought new ways to identify and 
manage interest-rate risk. Ennovations include the use of derivative securities such as options 
and futures, bond swaps, and dedication. So far, bond-podolio immunization has proved to be  
a most popular approach. 

Immunization strategies are similar to those of podolio insurance in that they are designed 
to protect a portfolio's nominal value from unexpected shifts in interest rates. They do so by 
guaranteeing some level of return over a specified time period. The popularity of immunization 
lies primarily in its flexibility; it imposes a limited set of restrictions on a podolio's constituent 
securities and imposes few institutional constraints. 

A bond's price sensitivity to interest-rate changes, measured by its "duration," is a key input 
to any immunization scheme. There are several ways to conceptualize duration. Most bond 
managers associate duration with Frederick Macaulay (1938), who was the first to define 
duration as a weighted average term to maturity of a bond's cash flows. Other people (Hicks 
1939, Samuelson 1945, and Redington 1952) define duration in terms of the sensitivity of a bond's 
price to a change in interest rates, which is really a measure of elasticity. Redington 
demonstrated that a company, by choosing appropriate assets and liabilities, can immunize itself 
against the possibility of loss resulting from a change in interest rates. 

There are two broad types of duration: scalar measures and vector measures. Scalar 
measures use one fador to capture changes in spot yields across the term structure. The simple 
Macaulay duration, for example, is a scalar measure, It provides a linear measure of bond-price 
sensitivity to a spot-rate change: If the spot rate changes by x percent, the bond price may be 
expected to change by y percent, But Macaulay duration does not take into account many of the 
real-world complexities of term-structure shifts. It does not, for example, provide a good 
description of bond-price sensitivity when, say, six-month rates change byx percent but ten-year 
rates change by z percent. Nor does it provide a good measure of sensitivity if bond-price 
responses vary with the size of the change in spot rates. In fact, Macaulay duration provides a 
good approximation of bond-price sensitivity to term-structure shifts only under thevery limiting 
case in which interest rates shift by parallel, infinitesimal, and instantaneous amounts. 

Not all scalar measures are so restricted. Fisher and Weil (1971), for example, developed a 
scalar measure that allows for parallel shifts in non-flat term structures. A scalar measure 
developed by Bierwag, Kauhan, andToevs (1983) allows for unequal shifts between short- and 
long-term rates (but requires that the parameters defining the relative changes in yields be 
specified beforehand). All scalar measures, however, require that changes in spot yields across 
the term structure be perfectly correlated. 

Empirical research to date indicates that the basic Macaulay duration works about as well 
as other scalar measures. Researchers have been quick to point out, however, that the restrictive 
assumptions underlying the scalar measures are surely violated in red-world portfolio settings. 



Closed-Fomt Duration Measures 

The viability of duration as a measure of bond-price sensitivity and bond-portfolio immunization 
as an implementation of duration has thus come into question. 

At the same time, duration research has not stood still. To address the shortcomings of 
Macaulay and other scalar duration measures, researchers have developed a variety of vector, 
or muttifactor, models. Vector measures (such as those developed in Cooper 1977 and later 
extended in Chmbers, Carleton, and McEnJly 1988) use more than one factor to capture 
changes in spot yields across the term structure, so they do not require that such changes be 
perfeedy correlated. 

Vector measures have the further advanhge of not requiring the prespedfication of relative 
changes in spot rates (a shortcoming of the scalar measure used by Bierwag, Kauhan and 
Toevs). Because relative changes in spot yields cannot in reality be prespecified, the vector 
approach may be expected to be  more effective than earlier scalar duration models. In fact, 
empi~cal  tests (Chambers, et al. 1988) demonstrate that they offer significant improvement over 
the performance of traditional scalar models and, more impoa'tantly, near-perfect immunization. 

Vector models, by addressing the restrictions inherent in Macaulay and other simple 
duration measures, go some way toward answering the criticisms of duration and its irnplemen- 
tation in bond immunim~on, TEsey d s o  pave the way for new m d  broader applications of duration 
research tca bond-porlfolio management But vector models have their downside: Moving fPom 
scalar to vector models in&oduces new complexities to the process of interest-rate-pisk control. 

The main objective of (his study is to introduce a range of duration measures and to 
demonstrate how these measures may be  applied in the context of bond immunization. The 
duration measures given are in closed form. Closed-form solutions for duration provide the user 
with formulas that eliminate the need to sum present values of weighted multi-period cash flows. 
Closed-form equations thus alleviate much of the computational burden. The approach 
presented focuses on model implementation rather than model development. In other words, 
our goal is to further the reader's ability to utilize duration models. 

