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Foreword

Mark Kritzman, CFA, my predecessor as research director at the Research
Foundation of CFA Institute, is a wit as well as an intellect and once referred to
those casually acquainted with quantitative finance as “dilequants ” (rhymes with
dilettantes). If you dabble in quantitative methods and wonder whether you might
be so characterized, you shouldn’t be insulted. I’m a dilequant too. Understanding
and applying quantitative techniques in finance takes a lifetime of study and
mastery, and most practitioners would do well to strive for understanding what
quantitative methods in finance are, and what they are best used for, rather than
trying to achieve this mastery on their own.

But for quantitative methods to be used and appreciated in the investment
community, one needs a primer on the topic for a nontechnical audience. The
current monograph achieves this difficult goal. Its authors, Frank J. Fabozzi, CFA,
Sergio M. Focardi, and Petter N. Kolm, have translated the often highly technical
jargon and mathematical language used by “quants” into plain English.

Quantitative finance is broadly applied in three areas: (1) screening universes
of securities to help select those one wants to buy (or sell short) in an effort to add
alpha relative to a benchmark, (2) portfolio construction, in which optimization and
related methods are used to build efficient portfolios of those securities, and (3)
pricing derivatives.

The current monograph focuses, strongly but not exclusively, on portfolio
construction. Fabozzi, Focardi, and Kolm pay considerable attention to optimization
in the presence of estimation error, a topic raised most visibly by Richard Michaud
in his January/February 1989 Financial Analysts Journal article, “The Markowitz
Optimization Enigma: Is ‘Optimized’ Optimal?” Approaching the problem from a
different angle, Fischer Black and Robert Litterman, in their September/October
1992 Financial Analysts Journal article “Global Portfolio Optimization,” also
addressed the issue of estimation uncertainty in portfolio construction, as did J. David
Jobson and Bob Korkie in a series of articles in the early 1980s. Fabozzi, Focardi,
and Kolm expand on all of these concerns. And increased interest in alternative assets,
such as hedge funds, for which the standard assumption of a normal distribution of
returns may not apply, creates a need for “robust” optimization methods, to which
the authors of this monograph devote considerable attention.

Another topic addressed by Fabozzi, Focardi, and Kolm is the use of advanced
econometric techniques to try to add alpha by forecasting security (or asset-class)
returns. Although the standard assumptions of portfolio theory—the efficient
market hypothesis, the no-arbitrage condition, and general equilibrium models of
asset pricing, such as the capital asset pricing model—posit a world in which returns
are not forecastable, these assumptions do not always hold up. Practitioners have
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made money by forecasting. The current monograph provides a primer on some of
the more widely used forecasting techniques by covering such important issues as
model selection, biases in models, and data mining and snooping.

Finally, in an innovative section, the authors provide results of a survey in which
investment management organizations reveal what quantitative techniques they use
and what challenges they face in using them.

In summary, Fabozzi, Focardi, and Kolm provide an excellent and compre-
hensive survey of the challenges one meets in using quantitative methods for
portfolio construction and forecasting. By covering a wide variety of methods
rather than advocating a particular one, the monograph reflects an inclusive and
thoughtful approach. 

The Research Foundation is very pleased to present Trends in Quantitative
Finance.

Laurence B. Siegel
Research Director

The Research Foundation of CFA Institute 
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Introduction

The aim of this monograph is to introduce practitioners to recent developments in
the modeling of equity returns for the purpose of asset management. We have tried
to provide a plain-English, formula-free review of quantitative methods without
sacrificing conceptual rigor. In addition to discussing methodology, the monograph
includes the results of an ad hoc survey taken in the first half of 2005 of equity
modeling at 21 large asset management firms in the United States and Europe.

As a profession, asset managers have traditionally tried to “beat the market”—
that is, to earn returns in excess of returns obtained by an indexed strategy. Their
ability (real or supposed) to construct portfolios that earn excess returns is the reason
investors entrust assets to them and the justification for active management fees in
excess of index fund fees. This effort to outperform the market is one reason for the
growing use of modeling techniques in asset management.

Market Efficiency and Unpredictability
Under the assumption that modern financial markets are efficient, mainstream
finance theory has traditionally held that markets cannot be beaten. Although excess
returns might indeed be achieved, they are considered to be, on average, propor-
tional to risk: Markets embed a risk–return trade-off in which investors demand,
and markets supply, excess expected returns for taking risk. In an efficient market,
the risk–return trade-off also implies that above-market returns cannot be achieved
without taking additional risk. 

The assumption of market efficiency is associated with the notion of the
unpredictability of financial markets. Mainstream theory maintains that markets
must be unpredictable because if markets were predictable, they could not be
efficient and returns in excess of market returns could be made without taking
additional risk.

The notion of market efficiency has given rise to “passive” asset management
strategies because if markets are efficient, trying to beat the market is futile.
Better to reduce management costs by investing so as to match the performance
of broad indices.

Given the double-digit returns that the U.S. equity markets were providing in
the last two decades of the 20th century, few practitioners were overly concerned
about the debate on market efficiency. As the 1990s drew to a close, however, the
academic view of market efficiency and market predictability began to change under
the weight of empirical evidence and fresh theoretical insights. The market down-
turn after 2000 forced asset management firms to reevaluate their investment
processes in an effort to reduce costs and produce returns in unrewarding markets.
Because quantitative methods can help in both tasks, many firms began to take a
closer look at these methodologies.
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Actually, a complete conceptual overhaul of our thinking about equity price
processes is needed. The practice of investment management has to be reconciled
with a new theoretical concept of asset returns—namely, that the trade-off between
risk and return is dynamic and does not exclude the possibility that asset returns
are, to some extent, forecastable. This monograph provides an overview of the recent
changes in finance theory and the modeling techniques that the industry is using
or beginning to experiment with in an attempt to capture the limited forecastability
in financial markets. 

New Concepts of Risk and Return
The only really general observation we can make about market efficiency is the
absence of arbitrage—that is, in the financial markets, one cannot make a sure profit
with no net investment. There is no free lunch. Pragmatically, therefore, whatever
strategy investors adopt, they always face the possibility of losing money. Although
finance theory states that investors (or asset managers) cannot beat the market
without risk (because doing so would entail arbitrage), it does admit that an investor
can beat the market, on average, by taking risk beyond the risk inherent in the
market benchmark. Taking this additional risk means, of course, that the investor
will suffer periods of underperformance as well as periods of superior performance
relative to the market benchmark. 

To make the critical decisions about how much risk to take, the profession
clearly needs a quantitative framework for measuring risk and return—which is
provided by probability theory and statistical techniques. The quantitative princi-
ples of investment under uncertainty were laid down by Markowitz (1952) more
than 50 years ago; their adoption in full earnest requires the use of quantitative
methods and modeling. But even today, the adoption of these techniques by the
asset management community is patchy.

In a probabilistic quantitative framework, a number of concepts about markets
have to be critically revised. Market efficiency does not imply that all investments
are equivalent: Given one’s risk–return preferences, some investments are preferable
to others. Thus, we cannot state that all excess returns are equally offset by risk to
the point where every investment has the same certainty-equivalent return. Some
returns are less offset by risk than others. What remains true is that without
investment and risk, one cannot make money. Equivalently, one cannot always, or
even usually, beat the market.

To measure the ability of a manager to engineer a favorable risk–return trade-
off, researchers introduced the concepts of beta (a measure of exposure to market
risk) and alpha (a measure of return in excess of the market return, which can be
interpreted as measuring skill in stock picking or asset allocation). All security or
portfolio returns comprise a market part (beta) and a nonmarket part (alpha). The
beta part of the return is caused by correlation with the relevant market benchmark
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and thus arises from market exposure, not active management. The alpha part is
the return “above and beyond” the beta part and represents the value added by the
active manager.

