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Foreword 

Most duration schemes focus on default- and option-free 
bonds. But the bond world is now heavily populated with 
issues where default and its timing are not trivial, and in 
which options are laced throughout the bond contract, such 
as in residual mortgages and mortgage-backed securities. 
The advent of leveraged buyouts and the attendant use of 
high-yield bonds give rise to an amended concept of default 
that transcends the usual legal definitions. 

A duration measure is needed to analyze debt securities 
whose promised cash flows may change unexpectedly. 
Simply put, when cash flows are not nearly as predictable 
as we might like them to be or when bonds are not free of 
default, broadly defined, duration measures must account 
for the Process of analyzing those now highly unpredictable 
cash flows between the present and some prospective, but 
undetermined, time. 

Bierwag and Kauhan demonstrate for bond analysts that 
failure to account for the likelihood of default and its 
unknown timing, is also to fail in estimating duration 
accurately. In short, a new risk is introduced into the typical 
analysis, the undetermined timing of the default prospect. 
This is a major step in bond portfolio analysis and manage 
ment. 

Charles A. D'Arnbrosio, CFA 
Director 

Research Foundation of the 
Institute of Chartered Financial Analysts 
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Introduction 

Introduction 

Duration measures the elasticity of the market price of an 
asset or liability-the present value of an expected stream 
of cash payments, inflows or outflows-with respect to the 
market discount rate. At the time a bond is purchased, only 
the stream of promised future payments is known with 
certainty. The amount and time pattern of the cash flows 
actually realized may difler from those promised because of 
such factors as changes in interest rates, losses from 
default, and exercises of call, put, or other options. To be 
useful in designing and implementing bond investment 
strategies for managing interest-rate risk, measures of 
duration, whether single or multipleterrn, must allow for 
these uncertainties. Otherwise, ex ante duration may not 
equal expost duration- that is, the investor will experience 
stochastic process risk. This adjustment for uncertainty does 
not require specifying precisely the unexpected changes in 
cash flows, but s p e c m g  only the stochastic processes 
governing these unexpected changes. 

Most previous constructs of duration have been 
restricted to default- and option-free bonds (I3ierwag et al., 
Financial Analysts Journal, 1983), which are subject to loss 
only from unexpected changes in default-free interest rates. 
More recently, because of the sharp jump in prepayments 
on residential mortgages and thereby also on 
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mortgage-backed securities when interest rates declined 
sharply in 1985436, attention has been focused on the 
problem of computing durations for bonds having call 
options (Garman 1985; Kopprasch 1987; Toevs 1985). 
Because prepayments are largely related to changes in 
interest rates, the unexpected changes in cash flows on 
these bonds also result solely from unexpected changes in 
interest rates. Measures of duration have not been 
developed for debt securities whose promised cash flows 
may change because of unexpected default by the issuer, 
although in practice, duration-based strategies are 
frequently applied to such portfolios, including portfolios of 
high-yield or "junk" bonds veldstein et al. 1983). This 
study shows that biases are introduced into the computation 
of duration for nondefault-free bonds when the time pattern 
of losses from default is not explicitly taken into account It 
also examines the problems associated with constructing 
durations for such bonds, and develops simple, single-factor 
measures of duration for option-free bonds subject to default 
risk for some stylized hypothetical stochastic processes 
governing the time pattern of default losses. 



2. The Basics 

Bonds subject to default risk trade at higher interest rates 
than comparable default-free bonds to compensate 
investors for expected losses resulting from reduced and 
delayed promised payments. The interest rates on bonds 
subject to default must be high enough that the expected 
returns are equal to those on comparable default-free 
bonds.' The difference between the yield to maturity on a 
bond subject to default and the yield on an otherwise 
comparable default-free bond is referred to as the default 
yieldpremium. The determinants of default yield premiums 
have been studied extensively in the literature (Altman 
1987; Atkinson 1967; Fons, Journal of Finance, 1987; Fraine 
and Mills 1961; Hempel 1971; Hickman 1958; Johnson 1967; 
Warner, Journal of Financial Economics, 1977). Several 
studies have computed durations for nondefault-free bonds 
based on the expected loss from default and the 

l ~ h e  price 0 of a bond subject to default risk may be expressed as: 