The following chapters present a range of duration measures and discuss how these 
measures may be used in bond-portfolio management. Chapter 1 presents the many closed-form 
fomu%as for Macaulay duration. We show that these specificagons are consistent with each 
other. Chapter 2 introduces more complex dumtion models. Chapkr 3 presents one of the more 
popular complex mt7asurewonvexi~-and discusses its advantages and disadvantages as a 
measure of interest-rate risk. Finally, Chapter 4 demonstrates the application of more complex 
duration measures in porlfollio-immunization strategies and assesses their relative performance. 
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Closed-Form Formulas for Macaulay Duration 

This chapter is devoted exclusively to scalar measures of duration-in particular, the many 
dosed-form solutions a d a b l e  for Macaulay duration.' Closed-form solutions have the ad- 
vantage of removing much of the computational burden associated with summing quantities over 
time or samples. This property is especially important with duration because of the number of 
cash-flow summations that are required. Although closed-form Macaulay duration formulas are 
similar, they differ with respect to the number of input variables required and the assumed 
cash-flow stream of the security. Thus, a particular formula may be more appropriate or less 
appropriate depending upon the characteris~cs of the bond(s) being analyzed and the inputs 
available. We first present nine closed-form solutions of Macaulay duration that are valid only 
at coupon payment dates. We next illustrate how these nine measures may b e  generalized to 
calculate duration at any time over a bond's life. 

The Case of Regular Bonds 
The formula for Macaulay's (1938) measure of duration is: 

This specification requires three input variables: 
i = the bond's yield to maturity, 
Q - the ratio of the bond's coupon payment to the bond's face value, and 
N = the bond's maturity. 
Closed-form duration formulas did not gain widespread use until the 1980s, when Chua 

(1984) provided the following closed-form solution: 

Ckua's derivation requires five input variables: 
N - the number of periods to maturity, 
C = the dollar coupon payment per period, 
i = the bond's yield to maturity, 
F = the bond's £ace value, and 
P = the bond's price. 

'~uration, or the weighted average lime to maturity of a bond, is given as: 



The price of the bond is determined as follows: 

Equations (1) and (2) provide an exact numerical solution for Macaulay duration without 
requiring the summation of present values over the fife of the bond. 

G&s, Lane, Greenleaf, and Joules (1985) er simplified the calculation of duraLion by 
subsetuting the bongs price directly into equaeion (2): 

D = C( l  + i)[(l + ilN - 11 + Ni (Fi - C) 
Ci [(I + i)" - If + I? 

Equation (3) requires only four input variables. 
Nawalkha and Lacey (1988) further reduced the required set of input variables to three by 

replacing variables C and F in equation (2) with the bond's coupon rate (given by small c) : 

Babcock (1985) took a different approach to duration calculation, decomposing the bond's 
cash-flow stream into an annuity portion and a separate lumpsum portion: 

The new input variable, y, is the bond's current yield (as opposed to its yield to maturity), defined 
as the bond's coupon payment as a percentage of its price. The solution for the present value of 
an annuity isgivenby [(l/i) - (l/[i(l + ~ ~ 1 1 ~  

Babeock's formula offers the follouring insights. For a par bond, whose yield to maturity 
equals its current yield (the term y/i = I), the formula reduces to (PVIFA) (I  + i), For a 
zerocoupon bond, the entire first t e rn  on the right-hand side of equation (5) drops out, and the 
second tern reduces to the number of periods to maturity, N. 

A similar closed-form solution is given by Caks, et. al. (1985), who separate the bond's cash 
flow into a portion representing a zero-coupon bond and a portion representing a par bond: 

where Dpar is the duration of a par bond, defined above as (PVIFN (I + i) . ?his fomula provides 
addieonal insights. &st, because bonds with higher coupons will have higher current yields 
(E.e., higher y's), bonds with relatively high coupons may be  expected to have relatively lower 
duraeons than bonds with low coupons. Second, equation (6) illustsates the effect of bond premia 
and discounts on dura~on,  A91 else equal, bond premia (defined 2s yy/i > 1) act to reduce duration, 
while bond discounts (defined as y/i c 1) act to increase duration. 

TO surnmarlze, at least six closeri-form formulas for d u m ~ o n  appear in the published 
literature. Nthough all produce the same numericat solution, these fomulas diger with respect 
to the required input variables and the way in which the solution to duration is conceptualized. 
To illustrate, consider a 12-percent-coupon bond priced at par with three years to maturiw. The 
bond's interest accrues every six months. The input variables for this bond are: 
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N = 6 semi-annual periods, 
F = P=$100.00, 
C = $6.00, 
i = 0.06, 
y = C/P- 0.06, and 
c = 0.06. 

Given these inputs, the duration from equation (5), for example, would be: 
D = (0.06/0.06) ((1/0.06) - (1/[0.06(1 t 0.06)~1)( 1 + 0.06) 

= (1) [16.667 - (1/0.0851)] (1.06) 
= 5.212. 

Table 1 liststhe duration models given by equations (1) through (6), alongwith each model's 
required set of inputs. All the closed-fom formulas produce an equivalent numerical sofu~on 
for &is bond's duration: 2.606 years, or 5.212 semi-annual periods. 