Note explicitly that many realizations of asset management strategies will show
positive alpha ex post. The key challenge of investment management, however, is to
identify ex ante which strategies will produce positive alpha. Having generated a
positive alpha ex post is not by itself a sign of a good active strategy: Such a result can
sometimes be achieved simply by luck. Strategies can be considered alpha generators
only if alphas are persistent. For this reason, performance measurement is a delicate
issue. Because we cannot rely on always having access to long series of past
performance, we try to gauge the true performance of an asset manager by correcting
his ex post performance with an estimate of the risk associated with his strategy.

Models of equity returns can be static or dynamic. The models of standard
finance are static; that is, the distributions of the model variables do not depend on
the previous path of the same variables. A random walk is a typical example of a
static model. Consequently, from the point of view of standard finance, alphas and
betas are interpreted as static terms; they are constants that do not change over time.

However, we can also model the market with dynamic models. In these models,
the variables do depend on their previous paths. If we use dynamic models, the
concepts of alpha and beta have to be reinterpreted. In fact, in linear dynamic
models, we typically find long-term equilibrium relationships plus short-term
dynamics. The implication is that alpha and beta change over time. Moreover, if
we add nonlinearities and higher statistical moments (such as skewness or kurtosis)
or nonnormal distributions, we find that the risk–return trade-offs of assets cannot
be described by the linear relationship implied by alpha and beta.

Dynamic models entail predictability of expected returns or of higher moments.
This predictability is compatible with finance theory if it generates no arbitrage
opportunities. And keep in mind that forecasting models do not necessarily offer
better risk–return trade-offs than static models without predictability. True static
alpha, if it exists, generates abnormal profits without the trading costs associated
with dynamic strategies.

Generally speaking, given the large universe of investable stocks, capturing
market opportunities requires optimization methodologies to fully exploit the risk–
return trade-offs that modeling allows us to identify. Entrusting the management
of large sums to automatic models and optimizers entails a high level of confidence
in models, however, so the robustness of the quantitative models (that is, their
relative insensitivity to a violation of one or more assumptions) has become an
important concern for many firms.

A central theme of this monograph is the trade-offs that must be made among
model complexity, model risk, and model performance. We return to this idea time
and again—particularly in Chapter 3 on robust methods, Chapter 6 on machine
learning, Chapter 7 on model selection, and Chapter 9 on model estimation. 
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Overview of the Monograph
The 12 chapters of this monograph develop the themes we have outlined. We begin
by analyzing the concept of forecastability. We discuss the difficulty in predicting
financial markets because the predictions themselves influence (modify) market
behavior. This phenomenon, known as “self-referentiality,” does not mean that
forecasting markets is impossible, only that there are constraints on the risk–return
trade-offs offered by financial markets.

We argue that, counter to intuition, financial markets cannot be completely
unpredictable yet at the same time contain a risk–return structure. If markets were
totally unpredictable, for risk to be rewarded, they would have to exhibit different
time-invariant expected returns. A static, immutable spread of returns between
assets of different risk would lead to exponentially diverging prices and to exponen-
tially diverging market capitalizations. This would occur whether stock returns
provide alphas or not. Empirically, however, we do not find an exponential
distribution of market capitalizations.1 This observation leads to the conclusion that
there is some forecastability in markets.

The idea that financial markets have some degree of forecastability has now
gained broad acceptance. However, predictability is not automatically a source of
profitability. We close Chapter 1 with a discussion of the need to carefully evaluate
(1) the risk–return trade-off implied by the models and (2) transaction costs so as
to ensure that strategies that look profitable on paper do not end up producing losses
and/or inferior performance relative to a benchmark when applied in practice.

In Chapter 2, we outline the basic principles of general equilibrium theories.
The objective is to improve understanding of the capital asset pricing model and
the notion of market equilibrium. We then introduce the concept of the utility
function, which represents the investor’s financial decision-making processes. The
utility function has proved to be an important concept for the practice as well as the
theory of finance. In fact, every optimization process depends on the specification
of a utility function.

Despite their theoretical weight, general equilibrium theories are difficult to test
and to use in practice. The reason is that the specification of the utility function
remains abstract; it is an a priori assumption, one not based on empirical investigation.
In the absence of an independent empirical evaluation of utility functions, general
equilibrium is a theoretical framework that can always be used insofar as, in the
absence of arbitrage, any price process can be rationalized as a general equilibrium.

1Actually, we do find empirically that market capitalization follows a Pareto law. This Pareto law can
be described intuitively by one of its properties: The size of an individual is inversely proportional to
its rank. That is, the size of the second largest company is one-half the size of the biggest company,
the third largest is one-third, and so on. Many phenomena, including economic phenomena, obey
Pareto’s laws.
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In Chapter 3, we describe the modern robust framework for Markowitz mean–
variance optimization. We begin by describing the essentials of mean–variance
optimization theory. 

One critical aspect of the theory is the estimation of the variance–covariance
matrix. Because in estimating the variance–covariance matrix the number of entries
grows with the square of the number of assets that are candidates for portfolio
inclusion, the matrix becomes rapidly unmanageable. We discuss robust estimation
methods that allow one to reduce the number of independent covariance entries to
be estimated.

A second critical component of the modern framework for Markowitz mean–
variance estimation is robust optimization. Introduced recently in finance and still a
subject of research, robust optimization places constraints on the results of the
optimization process as a function of the uncertainty associated with parameter
estimation. We discuss how robust estimation and robust optimization are two
integrated aspects of robust methodologies.

In Chapter 4, we begin to explore models that detect forecastability in asset
returns. We discuss the types of delayed responses that markets can exhibit to past
values of variables, such as prices or returns. Forecastability is thus exploited by
strategies based on momentum, reversal, co-integration, and mean reversion. We
then discuss the issue of model complexity and sample size—that is, the size of the
available historical dataset. There is a relationship between the size of the sample used
for estimation and the complexity of the models we can estimate. If the sample is
large, we can estimate a complex model; otherwise, we can estimate only the essentials.

In Chapter 5, we review issues related to modeling at different time horizons.
Most models currently in use are estimated and reestimated on moving “windows”
of historical data. We discuss the conditions that allow the estimation of slowly
changing models and models that exhibit sudden regime shifts. Then, we discuss the
behavior of stock markets at long time horizons and the concept of time diversifica-
tion (i.e., the concept that financial risk is statistically smaller in the long run than
in the short run because the ups and downs tend to offset each other, on average).

In Chapter 6, we provide an overview of machine learning and its applications in
finance. Machine learning is a universal modeling strategy that does not depend on
any domain-specific theory. Therefore, when applied to finance, the models do not
use finance theory but rely on purely statistical analysis of financial phenomena.
Machine-learning methods place constraints on model complexity to ensure that they
retain some forecasting capability. We discuss a number of specific techniques,
including neural networks, decision trees, clustering, genetic algorithms, and support
vector machines. We also provide a perspective on artificial intelligence and tech-
niques for handling unstructured (e.g., textual) data and text-related technologies.

In Chapter 7, we review the process of model selection and its pitfalls. We
discuss how to deal with data snooping and avoid survivor biases. We also cover risk
mitigation in modeling and, extending the discussion begun in Chapter 4, consider
model complexity and the size of sample data.
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Chapter 8 offers an overview of models used in equity return forecasting. Among
the families of models discussed are the widely used models that regress returns on
predictors and models that exploit momentum and reversal phenomena. We also
discuss complex models that, although not widely used in asset management today,
are beginning to make their way into practice. Among these are autoregressive
models, factor models, hidden-variable models, and regime-switching models.