P = z!$ (l+r*) -t = c(vt)(l+r)-t 
where 

& - promisedcashflows 
dt = expected loss h m  default 
r = risk-adjusted interest rate 
r* = market interest rate, and 
t - time to payment. 
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corresponding default yield premiums (Alexander and 
Resnick 1985; Chance 1987; Fons, Working Paper, 1987). 
For the same expected losses from default that are 
impounded in the default yield premium, however, the 
timing of the reductions in payments may vary greatly, 
depending on the circumstances of the particular issuer in 
default, The outcomes of any two bankruptcy proceedings 
are rarely the same. Thus, although the dollar amount of 
the default may be expected, the actual timing of the default 
may be unexpected. 

Each time pattern of cash payments translates into a 
different duration value for a bond for a given stochastic 
process of default-free interest rates. Although the precise 
timing of the expected losses is random, it may be described 
statistically by a stochastic process. Thus, the computation 
of duration for these bonds must consider the stochastic 
process governing the timing of default losses for a given 
expected present value of future payments, as well as the 
stochastic process governing interest rates. 

The importance of including both stochastic processes in 
the computation of duration may be demonstrated as 
follows. Assume that the stochastic process driving 
default-free interest rates is additive and consistent with the 
one-term Macaulay duration measure so that interest rates 
on securities of all terms to maturity are the same and the 
yield curve is flat2 Column @) of Table 1 shows Macaulay 
durations for par bonds with coupon rates and yields to 
maturity both equal to 10 percent for progressively longer 
terms to maturity. Assume also that the expected loss £rom 
default on the promised payments is such that the expected 

2Although more complex and possibly realistic measures of duration have been 
developed, the singlefactor Macaulay measure performs reasonably well in 
empirical tests (Bierwag 1987; Bierwag, Kaufman. and Latta 1987; Bierwag. 
Kaufman, Latta, and Roberts 1987). 

4 



TABLE 1 

Macaulay Durations for Alternative D&ult 
and Cash Flow Scenarios for Par Bonds 

with Yields to Maturity of 10 Percent and 
Expected Returns of 9 Percent 

(a) (b) (c) (dl (el (0 
Maturity Unadjusted Maximum Minimum 

Duration Duration Duration 

Du = Duration when default is expected to occur on earliest payments 
DL - Duration when default is expeded to occur on last payments. 
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return is only 9 percent. The resulting default yield 
premium is 1 percent. The duration of any of these bonds 
will depend on the pattern of the expected cash payments 
particular to that bond. 

Assume that in the two extremes, the default occurs 
either (1) on the first coupon(s), but that sufficient 
payments are made on the later coupons to maintain the 
risk-adjusted interest rate at 9 percent, or (2) on the last 
payments in a magnitude necessary to reduce the return 
from 10 to 9 percent. The Macaulay durations for these 
assumptions are shown in columns (c) and (d) of Table 1, 
respectively. me derivation of these default-time-adjusted 
durations are shown in Appendix A) The table illustrates 
that the durations for the two patterns differ. The early 
default pattern in column (c) generates consistently longer 
durations and the later default pattern in column (d) 
consistently shorter durations. The differences in durations 
are shown in columns (e) and (0. 

There is a hypothetical time pattern of default that is 
consistent with the initial unadjusted duration values shown 
in column (b) so that no adjustment need be made in the 
duration computation. One such pattern reduces the cash 
payments in each period by an amount that renders the 
present value of the afterdefault cash flows on the bond 
discounted by the risk-adjusted 9 percent interest rate 
equal to the present value of the initial before-default cash 
flows discounted by the 10 percent yield to maturity. (This 
default pattern is derived in Appendix B.) There is no 
reason to believe that this pattern is appropriate for every 
bond, however. Thus, the unadjusted duration does not 
necessarily apply to all bonds subject to default and an 
investor must specify an expected pattern of defaults for 
each bond. Of course, the particular pattern speczed, just 
as the expected amount of default, may not be realized. As 
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a result, the investor assumes stochastic process risk for 
default as well as for interest rates (Bierwag et al., Journal 
of Bank Research, 1983). 