A Comparison of Alternative Closed-Form Formulas 
for Macaulay Duration 

Input Variables Required 
Duration 

Equation Model N C i F P c y in Years 

(1) MacauIay (1938) * * * *  2.606 
(2) Chua (1984) * * * * *  2.606 
(3) Caks, e t  al. (1985) * * * *  2.606 
(4) Nawalkha and Lacey (1988) * * * 2.606 
(5) Babcock (1985) * * * * 2.606 
(6) Caks, e t  al. (1985) * * *  * * 2.606 

Definitim of Input Van'ables 
N = the number of semi-annual periods to maturity - 6 semi-annual periods 
C = the semi-annual coupon payment per period = $6.00 
i = the bond's semi-annual yield to maturity - 6 percent 
F = the bond's face value = $100 
P = the bond's current price - $100 
c = the bond's semi-annual coupon rate - 6 percent 
y = the bond's current yield 

Bonds VVith Special Cash-Now Sbreams 
The closed-£om formulas given above may be simplified further for bonds with special cash-flow 
streams, such as those of annuities, pewtu i~es ,  and zero-coupon bonds. As before, the objective 
is to provide an efticient method of calculation that reduces the computational burden. 
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An annacity bond is a regular bond whose payment at maturity is amortized over the bond's 
life. The closed-form formula for annuities is obtained by substituting F = 0 in equation f3), which 
then simplifies to: 

where Dann is the duration of an annuiw sf any length. Note that the duraGon of an annuity is 
independent of fie size of elhe coupon and depends only on the time remaining to maturity, N, 
and the yieId to maturity, i. 

Apefleka'iy is an annuity of infinite life. The closed-form formula for a perpetuity is derived 
from equation (3 by substituting N 00 into the equation. This eliminates the entire second 
term. Denoting the duration of a perpetuity as ElDperp, we have: 

The duration sf the perpetuity depends only on its yield to matufi@$ i. 
Zera-coacpolll bonds are bonds whose only cash Bow is represented by the payment of the 

bond's k e  value at maturity. The duration of a zero-coupon bond is found by substituting c - 0 
in equation (4) : 

The duration of a zero-coupon bond is equal to its maturity. 
Table 2 shows durations over different maturities and yields for annuities and perpetuities 

and compares these with the durations of bonds with regular cash-Bow streams. We draw three 
conclusions from this table. 

(1) If we hold time to maturity constant, while increasing yield to maturity, an annuity 
displays a more gradual decrease in duration than a bond with a regular cash-flow 
s t r em,  

(2) If we hold yield to maturity constant, while increasing time to matueity, an annuity 
displays a more rapid increase in duragon than a bond .wth a regular cash-flow seeam. 

(3) The duration of a perpetuity dedines more rapidly with increasing yields than the 
duration of a bond with a regular cash-flow stream. 

Generalized Closed-Form Formulas for Macaday Duration 
The formulas given thus br are valid only for bonds valued at coupon payment dates. The proper 
valuation of a bond between coupon payments will include interest accrued between the fast 
coupon payment and the valuation date. Calwlations of duration should take this accrued 
interest into account as well. In this section, we review closed-fom duration solutions that are 
valid at any time over a bond's life. 

Redelining- N as the total number of coupons due until matrsrity (rather than the number of 
periods to maturity), the value of a bond between coupon paynents is: 
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Calculating Duration for Annuities and Perpetuities 

Duration Duration of 
Time to Monthly Yield ofthe Annuity/ t&e Regular 3o:d 

Maturity to dllafun'ty Perpetuity Counterpart 

Duratiotr fitAnnatities (Equation (711 
Constant Tune to Maturity 
360 Months 0.08/12 - 0.m667 114.76 Months 136.28 Months 
360 Months 0.10/12 = 0.008333 101.89 Months 113.95 Months 
360 Months 0.12/12 - 0.Q10000 90.70 Months 97.22 Months 

Constant Yield to M a k i t y  
180 Months 0.12/12 - 0.010000 64.97 Months 83.32 Months 
240 Months 0.12/12 = 0.010000 76.74 Months 90.82 Months 
360 Months 0.12/12 = 0.010000 90.70 Months 97.22 Months 

Duration fir Perpetuities (Equation (811 
0.08/12 = 0.006667 150.99 Months 136.28 Months 
0.10/12 - 0.008333 121.00 Months 113.95 Months 
0.12/12 = 0.010000 101.00 Months 97.22 Months 

The counterpart bond is given as a bond that makes 360 monthly payments and returns its 
stated face value at the end of the 360th month, or at  maturity. The counterpart bond is 
assumed to be priced at par. 

where 
N = the total number of coupons due until maturity, 
f = the time elapsed since the date of the last coupon payment divided by the time 

between two coupon payments, 
fC = the dollar amount of interest that has accrued, and 
i' the bond's adjusted yield to maturity. 

The adjusted yield includes accrued interest and is therefore difierent from the reported yield. 
All other variables have been defined previously. 

The following closed-foam Macaulay duration foamula (Chua 1988) is vdid at coupon 
payment dates as well as between those dates: 

C[(l + i')N(l + i' - fY) - (1 + i') - i' (N - f ) ]  + r 2  F(N - f )  D = i' 2 + i' )N-f 
( P + K : )  

This is a generaliza~on of Chua's original formula, given in equation (2). 
A simplification of the generalized Macaulay duration formula (Nawalkha and Lacey 1990) 

is obtained by removing input variables P, F, and C, and introducing the coupon rate (small c): 

This derivation reduces the required set of input variables to four. 
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Referring to the example used in Table 1-a bond with an annual coupon rate of 12 percent, 
priced at par, with six coupons remaining before maturity-assume the time elapsed since the 
last coupon payment is three months, so that f = 0.5. The bond's reported yield to maturity is 6 
percent, and its adjusted yield to maturity (from equation (10)) is 5.99 percent. The bond's 
duration, using either equation (11) or (13,  is 2.356 years (4.712 semi-annual periods). 'This 
compares with a duration of 2.606 years (5.212 semi-annual periods) using the traditional 
formulas and serves to illustrate the effect of accrued interest in reducing duration. 