Model estimation is the subject of Chapter 9. Although (in keeping with the
nature of this monograph) this chapter does not contain formulas, it does provide
an overview of the concept of estimation and of the sampling distribution. We then
present the most widely used estimation methods: the least-squares method, the
maximum-likelihood estimation method, and the Bayesian estimation method.
The chapter closes with a description of the estimation of regressions and other
related models introduced in previous chapters.

Optimization, and in particular robust optimization, is becoming an important
component in portfolio management applications. Chapter 10 presents the concep-
tual framework of optimization and gives practical suggestions for implementation
and software selection. The development of robust methods for estimation and
optimization is one of the major achievements of modern financial modeling. Robust
technologies assume that models and the inputs themselves (like humans) are uncer-
tain; they evaluate the consequences of errors in the models and introduce corrections
that mitigate the potentially negative effects of model and estimation errors.

One of the objectives of this monograph is to provide a reading of how
quantitative methods are making their way into the investment management process.
Chapter 11 presents the results of an ad hoc market survey covering the use of
quantitative methods in three areas: equity return forecasting, model risk mitigation,
and optimization. Twenty-one asset management firms in the United States and
Europe shared information on what modeling approaches they are actually using and
experimenting with. Survey results are discussed and summarized in a table. 

Finally, Chapter 12 considers the state of quantitative modeling today, with a
discussion of modeling for portfolio management and for the profession in general,
and suggests some possible future developments.
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1. Forecasting Financial 
Markets

Why are financial markets so difficult to predict? The short answer is that financial
markets are difficult to predict because predictions influence markets themselves.
Because predictions are potential sources of profits or losses, they produce market
movements that provoke immediate changes in prices, thereby invalidating the
predictions themselves. This consideration leads to the concept of market efficiency:
An efficient market is a market where all new information about the future behavior
of prices is immediately reflected in the prices themselves. An efficient market
exploits all information. Financial predictions are inherently different from, say,
weather predictions. Weather forecasts are “objective,” in that they do not influence
the weather itself.

The concept of market efficiency has been much debated. To gain a working
understanding of market efficiency, we have to first abandon the notions of perfect
forecasts and perfect efficiency that create conceptual difficulties. More pragmati-
cally, we have to discuss the consequences of our ability to make forecasts, albeit
imperfect ones. From the point of view of a practitioner, the counterintuitive aspect
of market efficiency is the fact that the more efficient we are in gathering, analyzing,
and acting upon information about markets and publicly traded companies, the less
predictable markets are. Thus, one might conclude that investing in market analysis
is useless. The solution of this apparent puzzle is that market predictability does
exist but is limited. In addition, even in the absence of predictability, one needs to
determine the risk–return profile of the assets. This chapter will discuss the trade-
off that markets must offer in terms of predictability. We will discuss how complete
absence of market predictability is economic nonsense but, at the same time, market
predictability must be limited.

There is another important point that we will discuss: information. Much of
finance theory is centered on the notion of information and information differen-
tials. Intuitively, information is what we know. There is an information differential
if some people know something that others do not know. For example, the financial
statements of a corporation are information. It is a financial truism that information
differentials lead to sources of profit. Insider trading is the typical example of
exploiting an information differential. Leinweber (2003) recalled how in 1790
George Washington decided not to default on national debts and dispatched
messengers from New York to spread the good news. A number of Wall Street
investors saddled faster horses than Washington’s messengers and bought as much
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debt as they could find at a very low price, thus making a huge profit. Recently,
efforts have been made to ensure that information is disseminated simultaneously
to all market participants. Technology has been helpful in this, although it has
created new opportunities for dissemination of false information as described in
Leinweber and Madhavan (2001).

If information were always certain, there would not be much to say from the
conceptual point of view except, perhaps, a discussion of the technologies for making
information available to market participants. However, information is uncertain:
This fact creates a conceptual problem. In fact, finance theory has to take into
consideration not only raw information but also the way (and speed) in which
information is processed and interpreted by market participants. Two market par-
ticipants might have the same raw information but different forecasting capability.

An understanding of the behavior of markets calls for an understanding of how
market participants process historical information—uncertain in itself1—and make
forecasts. Predictability is associated with information. Markets are said to be
forecastable if forecasts depend on the past and present information. However, it
should be remarked that lack of predictability does not mean absence of informa-
tion. Because markets identify a risk–return trade-off even if there is no market
forecastability, the ability to quantify a constant expected return and the associated
constant risk implies that we possess a lot of information on markets even in the
absence of forecastability.

This chapter discusses just what information there is in financial markets and
why financial markets, although difficult to predict, nevertheless exhibit some
predictability. The objective is to provide a guide to model selection. We begin by
introducing the concept of predictability and its pitfalls. In fact, the notion of market
efficiency is rooted in the conceptual difficulties associated with making predictions
on a system that can be influenced by the predictions themselves.

The Concept of Predictability
To predict (or forecast) is to form an expectation of what will happen in the future.
The idea of predicting the future has always fascinated people and has been the
subject, successively, of magic, philosophical enquiry, and scientific debate. Already
in ancient times, it was clear that the notion of predicting the future is subject to
potential inconsistencies. If, for example, we received a “credible” prediction that
tomorrow we will have a car accident on our way to work, we might either decide
to leave the car at home or be extra careful with our driving. In either case, our
behavior will have been influenced by the prediction, thus potentially invalidating

1For example, the financial statements might include incomplete or false statements as recent
corporate accounting scandals have demonstrated. We have to admit that we have only uncertain
information about the past; there is much “hidden information” that we do not know.
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the prediction. It is because of inconsistencies of this type that Samuelson (1965)
and Fama (1965) arrived at the apparently paradoxical conclusion that “properly
anticipated prices fluctuate randomly.”

Already in classical Greece, there were two concepts of prediction: (1) scientific
prediction based on laws of nature and (2) prediction of human affairs based on
revealing Fate. The possibility of scientific prediction was largely a Greek discovery.
The Greeks laid down the concepts of basic universal laws of Nature on which
scientific prediction is still based.2 As regards human affairs, the Greeks were aware
of the contradictions inherent in predicting the future course of actions that can be
influenced by the prediction itself.

The Greeks solved the problem in one of two ways. First, they made predictions
difficult to obtain and cryptic. To obtain a prediction might mean traveling over
long distances; predictions were delivered through ambiguous signs, such as the
flight of birds or the rustling of leaves, or ambiguous language, such as the oracle at
Delphi called the Pythia.3 Second, they showed how predictions might come true
through tortuous and unpredictable paths. Greek tragedy is characterized by plots
that are based on the realization of predictions through an unpredictable chain of
events, often the result of the will of a capricious god. The ancient Greeks understood
the contradictions inherent in forecasting the behavior of intelligent, adaptive
systems: The ability to forecast leads to a basic “efficiency” of intelligent behavior.
The Greek notion of scientific forecasting was, however, different from ours.

Today, the notion of forecastability hinges on how we can forecast the future
given what we know today. Forecasting is the relationship between present infor-
mation and future events. Change the present state of affairs, and the forecast
changes. However, the relationship between the present state of affairs and the
future is fixed and immutable. The state of affairs known at a given date is called
the information set known at that date. This is the notion of forecastability that
academics and market practitioners espouse in theories of asset pricing. Prices or
returns are said to be forecastable if the knowledge of the past influences our forecast
of the future. For example, if the future returns of a company’s stock depend on the
value of a set of financial ratios of the same company, then those returns are
predictable. If the future returns of that stock do not depend on any variable known
today, then returns are unpredictable.