Table 2 shows the unadjusted maximum (early default) 
and minimum (late default) one-factor Macaulay durations 
for par bonds with 10 percent market yields to maturity 
when the default yield premium is 2 percent and expected 
interest return declines to 8 percent, As illustrated in 
columns (e) and (0, the magnitude of the potential biases 
f?om not taking the stochastic process of default explicitly 
into account is larger than when the default risk premium 
is only 1 percent (I'able 1). It follows that the greater the 
default yield premium, the greater the need to adjust the 
bond's duration for the expected timing of default losses. 

A more realistic pattern of expected default may be one 
in which all scheduled coupon and principal payments are 
delayed K years after default, but are paid in full by the end 
of the extended maturity. This pattern is shown in Table 3 
for 10 percent coupon par bonds with progressively longer 
terms to maturity having expected afterdefault returns of 9 
percent. Column (c) shows the number of years the 
payments will be delayed if default occurs immediately to 
satisfy these conditions. For example, for a bond with 20 
years to maturity, the payments will be delayed exactly 1 
year, that is, the maturity is extended to 21 years. All 
default-adjusted durations exceed their corresponding 
unadjusted durations, and the size of the adjustment 
increases with term to maturity. The adjustment also 
exceeds the length of the delay in the payments. 

It follows from the above numerical examples that 
adjusting for stochastic default risk as well as for stochastic 
term structure risk modiies the computation of the relevant 
duration. The new measures of duration depend on the 
stochastic process of default assumed. For example, if the 
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TABLE 2 

Macaulay Durations for Alternative Default and 
Cash Flow Scenarios for Par Bonds with 

Yields to Maturity of 10 Percent and 
Ekpected Returns of 8 Percent 

(a) (b) (c) (d) (4 (D 
Maturity Unadjusted Maximum M i u m  

Duration Duration Duration 

Du = Duration when default is expected to occur on earliest payments 
DL = Duration when default is expected to occur on last payments. 



TABLE 3 

Macaulay Durations for Default Patterns 
On Par Bonds with Yields to Maturity of 10 Percent 

In Which AU Payments Are Delayed by K Years 
To Generate Expected Re-s of 9 Percent 

(a) 0s) (4 (dl (el 
Maturity Unadjusted Delay In D~ DK-D 

Duration Payments 

1 0.976 0.106 1.082 0.106 
2 1.862 0.202 2.065 0.203 
3 2.665 0.289 2.959 0.294 
4 3.393 0.369 3.773 0.380 
5 4.054 0.441 4.516 0.462 
6 4.653 0.506 5.193 0.540 
7 5.197 0.566 5.813 0.616 
8 5.690 0.621 6.380 0.690 
9 6.137 0.670 6.899 0.762 
10 6.543 0.716 7.374 0.831 
11 6.911 0.757 7.810 0.899 
12 7.244 0.795 8.209 0.965 
13 7.547 0.829 8.576 1.029 
14 7.822 0.861 8.913 1.091 
15 8.071 0.889 9.222 1.152 
16 8.296 0.916 9.507 1.213 
17 8.501 0.940 9.768 1.267 
18 8.M7 0.962 10.008 1.321 
19 8.856 0.982 10.230 1.374 
20 9.009 1.000 10.433 1.424 
21 9.147 1.017 10.620 1.473 
22 9.273 1.032 10.793 1.520 
23 9.387 1.046 10.951 1.564 
24 9.491 1.059 11.097 1.607 
25 9.584 1.070 11.232 1.647 

DK = Duration when default is expected to cause all payments to be postponed 
K years. 
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assumed process produced defaults only on the last 
payments, and interest rates were the same for all maturities 
and change only additively (the Macaulay assumptions,) the 
singlefactor measure of default-adjusted duration @A) is 
given by: 

where 

St = the scheduled cash payment at time t, 

K = periods to the h t  payment that suffers loss 
£rom default, 

a = the proportion of the I(th payment lost from 
default, 

P = bond price, 

r = default risk-adjusted yield to maturity, and 

N = term to maturity. 