Table 3 shows generalized duration solutions for different intervals between coupon payment 
dates and for changing yields to maturity. Through time, duration decays at a constant rate, f, 
deftned in this example to be  one month divided by six months, or 0.167. Table 3 also shows 
that generalized duration is lower (higher) the higher (lower) the adjusted yield to m a b r i ~ .  

Cdsnulating Duration Between Coupon Payment Dates 

Months Until Next Coupon 
6 5 4 3 2 1 

Duration Decay Between Caupon payments * 

Generalized 
Duration 5.213 5.046 4.879 4.712 4.545 4.378 

Drift - 0,167 0.167 0.167 0.167 0.167 

Generalized Duration At Different Melds To &fotun'tf * *  

Adjusted I7eld 
to Maturity 0.0650 0.0625 0.0600 0.0575 0.0550 - 
Generalized 
DmGon 4.701 4.707 4.712 4.718 4.723 - 

* Calculations are based on a par bond with an annual coupon of 12 percent and with six 
semi-annual coupon payments remaining before maturity. Durations are reported in semi- 
annual time periods. 

ri* 

Calculations are based on a par bond with an annual coupon of 12 percent, with six 
semi-annual coupon payments remaining before mabity, and with thee  months remaining 
unlit the next coupon payrment. Both adjusted yields to maturity and durations are reported 
in senai-amud time periods. 
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Although the generalized formulas of equations (11) and (12) give correct, numerical 
solutions, there is a simpler way to incorporate accrued interest into the tsadi~onal duration 
measures. This simpler alternative involves a two-step process. First, compute duration using 
any of the traditional closed-form formulas, but use the number of coupons remaining to maturity 
in place of the number of periods to maturity, and use the adjusted yield to maturity (from 
equation (10)) in place of the reported yield to maturity @' represents the resulting adjusted 
duration measure). Second, subtract the amount of time elapsed since the last coupon payment 
divided by the time between two coupon payments, given by f, from the adjusted duration 
measure to arrive at the generalized duration measure: 

This two-step method may be used to convert any traditional duration formula, such as given in 
equations (1) through (9), into a generalized formula that is valid both at and between coupon 
payment dates. 
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2 .  Closed-Form Formulas for More Complex 
Duration Measures 

The previous chapter presented closed-form solutions for MacauIay duration. We noted that, as 
a measure of interest-rate risk, MacauIay duration is applicable only when the term structure 
shifts by parallel, infinitesimal, and instantaneous amounts. When these assumpLions are 
violated-which is likely in most portfolio settings-Macaulay duration is no longer a valid 
measure of interest-rate risk and may have little practical importance. Other dura~on  measures 
attempt to deal with these restrictive assumptions. These new measures have the advantage of 
allowing for more realistic term-structure behavior, but they require a greater degree of sophis- 
tication on the part of the portfolio manager. 

This chapter presents closed-form solutions for higher-order duration measures. Higher- 
order duration measures improve immunization perlormance by including slope, curvature, and 
other higher-order shifts in the term structure. For example, the first-order duration measure 
(simple Macaulay duration) captures only shifts in the height of the term structure, whereas 
second- and third-order measures capture slope and curvature shifts as well. These measures 
are obtained by raising the weighted average of the term to maturity to higher powers; thus, the 
second-order duration measure is the weighted average term to maturity squared, the third-order 
duration measure is the weighted average term to maturity cubed, and so on. 

Our objective in this chapter is to show how these measures are computed and to introduce 
an algorithm that can be easily programmed on a spreadsheet. Providing the computational 
technique for more sophisticated duration measures may not help the reader understand why 
these measures are useful. Suffice it to say that these duration measures are designed to 
immunize bond portfolios for virtually any term-structure shift, and thus represent a significant 
departure from Macaulay's measure. Once the reader becomes familiar with the mechanics of 
computing these measures, specific applications should be easier to assimilate. Some specific 
applications are presented in Chapters 3 and 4. 

Duration Measures at Coupon P 
To obtain dura6on measures that are valid at coupon payment dates, we follow the method of 
NawafWla and Lacey (1988). The basic fornula, is: 

where 
C the bond's coupon per period, 
i = the bond's yield to maturity, 
N - the number of periods to maturiv, 
m = the order of the formula (m may be any positive integer), and 
F = thebond'sfacevdue. 