2Archimedes’ “burning mirrors” were the byproduct of their knowledge of optics.
3The Pythia’s predictions were often shrewdly phrased, which caused many supplicants to
misinterpret the advice. The most famous case is the prediction given to Croesus, king of Lydia
(approximately present-day Turkey). In 550 BC, Croesus was preparing to invade the Persian Empire
when he queried the Delphian Pythia about the wisdom of an attack. The Pythia answered, “If Croesus
goes to war, he will destroy a great empire.” Encouraged by this response, Croesus invaded Persia.
The Persians counterattacked, invaded Lydia, and captured Croesus. The dethroned king sent his
iron chains to Delphi with the question, “Why did you lie to me?” The priestess answered that her
prophecy had indeed been fulfilled: Croesus had destroyed a great empire—his own!



Trends in Quantitative Finance

4 ©2006, The Research Foundation of CFA Institute

The forecastability of stock returns continues to be at the center of a heated
debate. It is believed that (1) predictable processes allow investors (or asset managers
on behalf of their clients) to earn excess returns whereas (2) unpredictable processes
do not allow one to earn excess returns. Neither is necessarily true. Understanding
why will shed some light on the crucial issues in modeling. In a nutshell: (1)
predictable expectations do not necessarily mean profit if they are associated with
unfavorable risk and (2) unpredictable expectations can be profitable if their
expected value is favorable (positive alpha).

Most of our knowledge is uncertain; our forecasts are also uncertain.4 The
development of probability theory gave us the conceptual tools to represent and
measure the level of uncertainty.5 Probability theory assigns a number—the
probability—to every possible event. This number, the probability, might be
interpreted in one of two ways:
• The probability of an event is a quantitative measure of the strength of our beliefs

that a particular event will happen, where 1 represents certainty;
• Probability is the percentage of times (i.e., frequency) that we observe a particular

event in a large number of observations.
The second interpretation is the one normally used in econometrics and in

science at large. When we make a probabilistic forecast of an event, we assess the
percentage of times that we expect to observe that event.

Consider again the returns of a company’s stock. Suppose that returns are
unpredictable, in the sense that future returns do not depend on the current infor-
mation set. This does not mean that future returns are completely uncertain, in the
same sense in which the outcome of throwing a die is uncertain. Clearly, we cannot
believe that every possible return on the stock is equally likely. First, given the finite
nature of the economy, there are upper and lower bounds for real returns. More
importantly, if we look at past price series, we observe a distribution of return values.

It is thus reasonable to assume that our uncertainty is embodied in a probability
distribution of returns. Absence of predictability means that the distribution of
future returns does not change as a function of the present information set. In
particular, the distribution of future returns does not change as a function of the

4In classical science, forecasting was deterministic: The future course of affairs can be determined with
arbitrary precision provided we know the present state with arbitrary precision. This view was
forcefully expressed by the French mathematician and physicist Pierre Simon Laplace (1749–1827):
A supernatural being who knows the position of every material particle with arbitrary precision and
has unlimited computational power can forecast the entire future course of the universe. However,
with the development of modern science, it has become progressively clear that deterministic sure
forecasts—if they exist at all—are only a restricted part of our knowledge.
5Bernstein (1998) offers a lively account of the development of the concepts of risk and uncertainty
from the beginning of civilization to modern risk management.
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present and past values of prices and returns. Thus, the distribution of returns does
not change with time.6 We can, therefore, state that
1. a price or return process is predictable if its distributions depend on the present

information set and
2. a price or return process is unpredictable if its distributions are time-invariant.

Are Returns Predictable?
Equipped with the concept of predictability that we have just defined, we can now
discuss why prices and returns are difficult (or perhaps impossible) to predict. The
key is that any prediction that might lead to a trading profit tends to make that
profit disappear. Suppose that the price of a stock is predicted to increase signifi-
cantly in the next five days. Clearly, a large price increase is a source of profit. As a
consequence, if that prediction is widely shared, investors will rush to buy that stock.
But the demand thus induced will make the stock’s price rise immediately, thus
eliminating the source of profit and invalidating the forecast.

If predictions of stock returns were certain, then simple arbitrage arguments
would dictate that all stocks should have the same return. In fact, if stock returns
could be predicted with certainty and if there were different returns, then investors
would choose only those stocks with the highest returns.

Perhaps we should be clear about what we mean by “certain” predictions. A
certain prediction is a prediction that leaves no doubt about what will happen. For
example, U.S. Treasury zero-coupon securities (Treasury bills and Treasury strips)
offer a certain prediction of returns until the maturity date of the security because
the maturity value is guaranteed by the full faith and credit of the U.S. government.
Any forecast that leaves open the possibility that market forces will alter the forecast
cannot be considered a certain forecast.

Stock return forecasts are not certain; as we have seen, uncertain predictions
are embodied in probability distributions. Suppose that we have a joint probability
distribution of the returns of the universe of investable stocks. We will discuss the
behavior of investors who face uncertain choices in detail in Chapter 2. Suffice it
to note here that investors will decide the rebalancing of their portfolios as a function
of their probabilistic predictions and their risk–return preferences. The problem we
are discussing here is whether general considerations of market efficiency can
determine the mathematical form of price or return processes. In particular, we are

6In principle, it could also depend on time deterministically, but this possibility is not realistic. It could
also be subject to uncertainty. However, if uncertainty is itself independent of the present information
set, the result is another independent probability distribution. For example, uncertainty relative to a
normal (Gaussian) distribution produces a mixture of Gaussians, which is another distribution.
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interested in understanding whether stock prices or returns are necessarily unpre-
dictable. The problem discussed in the literature is expressed roughly as follows:

Suppose that returns are a series of random variables. These series will be fully
characterized by the joint distributions of returns at any given time t and at any
given set of different times. Suppose that investors know these distributions and
that investors select their portfolios according to specific rules that depend on these
distributions. Can we determine the form of admissible processes, that is, of
admissible distributions?

Ultimately, the objective in solving the above problem is to eschew models that
allow unreasonable inferences. Historically, three solutions have been proposed:
1. Returns fluctuate randomly around a given mean (i.e., returns are multivariate

random walks).
2. Returns are a fair game (i.e., returns are martingales).
3. Returns are a fair game after adjusting for risk.
These concepts and their differences will be explained in the following sections.
The first two proposed solutions are incorrect; the last is too general to be useful
for portfolio management. Before we discuss models of prices in more detail, we
digress to provide some basic statistical concepts.

Concepts of Predictability and Unpredictability. In this section,
we define concepts of predictability and unpredictability that are important in
financial modeling. We first define the concepts of strict white noise, a martingale
difference sequence, and white noise:
• Strict white noise is a sequence of zero-mean, finite-variance independent and

identically distributed (IID) variables, and it is thus unpredictable, in the sense
that the conditional distribution of the variables is fixed and independent of
the past. Because strict white noise is unpredictable, a fortiori, expectations and
higher moments are unpredictable.

• A martingale difference sequence is a sequence of zero-mean, uncorrelated vari-
ables such that their conditional expectations given the past values of the series
is always zero. Because both expectations and conditional expectations are zero,
in a martingale difference sequence, expectations are unpredictable but higher
moments, if they exist, may be predictable.

• White noise is a sequence of zero-mean, finite variance uncorrelated variables.
Because the variables are uncorrelated, in white noise, expectations are linearly
unpredictable but may be predicted as nonlinear functions of the past. For
example, they may be predictable with a neural network. Higher moments, if
they exist, may be predictable.

If the variables are normally distributed, it can be proven that the three concepts
coincide. In fact, two uncorrelated normal variables are also independent.
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Consider a sequence of zero-mean variables and consider the sequence formed
with their sums, so that nth term of the new sequence is the sum of the first n terms
of the first sequence. We define the random walk, martingale, and arithmetic
random walk as follows:
• An arithmetic random walk is the sum of white-noise terms. The mean of an

arithmetic random walk is linearly unpredictable but may be predictable with
nonlinear predictors. Higher moments may be predictable.

• A martingale is the sum of martingale difference sequence terms. The mean of
a martingale is unpredictable (linearly and nonlinearly); that is, the expectation
of a martingale coincides with its present value. Higher moments may be
predictable.