The derivation of this duration measure is shown in 
Appendix A In this formulation, partial or total default 
occurs on the i(th payment and total default on all of the 
remaining N-(K+l) payments in a magnitude that is 
consistent with the default risk premium included in the 
initial market yield to maturity. The duration of this 
equation is shown in Appendix A. In contrast with 
unadjusted duration, default-adjusted duration requires the 
specification of both a description of the time pattern of the 
expected reduced cash flows and the default risk-adjusted 
discount rate. 



If the same stochastic process of interest rates holds but 
all scheduled payments are delayed for K* years, however, 
then the correct single-factor measure of duration is: 

where K* is determined to be consistent with a given 
default-risk premium included in the market yield to 
maturity. The derivation of this duration measure appears 
in Appendix C. Other stochastic processes of default for the 
same stochastic process of interest rates may result in 
different single-factor measures of default-adjusted 
duration. More complex stochastic processes would 
produce both more complex, multifactor measures of 
duration and more complex differences in the relevant 
durations. 





m e  Consequmes of Ignoring Stochastic Default 

3. The Consequences 
of Ignoring 
Stochastic Default 

The implications for portfolio management of failing to 
take the stochastic process of default into account in 
computing durations are easily demonstrated. Assume that 
the relation between the expected risk-adjusted return on a 
security or portfolio of securities and duration is linear and 
may be expressed as (Babcock, "Duration," 1984; Babcock, 
"Erratum," 19M, Bierwag 1987; Bierwag et al., Financial 
Analysts Journul, 1983) : 

where 

r = expected risk-adjusted return, 

ro = initial risk-adjusted yield to maturity, 

rl = expected risk-adjusted yield to maturity 
immediately after purchase, 

D = Macaulay duration, and 

PL = investor's planning period. 

The bond's interest-rate risk is proportional to the value of 
(PL - D)/PL. To immunize the return on a bond against 
unexpected changes in risk-adjusted interest rates, an 

13 
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investor must choose a bond with a duration equal to the 
expected planning period. This reduces the term 
(PL- D)/P to zero. Assume that the length of the investor's 
planning period is 8112 years and that the universe of 
available bonds are those shown in Table 1. If the investor 
computed simple unadjusted Macaulay durations, he or she 
would select the 17-year maturity bond, whose duration is 
8112 years and equal to the planning period. But if, as 
discussed above, the stochastic process of default did not 
reduce every promised payment by the present value of the 
expected default, the actual value of (PL - D)/PL would not 
be zero and the investor would not be immunized. Instead, 
the investor would unknowingly be assuming interest-rate 
risk. 

If all the expected defaults occur on the last payments, 
the investor wishing to immunize should have selected the 
21-year bond, which has an appropriate duration of &1/2 
years; if all the expected defaults occur on the early 
payments, the investor should have chosen the 14year 
maturity bond, which has a duration of approximately 81/2 
years for this default pattern. Because any degree of 
interest-rate risk is measured by the term (PL - D)/PL, 
similar errors from neglecting the time pattern of default 
losses occur for investors who prefer to pursue active 
interest-rate risk strategies rather than to immunize, and to 
assume speciftc nonzero risk-adjusted interest-rate risk 
exposures on bonds subject to default risk. 