Closed-Fonn Duration Measures 

m e n  rn = 1, equation (14) is equivalent to the Macaulay duration measures given in Chapter I. 
Substituting F = C/c into equation (14), where c is the coupon rate per period, equation (14) 

may be rewritten as: 

where Sm equals the summation term: 

A closed-form solution for Sm would allow us to derive a closed-form solution for D (rn) . The 
closed-form solution for Sm (derived in Appendix A) is given by: 

where: 

Equations (16) and (17) may be used to specify any value of &. As equation (17) suggests, 
So is specified as fol3ows: 

Higher-ordervdues for & may be obtained by building on preceding lower-order values. Thus, 
for SI, S2? and S3: 

(1 + i)" 

Stabstibting the value of So from equation (68) into equation (199 and simplifying, we arrive 
at the following workable formula for SI: 
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Similar substitutions yield workable formulas for Sz and 553: 

sz = ll + i) (2 + 3[(l + i)"- 1 - ( i )  + 2 + i)] ,and 
i3 (I + i)' 

Note that, although these equations look formidable, they involve only simple math and two 
variables, i and N. 

A closed-form solution for D(m) is now obtsnable by substituting the solution(s) for Sm into 
equation (15). Exhibit 1 presents a general schematic illustrating the procedure. It may be used 
to obtain duration measures of any order. An m'h-order duration measure, for example, would 
be o b ~ n e d  as follows: 

EXHIBIT 1 

Schematic Illustrating the Algorithm 
for Higher-Order Duration Measures 

Step 1: > so 
Step 2: So SI .A> D(1) 
Step 3: %,Si Sz D (2) 
Step 4 SoS1,S2 --su%L-o s3 D (3) 

Based on this approach, closed-form formulas for the first-, second-, and third-order duration 
measures are: 

D(3) = - (i2N2)[3(1 + i) + Nil) + ( N ~ ? ) ]  
c(i3) [(I + i)' - 11 + i4 

Using these equations requires only simple arithmetic and a small number of variables-in this 
case, coupon rate (c) , yield to mahtrity (i) , and number of periods to maturity (N) . 

Duration measures of orders higher than three are cumbersome to calculate and report. The 
basic procedure, however, follows that for D (I), D (2) , and D (3). It is possible to write computer 
programs to calculate these vdues. For example, using a spreadsheet program, previous values 
of Sm (i.e., So, S1, . . . , Srn-1) may be stored in cells and copied into equation (16) to give values 
of Sm, according to the method illustrated in Edibit 1. The appropriate value of Sm may then 
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be copied into equation (15), also stored in a spreadsheet, to obtain D (m) . (Nawalkha and Lacey 
1988 provide an example of this technique.) 

To illustrate, consider an 8 percent coupon bond with five years to maturity priced to yield 5 
percent. Through a series of substitutions &om equations (151, (16), and (171, follouing the 
schematic given in Exhibit I, Exhibit 2 gives solutions for the first three duration measures. 

Solutions for Higher-Order Duration Measures 

Step 1: So = 4.3 from equation 17. 
Step 2: % SI = 12.6 D(l) = 4.4 
Step 3: %,Sl %= 45.1 D(2) = 20.5 
f%V 4 So,Sl,% 182.1 D(3) = 99.6 

Generalized Higher-Order Duration Measures 
h this section, we present closed-£om solutions for higher-order duatican measures that are 
valid not only at coupon payment dates, but also beween those dates. As noted in Chapter 1, 
proper bond valuation between coupon paments  must include interest that has iiccrued between 
the last coupon payment and the valuation date. The solutions given in this section modify those 
given by equations (15) and (16) by including this accrued interest. 

The value of a bond between coupon payments was given by equation (10) in Chapter 1. 
Remember that, for the generalized formulas, the variable N defines the number of coupons until 
maturity (instead of the number of periods to maturity), and the variable i' defines the adjgsted 
yield to maturity (as given in equation (10)) instead of the reported yield to maturity. 

Using equation (14) as the basis, Nawalkha and k e y  (1990) derive a generalized higher- 
order duration formula that incorporates interest accrued between payment dates. Following an 
approach similar to that shown in Exhibit I, the generalized closed-form formulas for first- and 
second-order duration measures are: 

Generalized duration measures of orders higher than two are cumbersome to report. Just 
as  with the basic, non-generdized measure, it is possible to write computer programs to calculate 
these values. Nawalkha and Lacey (ISO) provide an expanded example and show that differen- 
ces betvveen non-generalized and generalized solutions are non-lrivial. 

The higher-order dumtion measures presented in this chapter serve as the foundation for 
the development of more sophisticated interest-rate-risk protection techniques. This founda~onn 
enables one to present any technique as a codination of lower- and higher-order measures. 
The bond convexity model, for example, may be given in terms of first- and second-order duration 
measures, and the duration vector model may be given in terms of the first- through fourth-order 
duration measures. Chapters 3 and 4 present these techniques. 
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3. Convexity as a Measure of Interest-Rate Risk 

Application of higher-order duration measures begins with the convexity model. Convexity may 
be viewed as a measure of the difference between a bond's estimated price change, as given by 
a Macaulay duration, and the actual price change when there is a non-infinitesimal shift in the 
term structure. The convexity model thus addresses one of the three criticisms of Macaulay 
duration: its requirement that shifts in the term structure be iniinitesimal. 

This chapter presents closed-form solutions for bond convexity. Convexity generally 
provides better estimates of bond-price volatility than Macaulay duration. There are, however, 
some overlooked disadvan-es of using a convexity model to immunize bonds and bond 
portfolios. 