• A strict random walk is the sum of strict white-noise terms. A strict random walk
is unpredictable: Its mean, variance, and higher moments are all unpredictable.

We summarize the above properties in Exhibit 1.1 and Exhibit 1.2. Exhibit 1.1
summarizes the properties of noise and martingale difference sequences. Exhibit
1.2 summarizes the properties of random walks and martingales.  

Exhibit 1.1. Summary of Properties of Noise and Martingale Difference 
Sequences

Concept Variables Predictability

Strict white noise Zero-mean, finite-variance, IID 
variables

Expectations and higher moments 
unpredictable.

Martingale difference
sequence

Zero-mean variables such that their 
conditional expectations 
are zero

Expectations unpredictable. 
Higher moments might be predictable.

White noise Zero-mean, finite-variance 
uncorrelated variables

Expectations linearly unpredictable.
Expectations might be nonlinearly 

predictable, and higher moments might 
be predictable.

Exhibit 1.2. Summary of Properties of Random Walks and Martingales

Concept Increments Predictability

Strict random walk Increments are zero-mean, finite-
variance, IID variables

Expectations and higher moments are 
unpredictable.

Martingale Increments are a martingale 
difference sequence

Expectations are unpredictable.
Higher moments might be predictable.

Random walk Increments are zero-mean, finite-
variance uncorrelated variables

Expectations linearly unpredictable.
Expectations might be nonlinearly 

predictable and higher moments might 
be predictable
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Finally, we have to distinguish between error terms and innovations. It is easy
to confuse the two concepts because models can be written in the same way
regardless of whether or not error terms are innovations. For example, a random
walk and a strict random walk have the same form, but only in the strict random
walk are errors innovations.

Any process can be considered formed by two parts: what can be predicted
from the past of the process and what cannot be predicted. The part that cannot
be predicted is called the innovation process. Innovation is not specifically related
to a model; it is a characteristic of the process. Innovations are, therefore,
unpredictable processes.

Now, consider a model that is supposed to explain empirical data. At every time
step, the difference between the model and the empirical data is called the error of
the model. It is not necessarily true that errors are innovations; that is, it is not
necessarily true that errors are unpredictable. If errors are innovations, then the
model offers the best possible explanation of data; if not, errors contain residual
forecastability. The previous discussion is relevant because it makes a difference
whether errors are strict white noise, martingale difference sequences, or simply
white noise.

In particular, a random walk whose increments are nonnormal white noise
contains a residual structure not explained by the model both at the level of
expectations and higher moments. If data follow a martingale model, then expec-
tations are completely explained by the model but higher moments are not.

Why are these apparently arcane considerations practically important? The
properties of models depend on the assumptions made about noise. For example, a
linear model (see Chapter 7) makes linear predictions of expectations and cannot
capture nonlinear events, such as the clustering of volatility. It is thus natural to
assume that errors are white noise. In other models, however, different assumptions
about noise need to be made; otherwise, the properties of the model conflict with
the properties of the noise term.

Now, these considerations have important practical consequences when testing
residuals. When testing a model, one has to make sure that the residuals have the
properties that we assume they have. Thus, if we use a linear model—say, a linear
regression—we will have to make sure that residuals are white noise (that is, that
they are uncorrelated). In general, it will suffice to add lags to the set of regressors
to remove autocorrelations of residuals.7 However, if we have to check that residuals
are martingale difference sequences or strict white noise, we will have to use more
powerful tests. In addition, adding lags will not be sufficient to remove undesired

7Statements such as this are intended as exemplifications but do not strictly embody sound
econometric procedures. Adding lags has side effects, such as making estimations noisier, and cannot
be used indiscriminately.
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properties of residuals. Models will have to be redesigned. These effects are not
marginal; they can have a significant impact on the profitability of a strategy.

Closer Look at Pricing Models. Let’s now go back to pricing models.
The first hypothesis on equity price processes that was advanced as a solution to the
problem of forecastability was the random walk hypothesis.8 Recall from Exhibit 1.1
that the strongest formulation assumes that returns are a sequence of IID variables—
that is, a strict random walk.9 When variables are IID, “independence” means that
distributions remain the same regardless of the history of past returns. Therefore,
investors are not able to predict future returns by using historical returns. “Identically
distributed” means that all returns have the same distribution in every time period.
The two conditions entail that, over time, the mean and the variance do not change
from period to period (i.e., we are dealing with a stationary time-series process). If
returns are IID variables, the logarithms of prices follow a random walk and the
prices themselves follow a geometric random walk. The IID model is clearly a model
without forecastability because the distribution of future returns does not depend on
any information set known at the present moment. It does, however, allow stock
prices to have a fixed drift.

Note from Exhibit 1.1 that there is a weaker form of the random walk
hypothesis that requires only that returns at any two different times be uncorrelated.
According to this weaker definition, returns are a sequence formed by a constant
drift plus white noise. If returns are white noise, however, they are not unpredictable.
In fact, white noise, although uncorrelated at every lag, might be predictable in the
sense that its expectation might depend on the present information set.

It was initially believed that if one admits that market agents make perfect
forecasts, the strict random walk model is the only possible model. However, this
conclusion was later proven wrong; the class of admissible models is actually much
broader. LeRoy (1973) demonstrated that the strict random walk model is too
restricted to be the only possible model and proposed the martingale model—that
is, the “fair game” model.

The idea of a martingale is as old as gambling. Actually, the term “martingale”
originally indicated a gambling strategy in which the gambler keeps on doubling her
bets. In modern statistics, a martingale embodies the idea of a fair game—that is, a
game in which at every bet, the gambler has exactly the same probability of winning
or losing. In fact, as described in Exhibit 1.2, the martingale is a process in which
the expected value of the process at any future date is the actual value of the process.

8For an explanation of the random walk model, see Chapter 10 in DeFusco, McLeavey, Pinto, and
Runkle (2004).
9Returns are typically mutually correlated. This correlation does not allow any forecastability,
however, because it is a relationship between returns at a given time t.
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If a price process or a game is represented by a martingale, then the expectation of
gains or losses is zero. Note that a random walk with uncorrelated increments is not
necessarily a martingale because its expectations are only linearly unpredictable.

Technically, the martingale model applies to the logarithms of prices. Returns
are (approximately) the differences of the logarithms of prices. The martingale model
requires that the expected value of returns be not predictable, because it is zero or a
fixed constant. However, there can be subtle patterns of forecastability for higher
moments of the return distribution. Higher moments are those moments of a
probability distribution beyond the expected value and variance—for example, skew-
ness and kurtosis.10 In other words, the distribution of returns can depend on the present
information set provided that the expected value of the distribution remains constant.

The martingale model does not fully take into consideration risk premiums
because it allows higher moments of returns to vary while expected values remain
constant. It cannot be a general solution to the problem of what processes are
compatible with the assumptions that investors can make perfect probabilistic
forecasts.

The definitive answer is ascribable to Harrison and Kreps (1979) and Harrison
and Pliska (1981, 1985). They demonstrated that stock prices must indeed be
martingales but after multiplication for a factor that takes risk into account. Their
methodology is mathematically complicated and exceeds the scope of this mono-
graph. The conclusion of their work, however, is that a broad variety of predictable
processes are compatible with the assumption that the market is populated by agents
capable of making perfect forecasts. Predictability is to the result of the interplay of
risk and return.

However, precisely because the market is populated by agents capable of
making perfect forecasts, it is not necessarily true that successful predictions will
lead to excess returns. For example, it is generally accepted that predicting volatility
is easier than predicting returns. The usual explanation of this fact is that investors
and asset managers are more interested in returns than in volatility. With the
maturing of asset management methods and with increased emphasis on risk–return
trade-offs, risk and returns have become equally important. However, this does not
imply that both risk and returns have become unpredictable. It is now admitted that
predicting combinations of the two is possible.