Conclusion 

4. Conclusion 

This study demonstrated that for securities subject to 
default, durations-whether single or multiple-term- 
computed on the basis of market rates of interest must be 
adjusted to reflect the expected timing of the expected 
losses from default. This requires both estimation of the 
expected loss from default to obtain the risk-adjusted 
interest rate and a chronological description of the reduced 
cash flows. Although including the stochastic processes 
generating both interest rates and the time pattern of default 
losses complicates the derivation and computation of 
duration, it is necessary to do so to minimize total 
stochastic-process risk and to manage intelligently 
portfolios of nondefault-free bonds. Because relatively little 
is known about the timing of reductions in payments for 
bond issues after default, much additional research on the 
bankruptcy process is required. A primary purpose of this 
study is to motivate such efforts. 
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Appendix A 

Default-Adjusted Durations for 
Default Patterns on the Earliest 

and Latest Payments for a 
Given Default Risk Premium 

I£ the expected default patterns occur on the early (late) 
payment dates, then the duration of the entire income 
stream is larger (smaller). This result is shown to be true 
for a given default risk premium included in the market yield 
to maturity. The price of a bond is given as 

where 

St = the promised cash flow at date t, 

dt = the expected default at date t, 

r* = the market yield to maturity, 

r = the risk-adjusted yield to maturity, and 

N = the maturity of the bond. 

The Macaulay duration is 

N 
D = t St(l+ r*)-t/~. 

1 

The duration adjusted for the risk of the expected default is 

N 
DA = t(% - dt) (1 + r)-t/~. (A3 

1 
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To find the maximal adjusted duration, we let 

for some a (0 I a I 1) and K such that (Al) holds for the 
given values of r*, r, and N. In this way, all of the expected 
defaults occur on the earliest possible dates consistent with 
the pricing equations. Substitution of (A4) into (Al) allows 
us to define 

Here, F(a,IQ is the value of the income stream implied by 
the expected defaults in @4). If (a,@ is chosen correctly, 
then F(a,@ = P. The function F(a,K) is a decreasing 
function of K and a. When K = 1 and a = 0, F(0,l) >P, and 
when K = N and a = 1, F(1,N) = 0. Therefore, there is some 
value, (a*, K*), at which F (af,K*) = P. To h d  these values, 
we may proceed iteratively by letting a = 0, and increasing 
K, integer by integer, until we have some K* at which 

Noting that F(l,K*-1) = F(O,K*) , it follows that there is some 
a* at which F(a*,K*-1) = P. That is, 

P - F(O,K*) 
(1- a*) = 

('+r) 1-K* 
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Using (a*,KZ) to compute the expected defaults in (A4) and 
substituting these defaults into (A3) gives us the maximal 
duration consistent with the pricing equation, (Al). 

To find the minimal adjusted duration, we let 

dt= { 0, t = 1,2 ,..., K-1 
a s ~ , t = K ,  
St, t=K+l ,  ..., N (As) 

for some a(0 I a 5 1) and K such that (Al) holds for the 
given values of r*, r, and N. In this way, all of the expected 
defaults occur in the latest possible dates consistent with 
the pricing equations. Substitution of (A9) into (Al) allows 
us to define 

Here, G(a,K) is a monotonic increasing function of K and a 
monotonic decreasing function of a. We can observe that 
G(0,N) > P > G(1.1) = 0. Therefore, there are values 
(a*,K*) at which G(a*,K*) = P. Assuming a = 1, we may 
proceed monotonically until we have found a value of K* 
such that 

so that for some a*, G(a*,K*) = P. That is, 

(1 -a*) = P-G (1.KZ 
SK* (l+r)- 

Using (a*,K*) to compute the expected defaults in (A9) and 
substituting these defaults into (A3) gives us the minimal 
duration consistent with pricing equation (Al) . 