Closed-Form Solutions for Convexity 
Nawalkha, Lacey, and Schneeweis (1990) show that convexity may be expressed in terms of first- 
and second-order duration measures, as follows: 

a2 P/ ai2 D(1) + D(21 Convexity = ------- - 
P - ( 1 + Q 2  ' 

where i is the bond's yield to maturity. Closed-form solutions for D(1) and D(2) are given by 
equations (25) and (26) in Chapter 2. Substituting these solutions into equation (30) and 
simplifying them produces the closed-form solution for convexity: 

Convexity = 2c[(l + i)'[(l + i}N - 11 - N i ( l  c i)l + [N(N t l)(i - c)(i2)l 
fi(1 + i)12(c([l + ilN - 1) + il 

Equation (31) holds only at coupon payment dates, however. Computing convexity between 
coupon payment dates requires a generalized formula. The generalized formulas for (Dl) and 
(D2) are given by equations (28) and (29) in Chapter 2. Substituting their solutions into equation 
(31) and simplibing, we arrive at the generalized closed-form solution for convexity: 

[2(1 + i '+  Ni'-6')jj  + i z ( i ' - c ) ( N - f j ( 1 - t  N - f )  Generalized Convexity = 
Ii"(1 + ?)I2  [ ~ { ( l  + I'lN - 11 + i' 1 

(32) 

As with previous generalized formulas, i' represents adjusted (rather than reported) yield to 
maturity, and N represents the number of coupons (rather than periods) to maturity. Equation 
(32) is applicable both at and between coupon payment dates. 

Convexity as a Measure of Bond-Price VolaHity 
Macaulay duration may be used to approximate the change in a bond's price caused by an 
instantaneous, infinitesimal, and parallel shift in the term structure. In Figure 1, the straight line 
with circles represents the Macaulay duration. The curved line represents the actual change in 
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FIGURE 1 
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bond prices caused by a change in yields. Note that the Macaulay duration approximates well 
the price change for small changes in yields, but poorly for large changes in yields? 

Adding convexity to the straight-line approximation given by Macaulay duration yields a 
superior approgmation of o v e d  price change." Figure 2 graphs the convexity curve against 
the actual, changes in bond price. The convexity curve approgm;ltes Ihe actual change in bond 
prices better than the linear Macaufay es~m;ition, especially when yield shifts are large. 

The Desirability of High Convexity 
As demonstrated in Figure 2, convexity provides a better measure of bond-price volatility than 
the Macaulay duration when the term structure shifts by large amounts. Is convexity, therefore, 
a desirable characteristic in bonds? Given two bonds that have different convexities but are equal 
in every other way, should the portfolio manager always seek to hold the higher-convexity bond? 

' ~ ~ t h  Ihe Mac;suky dmtion, tbe change in bond price is given as: 
W P -  -ID(1)/(1 + DIxJi, 

where bi is an infiniteimal shift in the term structure. 

3~ convexity term is added to the equation given in footnote 1. The cowexity term is given in the second tern on 
&e r;ight-hand side ofthe equation below: 

dp/P= -[D(l)/(l + i)lxAi t ~ m , x ~ [ A i l ~ ,  
where 6, convexi@, is given by equation (35) or (36) k the text 
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HGURE 2 

Convexity and Bond-Price Changes 
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Given the evidence in Figure 2, it would appear that higher convexity is always desirable, A 
higherconvexity bond will produce greater gains than a lower-convexity bond, whether interest 
rates shift up or down. Indeed, many researchers have argued that, because convexity is 
desirable, it is reflected in bond price. There are, however, important negative aspects of 
convexity (Mawalkha, Lacey, and Chambers 1990). Convexity, as noted, relaxes the assumption 
of non-infinitesimal shifts in the term structure, but it does not address other restrictive 
assumptions about the term structure. In particular, convexity does not address the assumption 
of parallel shifts in term structure, 

When the term structure shifts by parallel amounts, higherconvexiQ bonds always produce 
slightly greater returns than towerconvexity bonds (Nawalkha, Lacey, and Chambers 1990; 
Hegde and Nunn 1988). When shifts are not parallel, however, the performance advantage of 
high-convexity bonds may disappear (Nawalka, Lacey, and Charnbers 1990). They produce 
significantly lower returns than lowconvexity bonds when short-term rates fall more or rise less 
than long-term rates, but retain a significant advanhge when short-term rates fall less or rise 
more than long-term rates. Thus, convexity's desirability depends on the expected shift in the 
t e rn  structure. 

The desirabnity of convexity in bond porffolios also depends on the expected shift in term 
structure (Lacey and Nawalkha 2996)3. Highconvexity portfolios always outperform low-con- 
vexity portfolios when shifts are patallel. For non-parallel shifts, however, maximizing converxity 
produces higher gains in some cases but higher losses in others, whereas minimizing convexity 
results in lower losses and lower gains no matter what the shift. Given that most term structures 



do not exhibit parallel displacement, an investor implementing a risk-reduction strategy should 
always prefer to minimize convexity. 4 

Compared with MacauIay duration, convexity is a superior measure of bond-price volatility, 
given non-infiniksimd shifts in term structure. But convexity's desirability is ambiguous. m e n  
shifts in the term structure %re not parallel, higher-convsity bonds outperfom lower-convegty 
bonds in some cases but not in others, M i n i ~ z i n g  the convexity of bond portfolios, however, 
results in lower losses (and dso  lower gains) no matter how the term structure shifts. 

 his point is also made by Maloney and bque (1989), who, in addition, reveal some negative aspects of convexity 
reiated t~ increased transaction costs. 
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4. Application of More Complex Duration 
Measures to Portfolio Immunization 

Immunization strategies are designed to guarantee some level of return over a specified planning 
horizon. Duration measures are key inputs to these strategies. The measure used may be the 
simple Macaulay duration or one of the many complex duration measures. 