10In describing a probability distribution function, it is common to summarize it by using various
measures. The four most commonly used measures are location, dispersion, asymmetry, and
concentration in tails. In the parlance of the statistician, the four measures are called “statistical
moments” or simply “moments.” The mean is the first moment and is also referred to as the expected
value. The variance is the second moment, skewness is a rescaled third moment, and kurtosis is a
rescaled fourth moment.
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Is Forecasting Markets Worth the Effort?
What are the implications of this discussion for portfolio managers? Portfolio
managers and chief investment officers must decide whether there is potentially
sufficient benefit in trying to extract additional information (and thus additional
profit) from markets through quantitative research and modeling. A first important
conclusion from the discussion is the following:

It is not true that progress in our ability to forecast will necessarily lead to a
simplification in price and return processes. Even if investors were to become
perfect forecasters, price and return processes might still exhibit complex patterns
of forecastability in both expected values and higher moments, insofar as they
might be martingales after dynamically adjusting for risk. No simple conclusion
can be reached simply by assuming that investors are perfect forecasters: in fact,
it is not true that the ability to forecast prices implies that prices are unpredictable
random walks.

When the random walk hypothesis was first advanced, it was believed that
forecasting efforts were futile because prices were random walks. However, it seems
reasonable to conclude that price processes will always be structured processes
simply because investors are trying to forecast them. Modeling and sophisticated
forecasting techniques will be needed to understand the risk–return trade-offs
offered by the market.

A second point is that the idealized behavior of perfect forecasters does not have
much to do with the actual behavior of real-world investors. Real-world investors
use relatively simple forecasting techniques, such as linear regressions. When they
use judgment, it is fair to say that the possibility of making mistakes is high. The
preoccupation with the idealized behavior of markets populated by perfect forecasters
seems to be ill placed. The usual defense of the assumption that real investors are
perfect forecasters is that it is unreasonable to assume that investors make systematic
mistakes. It is claimed that, on average, investors make correct forecasts.

But this is obviously false. Investors can make systematic mistakes and then hit
some boundary with painful consequences. The technology/media/telecommuni-
cations bubble of the late 1990s is an example. The preoccupation to stay within
the strict doctrine of market efficiency has no strong justification. As a matter of
fact, field research conducted by The Intertek Group has shown that asset managers
are not preoccupied with theoretical considerations of market efficiency. A prag-
matic attitude prevails. Markets are considered to be difficult to predict but to
exhibit rather complex structures that can be (and indeed are) predicted, either
qualitatively or quantitatively.

A third important, and not surprising, consideration is that predictability is not
the only path to profitability. If prices behaved as simple models, such as the random
walk or the martingale, they could nevertheless exhibit high levels of persistent
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profitability.11 The reason is that these models are characterized by a fixed structure
of expected returns. Actually, it is the time invariance of expected returns, coupled
with the existence of risk premiums, that makes these models unsuitable as long-
term models. As we will discuss in Chapter 8, a model like the geometric random
walk model of prices leads to exponentially diverging expected returns. This is
unrealistic in the long run, because it would lead to the concentration of all market
capitalization in one asset. As a consequence, models like the random walk model
can only be approximate models over limited periods of time. This fact, in turn, calls
attention to robust estimation methods. A random walk model is not an idealization
that represents the final benchmark model: It is only a short-term approximation
of what a model able to capture the dynamic feedbacks present in financial markets
should be.

Conclusion
Consider our earlier questions: Is it worth attempting to forecast markets with
quantitative methods? Is it true that, although the random walk model cannot be
theoretically justified, it is the most robust approximation to market behavior we have?

The behavior of markets is the result of not perfectly rational agents but real
agents who have limited intelligence, have limited resources, and are subject to
unpredictable exogenous events. The action of these agents is in itself a source of
uncertainty. As a result, there is no theoretical reason to maintain that the multi-
variate random walk is the most robust model. Determining whether the random
walk is, indeed, the benchmark model of price processes is an empirical question
and has to be addressed empirically. However, it seems clear that markets offer
patterns of predictability in returns, volatility, and possibly, higher moments. These
patterns might offer opportunities for realizing excess returns; ignoring the patterns
will lead to lost opportunities or simply losses. In other words, simple random walk
models with risk premiums are not necessarily the safest models. The joint assump-
tion that markets are unforecastable and that there are risk premiums is not
necessarily the safest assumption.

11Perhaps we should explain what we mean by profitability. In finance theory, any profit in excess of the
riskless profit must be considered risky. Profitability thus entails a risk–return trade-off that an investor
judges favorable given his or her risk–return preferences. In the absence of arbitrage, price processes can
be transformed into martingales. However, this does not imply that all risk–return trade-offs are
equivalent; investors have different risk–return preferences. Positive alphas do not imply arbitrage.
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2. General Equilibrium 
Theories: Concepts and 
Applicability

Our focus in this chapter is on describing the basic principles underlying general
equilibrium theories. We approach the theories not from a theoretical point of view,
but from an informal and intuitive standpoint. The intent is to help readers
understand the capital asset pricing model and its limitations. The CAPM is
probably the best-known general equilibrium theory in finance.

General equilibrium theories can be considered the pinnacle of economic
theory. The theories have the status and the mathematical complexity that classical
dynamics have in physics. The practical applicability of general equilibrium theories
is limited, however, unless drastic approximations are accepted. In addition, there
appears to be a good deal of conceptual confusion about the empirical meaning of
these theories.

Understanding how general equilibrium theories work requires an understand-
ing of how the decision-making process of agents in the market can be formalized
through utility functions. We address this question in this chapter. First, however,
we discuss the concept of general equilibrium.12

General Equilibrium
Succinctly, the concept of general equilibrium is the following.13 Markets must
always be in “physical equilibrium,” in the sense that any transaction requires a seller
and a buyer. Supply and demand may be in disequilibrium, however, because the
quantity of each good offered for sale at a given market price may not be the same
as the quantity that market participants are willing to buy at that price; in such a
circumstance, a shortage or glut of the good occurs. The key point is that in a given
economy, both supply and demand are functions of one factor: price. General
market equilibrium means that in a well-functioning competitive market, prices will
immediately adjust so that “supply equals demand” (more precisely, the quantity
supplied at the current market price equals the quantity demanded at that price). 

12Bernstein (1992) gives a historical account of the development of modern finance theory and its
impact on financial markets. His personal experiences and extensive interviewing of key protagonists
result in a lively account.
13The classic reference on the subject is Varian (1992).
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The existence of market equilibrium is intuitive. Even in daily life we have the
experience that if a product is in short supply, prices rise until demand fades and if
there is excess supply, prices fall until new buyers are attracted.14 The rigorous
demonstration of the existence of equilibrium, however, hinges on one of the most
profound results of modern mathematics—namely, Brouwer’s fixed-point theorem.15

Market equilibrium as discussed so far is a static, deterministic concept. That
is, in this simple setting, demand does not change with time and there is no
uncertainty. Arrow and Debreu (1954) extended this concept to an uncertain
environment in which market participants decide at a given time on the basis of
uncertain future prices. Uncertainty is represented by the idea that the economy can
be in a multitude of states, where each state is associated with a different price. The
concept of “state” in this approach is an abstraction. A state is the ensemble of all
variables that characterize an economy at a given moment. Different states differ
by at least one variable. Because in practice people know only a limited number of
variables, researchers have introduced the concept of an abstract state. 