The procedures for finding (a*,K*) in the case of coupon 
bonds allow for explicit expressions for F(a,Q and G(a,K). 
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For example, if we (a) allow for semi-annual discounting, 
(b) allow for semi-annual coupon payments, and (c) 
measure maturity in six-month periods, then 

F(a,IQ = (l+r/2)-w-1)p(c,r,~-~+1) 

where (c/2) is the semi-annual coupon rate, F is the face 
value of the bond,and p(c,r,N-K+1) is the price of a bond 
with annual coupon rate c, annual yield to maturity r, and 
maturity N-K+1. Si lar ly ,  

G(a,K) = A(c,r,Q - a~(l+r/2)"(c/2) (A14) 

where A(c,r,K) is the value of an annuity consisting of 
(c/2) F dollars every six months for K six month periods. 
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Appendix B 

Default-Adjusted Durations for 
Default Patterns Consistent 
with Unadjusted Durations 

It is clear from Tables 1 and 2 that there are expected 
default patterns in which the adjusted duration is identical 
to the unadjusted duration. Some of these special cases are 
of interest. 

The price of the security in those cases in which the 
promised payments are subject to default may be expressed 
as 

where St is the promised payment at date t, dt is the 
expected default, r* is the market yield to maturity, r is the 
default-risk-adjusted yield to maturity, and (r*-r) is the 
default risk premium included in the market yield to 
maturity. The unadjusted duration is 

and the adjusted duration is 

An obvious default pattern - dl,d2,. . . , d ~  - in which D = 

DA is one in which 
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Here, the present values of the payments after the expected 
defaults are equal to the present values of the payments 
before the expected defaults. If the income stream, 
S1,S2, ..., SN, can be broken into its separate components and 
be bought and sold separately, then equation (B4) gives two 
alternative ways for evaluating each of the cash flows in 
equilibrium for the given expected default pattern. 

If (1) the term structures -r* and r- are flat, (2) the 
term structures shift only in an additive manner, and (3) 
cash flow components are separable and sold separately, 
then no other expected default pattern is consistent with an 
equilibrium in which equation (B4) holds. On the other 
hand, if the components of the income stream are not 
separatable and sold separately, than a variety of expected 
default patterns are possible because then equation (A4) 
need not be required to hold in an equilibrium for those 
expected defaults. 

From this it follows that stochastic processes over the 
default patterns and interest rates and the degree to which 
income stream components are bought and sold separately 
are relevant features of an equilibrium model of the term 
structure and of the corresponding relation between the 
adjusted and unadjusted durations. 



Appendix C 

Default-Adjusted Durations for 
Default Patterns in Which All 

Scheduled Payments Are Delayed 

The value of the promised income stream of a bond may 
be expressed as 

where !3t is the promised cash flow at time t, N is the 
maturity, and r* is the market yield to maturity on the bond. 
If the expected default pattern is one in which all payments 
are delayed by K years but on which there is some interest 
accumulation, the expected cash flows, after default, 
become 

where y r *, 0 5 y 5 1, is the interest rate on delayed 
payments. If r is the risk-adjusted discount rate, then 

where r*-r is the default risk premium included in the 
market yield to maturity r*. Substitution of (C2) into (C3) 
gives 
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The duration of this income stream, after the expected 
defaults, may be computed as 

N+K 
DK = Z t~t-~(l+r)-t( l+ r*) K / ~  (c5) 

K+l 

We can thus write the adjusted duration as 

The results in Table 3 are derived by assuming 
r = 0.0, r= 0.09, and the cash flows are such that the bond 
sells at par, (P = 100). The Macaulay duration of this bond 
is 

Given that duration is a decreasing function of the rate of 
interest and that r* > r, it follows that 

or that 
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which is clearly shown to be the case in comparing columns 
(e) and (c) of Table 3. In words, the default-adjusted 
duration increases by more than the delay in payment 

It is also apparent that the expected default-adjusted 
duration is not affected by y or the extent to which interest 
is paid on delayed payments. 



Dumtions of Nondefiult-Free Secwn'h'es 

REFERENCES 

Alexander, Gordon J. and Bruce G. Resnick. "Using Linear 
and Goal Programming to Immunize Bond Portfolios." 
Journal of Bankiw and Finance 9(1985) : 3554. 

Altman, Edward I. and Scott A. Narnmacher. Investing in 
Junk Bonds. New York: John Wiley, 1987. 