An obvious question is, which duration model works best? The simple Macaulay model, 
which assumes highly restrictive tern-swcture behavior, may be expected to pedorm well over 
relatively stable periods of interest-rate shifts but relatively poorly over more volatile periods. 
The portfolio manager must therefore keep an eye on interest-rate forecasts when choosing a 
duration model. 

This concluding chapter presents three bond-portfolio immunization models based on the 
duration measures defined in Chapter 2. It also includes the results of a performance study that 
demonstrates the t r a d e o h  involved in choosing among these three models. 

The Macaulay Duration Model 
The D (1) model, considered the simplest immunization model, assumes infinitesimal, instan- 
taneous, and parallel shifts in term structure. Under these assumptions, the objective function 
and constraints of the D (I) model are: 

n 
Objective function: Min Z pi2, 

i=l 

n n 
Subject to: Z pi Di(1) = N, and Z pi = 1 , 

iS;L i=l 

where 
pi = the proportion of inveshnent held in the ith bond, 
Di(l) - the Macaulay duration of the ith bond, 
N = the planning horizon of the portfolio, and 
n = the number of bonds held in the portfolio. 
The constraints are designed to setthe weighted average duration ofthe D (1) model portfolio 

equal to the portfolio's planning horizon. An infinite number of solutions (i.e., an infinite 
combination of bond-portfolio holdings) satisfy this objective. The optimal solution, given by the 
objective function, is the one that minimizes the sum of squared bond proportJons held. This 
solution has the benefit of maximum diversification. 

The M-Square Model 
'The M-square model (Fong and Vasicek 1983) allows for both non-infinitesimal and non-parallel 
shifts in the term structure of interest rates. It thus provides superior protedon relative to 
Macaulay duration, given more realistic interest-rate shifts. 

m e r e a s  duration is a time-to-maturity measure, M-square is a variance measure. Minimiz- 
ing portfolio M-square serves to minimize the variance of the mabrities of the cash flows around 
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the planning horizon. Specifically, the M-square model h o r s  bonds with cash flows near the 
planning horizon over bonds with cash flows far from the planning horizon. 

The model's objective function and constraints are: 

n 
Objective hnctioion: Miin T, pi M-SQuzei , 

i=I 

n n n 
Subject to: C pi Di(l) = H, Z pi 1, and 2 pi M-Square 2 0, 

i=1 t.1 bl 

where M-squarei is the M-square measure for the ith bond and is given as: 

Here D(2) is the generalized formula for second-order duration, given by equation (29) in 
Chapter 2. 

hpend ix  B shows that the M-square model's objective function and cons t f~n t s  can be 
restated solely in t e rns  of D (1) and D (2) , as fol~ows:~ 

Objective hnction: M i  ; pj2. 
i=i 

n n 
Subject to: I pi &(I) - H, Z pi Di(2) L). El2. and pi - 1 . 

i4 t.1 i=l 

Whereas the objective function is equivalent to that of the Macaulay duration model and is 
subject to equivalent interpretation, the M-square model introduces a second duration con- 
straint This second constraint results in a zero M-square value for the portfolio.6 

The Duration Vector Model 
The duration vector, designed for virtually any interest-rate shift, is the most generalized model 
in terms of realistic term-structure behavior. The duration vector model is given by: 

n 
Objective functioion: 1LI'i I: pi2 , 

i-1 

n n 
Subjectto: T, p i ~ i ( j ) - ( & j , ( j = l , 2 , 3 ,  . . . , m ) , a d  Z pi= l ,  

i=l kt 

where Di( j ) is the j"-order duration measure for the i& bond. Although the model's objective 
finnc~on is equ iden t  to that of the Macaulay d u r a ~ o n  and M-square models, the durationvector 
model indudes a vector of constraints (that is, a j"-order constraint is defined for each value of 

b e  Ill-square model in this fomdemonset7dtes its equivdency to the Wefactor duration model given by Bimag,  
Kaufman, and btta (1987,1988), as well as to the model given by the first two elements of the Chambers, et al. (1988) 
duration vector model. 

%is approach assumes that short positions can be allowed in the bond portfoIio. The original derivation (Fong 
and Vasicek 1983) d idows  short positions. 
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j - 1,2, . . . , m). These higher-order duration constraints immunize the bond portfolio from 
slope, curvature, and other types of shifts in the term structure. 

The similarities between the duration vector and the previous two models are apparent, The 
duration vector model requires an additional constraint for each additional element of the 
duration vector. The D (I) model may be considered a special case of the duration vector model 
when only the first element of the vector is used. Similarly, the M-square model may be 
considered the special case of the duration vector model when only the first two elements of the 
duration vector are used. 