The extension of general supply-and-demand theory to an uncertain environ-
ment proposed by Arrow and Debreu involves regarding a good in each state as a
separate good (so-called state goods or state prices). With this approach, one can
take the concepts used in the deterministic case and use them in the uncertain
environment. One still needs to know the demand for each good in each state, but
conceptually, Arrow and Debreu made a major step forward. Their approach
allowed the tools of probability theory to be integrated in a natural way with the
mechanics of competitive markets. 

At this point, we need to explain how the preferences of market participants
can be formalized. This is achieved by introducing the concept of utility functions.

Utility Functions
The concept of utility functions was introduced in economics by the Italian engineer
and economist Vilfredo Pareto at the end of the 19th century. A slightly different
concept of utility that is used today was introduced by Von Neumann and Morgen-
stern (1944). 

The problem that Pareto and, later, Von Neumann and Morgenstern wanted
to solve was how to represent mathematically the decision-making process of
market participants—that is, how market participants choose between different

14This example focuses on changes in demand caused by changes in price, but a focus on changes in
supply caused by changes in price is equally instructive.
15Brouwer’s fixed-point theorem states that if a continuous function maps an interval onto itself, there
must be a point where the function has the same value as that of its argument. Geometrically, if a
continuous line joins two opposing vertices of a square, there must be a point where the line meets
the diagonal.
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goods or investment products. A mathematical representation of agents’ choices is
necessary if the entire market process is to be represented mathematically.

In the 19th century, the principal mathematical tool used in physics and
engineering was calculus (today, a broader range of mathematics is used). Therefore,
when Pareto introduced a quantitative notion of decision making, he used calculus
to represent agents’ choices. Agents order their choices of goods (including invest-
ment products) quantitatively by associating with each possible decision a value, the
decision’s so-called utility. According to Pareto, decision making is carried out by
computing the utility of each good or service and then selecting the one with the
highest utility.16

Von Neumann and Morgenstern provided a rigorous logical basis to this
reasoning. They assumed that economic agents—investors, for example—are always
able to express preferences, in the sense that if they are given two alternatives, they
can always determine either that they prefer one to the other or that they are precisely
indifferent between the two. In the context of investing, an investor’s attitude toward
risk—that is, the rate at which the investor is willing to accept an additional unit of
risk to earn an additional unit of expected return (the rate that is called the investor’s
“risk preference”)—determines how much risk that investor will take. In the context
of Markowitz’s mean–variance optimization (see Chapter 3), it determines at what
point on the efficient frontier the investor’s investment portfolio will lie. 

Utility theory assumes that preferences abide by a number of consistency rules.
For example, if choice A is preferred over choice B and choice B is preferred over
choice C, then choice A must be preferred over choice C. Under these assumptions,
it can be mathematically demonstrated that one can assign a number, the utility, to
each possible choice. A utility function is a function that assigns a utility number to
every possible choice. Utility theory further assumes that all decision makers try to
maximize their utility 

Without going deeply into a mathematical characterization of utility functions,
we can summarize by saying that many different utility functions—that is, different
functional forms in the mathematical sense—have been proposed to describe
various aspects of agents’ decision-making processes. For example, an important
issue is whether agents can be satiated so that their utility functions become zero
for certain choices (in other words, so that the acquisition of an additional unit of
a good produces no additional satisfaction). The answer is certainly yes for such
goods as perishable food, but for most goods, the answer to the question is unclear.

Utility is an abstract concept: Agents do not explicitly maximize their utility when
making decisions. For the purpose of modeling, however, agents can be assumed to

16In its original form, Pareto’s law states that there is a linear relationship between the logarithms of
income, I, and the number of people that earn more than I. A broad range of phenomena, such as the
populations of cities within a country, follow the Pareto law, which is also known as the Zipf law or
Zipf distribution.
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do just that. Utility theory further assumes that the system by which an individual
maps choices into quantities of utility is fixed and predetermined at any given point
in time, although it may change deterministically over time. The theory of utility
functions is in contrast to our everyday perception of human behavior as unpredict-
able; it embodies the belief that human behavior is perfectly predictable (i.e., deter-
ministic), albeit within the restricted domain of economic decision making.17

The representation of decision-making processes as the maximization of utility
has been criticized on various grounds. One of the criticisms is that decision making
is not as deterministic as utility functions assume it to be. For example, humans are
subject to peer pressure and fads and are, in general, influenced by others. Canetti’s
Crowds and Power gives a chilling description of how behavior changes depending
on whether people are acting as individuals or in groups.18

The rationality of decision making has been much discussed in the context of
the psychology of financial decision making. Behavioral finance, a more recent
addition to financial theory, applies psychological considerations to understand how
investors’ decision-making processes are affected by emotions and cognitive
errors.19 For example, behavioral finance studies whether (and how) investors
overreact or underreact to the arrival of new information and news. The study of
psychology and other social sciences can provide considerable insight into the
efficiency of financial markets and may provide explanations of market anomalies
and nonrational investor behavior.

Finally, the theory of mutually interacting agents applied to economics explicitly
recognizes that there are pairwise influences between agents: What one person does
may depend directly on what someone else does. Pairwise influences run contrary
to the representation of decision making with static utility functions. In fact, static
utility functions assume that there is only one central signal—the price—on which
all decisions are based; in this framework, each decision maker makes his or her
decision alone without reference to what other people decide. The classical utility
maximization paradigm excludes the direct exchange of information and mutual
influence between agents. The utility maximization paradigm can be adapted to a
framework of mutually interacting agents, however, by making utility functions
depend on mutual interactions.

17The question as to whether the predictability of human decision making contradicts the concept of
free will was the subject of philosophical and moral debate for centuries. Economists were able to
avoid the problem by making the argument that economic decision making is technically rational and
does not involve any moral considerations. Although the rationality of agents’ economic decisions has
been questioned, the moral dimension of economic decision making is rarely discussed.
18Canetti (1984). This book was first published in German in 1960 as Masse und Macht by Claassen
Verlag, Hamburg, Germany. The English translation, Crowds and Power, was published in 1962.
Canetti was awarded the Nobel Prize in Literature 1981.
19For an overview of behavioral finance, see Barberis and Thaler (2003).
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Utility and Uncertainty
The concept of utility discussed so far assumes perfect knowledge (i.e., the absence
of uncertainty) about choices. We will now introduce uncertainty and show how
utility functions can embody a risk–return trade-off. Note that we will deal with
uncertainty about the future consequences of choices (for example, the returns on an
investment), not uncertainty about the way the choice is made; that is, the utility
function itself is not uncertain.

To understand how to combine utility and probability, consider the problem
of determining the composition of a portfolio formed by only one risk-free asset
and one risky asset—say, a stock. As already observed, uncertainty is represented
by the fact that the economy can be in a number of states. Thus, at any future date,
a multitude of different prices for the risky asset is possible. Given only one risky
asset, each economic state is identified by one price and thus by one return (the price
and return of the risk-free asset are the same in all states).

Investors must determine the proportion of their funds to allocate to each of
the two assets. A price and a return are associated with each state, so based on the
proportions or weights of the assets, the portfolio return can be determined in each
state. The utility function is then defined so that each return carries an associated
utility level; this utility function then indicates the utility of each possible return on
the investment. If a probability number is associated with each state, one can
compute the (statistically) expected value of the utility. If the portfolio has a high
proportion of the risky asset, its returns will exhibit a lot of fluctuation, with some
states having a high level of utility and other states having a low level of utility.
According to utility theory, an investor will choose those weights that correspond
to the highest expected utility.

In this formulation, the risk–return trade-off is implemented in the way utility
is associated with returns. For example, if high returns have a high utility, they will
have a considerable weight in the optimization process, even if their probability of
occurring is low. Different utility functions (i.e., different ways to associate utility
with returns) generate different trade-offs. 