Atkinson, Thomas R Trends in Corporate Bond Quality. 
New York: National Bureau of Economic Research, 1967. 

Babcock, Guilford C. "Duration As a Link Between Yield 
and Value." Journal of Po@lio Management 10 (1984): 
58-65. 

Babcock, Guilford C. "Erratum: Duration As a Link 
Between Yield and Value." Journal of Po@lio Management 
11 (1984) : 97-8. 

Beedles, William L. "On the Use of Certainty Equivalent 
Factors as Risk Proxies." Journal of Financial Research 
Z(1978): 1521. 

Bierwag, G. 0. Duration Analysis: Managing Interest Rate 
Risk. Cambridge, MA: Ballinger, 1987. 

Bierwag, G. O., George G. Kauiinan, and Cynthia M. Latta. 
"Bond Portfolio Immunization: Tests of Maturity, One- and 
Two-Factor Duration Matching Strategies." Financial 
Review 22 (1987) : 203-220. 



Bierwag, G. O., George G. Kaufman, Cynthia M. Latta, and 
Gordon S. Roberts. "Usefulness of Duration in Bond 
Portfolio Management Response to Critics." Journal of 
Portflio Management 13 (1987): 4852. 

Bierwag, G. O., George G. Kaufman, and Alden Toevs. 
"Bond Portfolio Immunization and Stochastic Process 
Risk." Journal of Bank Research 13(1983): 282-91. 

Bierwag, G. O., George G. Kaufman, and Alden Toevs. 
"Duration: Its Development and Use in Bond Portfolio 
Management." Financial Analysts+lournal39(1983) : 1535. 

Chance, Don M. "A Note on Default Risk and the Duration 
of Zero Coupon Bonds." Working Paper. Blacksburg, VA: 
Virginia Polytechnic Institute and State University, 
November 1987. 

Feldstein, Sylvan G., Peter E. Christensen, and Frank 
Fabozzi. "Bond Portfolio Immunization," in F. Fabozzi, ed., 
Readiqgs in Investment Management, 189206. Homewood, 
IL: Richard Irwin, Inc., 1983. 

Fons, Jerome S. T h e  Default Premium and Corporate 
Bond Experience." Journal ofFinance 42(1987): 81-97. 

Fons, Jerome S. "Single-Factor Certainty- Equivalence 
Duration for Non-Default Free Bonds." Working Paper. 
Federal Reserve Bank of Cleveland, July 1987. 

Fraine, Harold G. and Robert H. Mills. "Effect of Default and 
Credit Deterioration on Yields of Corporate Bonds." Journal 
of Finance 16(1961): 423-34. 



Durations of Nondefiult-Free Securities 

Garman, Mark B. 'The Duration of Option Portfolios." 
Journal of Financial Economics 16(1985): 309-15. 

Hempel, George H. The Postwar Quality of State and Local 
Debt. New York: National Bureau of Economic Research, 
1971. 

Hickman, W. Braddock. C o ~ o r a t e  Bond Quality and 
Investor Experience. New York: National Bureau of 
Economic Research, 1958. 

Johnson, Ramon E. Term Structures of Corporate Bond 
Yields as a Function of Risk of Default." Journal of Finance 
22 (1967) : 313-45. 

Kopprasch, Robert W., et al. Efective Duration of Callable 
Bonds. New York: Salomon Brothers, April 1987. 

McEnally, Richard W. and Calvin Broadman. "Aspects of 
Corporate Bond Portfolio Diversifica- tion." Journal of 
Financial Research 2 (1979) : 27-35. 

Toevs, Alden L. "Interest Rate Risk and Uncertain Lives." 
Journal of PoMolio Management 11 (1985): 4556. 

Warner, Jerold B. "Bankruptcy Costs: Some Evidence." 
Journal of Finance 32 (1977): 337-47. 

Warner, Jerold B. "Bankruptcy, Absolute Priority, and the 
Pricing of Risky Debt Claims." Journal of Financial 
Economics 4(1977) : 239-76. 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