Increasing the number of elements considered by the duration vector has the advantage of 
improved immunization performance. The disadvantage, however, is that this results in a 
less-diversified portfolio (that is, a portfolio that requires larger long and short portfolio hold- 
ings). 

Performance Analysis and Comparison 
Chambers, et. al. (1988) report on the deviations between actual returns and target returns for 
each of the three models examined. ?Key constructed 16 samples of Treasury-note portfolios, 
one for each quarter over the four-year period 197679. ?his period was characterized by high 
interest-rate volatility and large digerences between the coupons on different bonds. 

Chambers, et. al. estimated quarterly target returns using the zero-coupon yield from the 
underlying term structure over each quarter. Portfolios were liquidated at the end of each 
quarter, and actual returns were then compared with the target return for each model over each 
quarter examined. Table 4 reports these deviations. The relative magnitudes ofthe deviations 
indicate that the duration vector model outperformed the other models over most samples. me 
M-square model was second best.) This might have been expected, because the more sophisti- 
cated models are designed to improve immunization performance for realistic term-structure 
shifts. The means of the absolute deviations, reported in Table 4, clearly show the superiority 
of the duration vector model. 

AsTable 5 shows, however, superior immunization performance comes at the cost of reduced 
portfolio flexibility. The sum of the squared portfolio weights is highest for the duration vector 
model and lowest for the Macaulay duration model. Larger portfolio weights imply larger long 
and short bond positions and larger transaction costs associated with portfolio rebalancing. The 
benefits of improved expected performance must be weighed against the disadvantages of 
reduced portfolio .flexibility. 

The immunization model of choice therefore becomes a matter of trading off the level of 
protection expected against the level of flexibility desired. The almost-perfect immunization of 
the duration vector model, however, suggests that more complex, higher-order duration 
measures have served to answer, at least partially, earlier criticisms of duration and its applica- 
tions. Opportunities for innovation in this area remain. 
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TABLE 4 

Single-Period Deviations of Actual Re 
From Target Returns 

Duralr'Bs MSqvlsre 
Sample Targer 
Number Return D (1) DO), D(21 

Mean of Absolute Vdlues 0.00429 0.00245 0.00101 

Sum of Squared Deviations 0.00086 0.00020 0.00003 

* 
Although Chambers, e t  al. report results using D (I) though D 0, we do not reprint 
those results because there was no sigaificant gain in performance beyond D (4). 

Soilrce: Chambers, Carleton, and McEnally (1988). 
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TABLE 5 

Sum of Squared Portfolio Weights 

Duration MSquare Duration 
Sample 
Number D (I) D(I),D(2) D( l ) toD(4)  

Average 0.095 0.185 0.412 

Source: Chambers, Carleton, and McEnally (1988). 
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Derivation of a Closed-Form Solution of Sm 

Sm is given in equation (15) of Chapter 2 by: 

The expanded form of (Al) can be written: 

Multiplying both sides of (Al') by (1 + i) and simplifying results in: 

Subtracting (Al') from (A2) gives: 

where Z is given as: 

The term Z can also be expressed as: 

Z - Tl+T;! + . . . + T N - ~ ,  

where Tr for any r = 1,2, . . . , N-1 is given as follows: 

Assume the value of m may be either zero or any integer greater than zero. Because the 
derivations are different, they will be derived separately. 

Case 1: m = 0 

Substituting rn = 0 in equation (A6): 
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Substitu~ngTr - 0 in (A5) for all r - 1,2, . . . , N-1 defines Z - O. Substituting rn = 0 and Z = 0 
in (A3 and simplifying derives the final form for So: 

Case 2: rn 2 I 

Expanding equation (A6) and simplilying results in: 

In summation f o m  it is: 

Substituting the value ofTr kom equation (MO) for dl values of r - 1,2,. . . , N-1 in (A51 gives: 

N-1 m-1 mctrt z =  I: Z:- 
r=l M (1 + i)' 

Rearm@ng the summation signs in (All) results in: 

Removing the t e m  mCt from the inner summation results in: 

N-1 N 
Rearranging and rewriting the terms to change z to z results in: 

el r=l 

From equation (Al) it can be seen that: 
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Substituting (A15) into (A14) gives: 

Substituting the value of Z from (M6) into (A3) results in: 

Combining terms: 

Simplifying further: 

Dividing both sides by i and simpligng gives us the final form for Sm: 
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Appendix B 

Alternative Derivation of the M-Square Model 

Because the model given in equation (34) of Chapter 4 implies that portfolio M-square should 
be minimized with a lower bound of zero, an alternative solution is simply to set the portfolio 
M-square value equal to zero: 

Substituting the value of M-square - D (2) - 2HD (1) t E12 into (A21) and further simplifying 
gives: 

Substituting the value of ;, pi = 1 and ; pi Di(1) - H from 04)  into (A221 gives: 
il i=1 

Setting portfolio M-square equal to zero therefore implies the constraint given in (A23). We can 
now restate the M-square model as: 

Objective iunction: Min 2 piZ. 
i=l 

n n n 
Subject to: Z pi Di(l) - H, Z pi Di(2) H', and Z pi - 'i . 

i=l i=l i=l 
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