There is another way to generate a risk–return trade-off with utility functions.
If one knows the distribution of returns, one can define a utility that is a function
of both returns and the variance of returns. Each portfolio has a specific expected
return and variance. The utility function is defined as a function of portfolio return
and variance. Given the distribution of returns, one can compute the distribution
of utility and its expectation. Portfolios can be chosen by maximizing utility defined
as a function of expected returns and variances. 
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General Equilibrium and the Utility Function
Now, we will take another look at general equilibrium in light of the utility function.
We will use the CAPM as the setting. In this setting, we have a number of risky
assets and one risk-free asset. There are also a number of investors, who own all the
available assets. Because we will consider only one period, each investor’s utility is
defined as a function of the returns of his or her portfolio at the end of the period.
Each investor knows the joint probability of returns at the end of the period—that
is, the probability of returns taken all together—and will choose weights that
maximize the expected return of his or her portfolio.

In equilibrium (and this condition is the essence of general equilibrium), the
distribution of returns will be such that all investors will reach the optimum of their
utility functions and there will be no trading. This general equilibrium condition
places restrictions on return expectations. Assuming normal distributions of returns
and utility functions equivalent to mean–variance optimization, the classic CAPM
embodies these restrictions by saying that the excess return of each stock over the
riskless rate is proportional to the market’s excess return over the risk-free rate (the
proportion being the beta of the stock). Generally, all investors’ utility functions can
be grouped together so that their collective action is equivalent to that of the so-
called representative agent.

In a multiperiod setting, we can consider trade-offs that are not possible in the
single-period setting. In a single-period setting, agents optimize the expected utility
of returns at the end of the period, which is equivalent to optimizing the utility of
expected wealth at the end of the period. In a multiperiod setting, agents optimize
the utility of a stream of consumption and final wealth is considered the final
consumption. If no intermediate consumption occurs, the multiperiod setting is
equivalent to a single-period setting unless one imposes a utility function defined
on intermediate wealth rather than on a consumption stream. But an investor may
be concerned with the fluctuations of his or her wealth, which requires considering
utility functions at different time points. Thus, we need to determine how the utility
function varies as a function of time. Although various modeling options exist, the
end result of all of them is that the investors’ utilities are functions of time.

Although a discussion of general equilibrium in a multiperiod setting is highly
technical and beyond the scope of this monograph, the principle of general equi-
librium is the same in a multiperiod setting as in a single-period setting. The key
ingredients of the general equilibrium theory are as follows:
• a set of price processes for all the assets involved,
• a set of investors and their relative utility functions, and
• optimization of agent utility.
In the general equilibrium framework, investors know the price process. Thus, they
base their decisions on the price processes the assets follow—such as a random walk.
Agents optimize their portfolios on the basis of their forecasts. The result of this
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optimization process creates demand and supply as each agent rebalances his or her
portfolio. In equilibrium, the prices resulting from demand and supply do not
produce any effect on the returns used by agents in their decision process. In other
words, conceptually, there is no feedback from prices to returns.

General equilibrium theories are theoretical constructs in which unobservable
utility functions are an integral (and abstract) part of the theory. In other words,
these theories must be viewed as rather complex analytical descriptions of the real
world. Testing general equilibrium theories, therefore, has required that researchers
consider the context. For example, if a general equilibrium theory is specified with
utility functions and all the exogenous processes, researchers can generally find a
number of testable conclusions. Perhaps the most well known is the CAPM
conclusion that the market portfolio must be mean–variance efficient.

In summary, general equilibrium theories provide an idealized framework for
modeling and understanding individuals’ choices and the evolution of prices. 

Agents and General Equilibrium
From the preceding discussion, readers should realize that the “agents” who appear
in a general equilibrium formulation of a model have little to do with the economic
agents one might encounter in real life. Utility-optimizing agents, if not purely
mathematical fictions, have to be considered an idealization. The question is
whether the idealization is close enough to reality to be useful. 

In a famous essay, Friedman (1953) introduced the idea that economic theory
is not intended to describe reality; it should be evaluated on whether it explains
empirically ascertainable phenomena. He wrote:

The relevant question to ask about the “assumptions” of a theory is not whether
they are descriptively “realistic,” for they never are, but whether they are sufficiently
good approximations for the purpose in hand. And this question can be answered
only by seeing whether the theory works, which means if it yields sufficiently
accurate predictions. (p. 15)

In this connection, a long debate has opposed two views of financial agents. One
view holds that financial agents are “infinitely rational” agents who know the true
stochastic process of the economy. The other, more recent, view holds that they are
“boundedly rational agents”; they are closer to real agents than are infinitely rational
agents because they form forecasts and expectations based on limited information,
have limited ability to interpret that information, and thus make mistakes. 

This debate is fairly academic; agents are obviously boundedly rational. Any real
person claiming to be an infinitely rational agent would be laughed at. As demon-
strated by Harrison and Kreps (1979), however, any price system generated by a
system of boundedly rational agents, provided the system does not admit arbitrage
opportunities, can also be described by a model that assumes infinitely rational
agents. Ultimately, the objective is to arrive at a reasonably approximate description
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of financial price processes. Therefore, the description of financial price processes as
the result of the optimizing behavior of rational agents is a useful framework.

Despite the usefulness of such frameworks, users should be aware of their
limitations. For example, the classic framework of single-period optimization
proved to be very useful in bringing discipline to the investment process. In
particular, single-period optimization brought to asset management the following
key elements: (1) consideration of the risk–return trade-off and (2) consideration
of correlations. In practice, however, agents apply other considerations. First and
foremost, agents consider the uncertainty of the forecasting process. For an agent
who is a less-than-perfect forecaster of returns, variances, and correlations, optimi-
zation is risky because it can magnify forecasting errors.

Understandably, then, the profession is experiencing a growing interest in
portfolio construction techniques that are more robust (that is, less sensitive to
forecast error) than classical mean–variance optimization based on utility maximi-
zation. Research conducted by The Intertek Group for this monograph, the findings
of which are summarized in Chapter 11, revealed that a significant fraction of the
surveyed firms are using or are experimenting with forecasting techniques. At the
same time, the research has revealed a growing uneasiness with the usability of these
new tools. The more pragmatic approach, influenced by this notion of “robustness,”
is prevailing.

In principle, the conceptual tools for analyzing markets populated with non-
rational or boundedly rational agents exist. The camps of practitioners and researchers
in this new field, however, are presently far apart. On the one hand, many practitioners
would benefit from a clear understanding of the theory behind boundedly rational
interacting agents and behavioral finance. On the other hand, researchers in this field
would benefit from a clear understanding of the practical needs of the investment
management community. A convergence of theory and practice would benefit the
whole financial community.
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3. Extended Framework for 
Applying Modern Portfolio 
Theory

In discussing the application to modern portfolio theory of robust estimation and
optimization methods, we first briefly review the methodology of mean–variance
optimization and then discuss how robust methods overcome some of the com-
mon pitfalls associated with this framework. In particular, we discuss issues related
to forecasting returns, diversification, estimation of the covariance matrix, and
optimization.

The Mean–Variance Framework Reviewed 

In 1952, Harry M. Markowitz addressed a fundamental question in financial
decision making: How should an investor allocate his or her funds among the possible
investment choices?20 Prior to Markowitz, this question had received two different
responses. One was the response of the speculator, according to which an investor—
using judgment and intuition to understand how John Maynard Keynes’ (1935)
“animal spirits” dominated financial markets21—should invest in those assets that
he or she believes offer the best prospect for returns. The other was the response of
the financial analyst and was centered on the notion of value: Fundamental analysis
can discover the true value of an asset, and the investor should invest in those assets
that offer the highest value given the price at which the asset is trading.

In Markowitz’s 1952 paper, which became one of the most influential works
in finance theory, he introduced a critical innovation. He suggested that investors

20For a review of this framework, see Chapter 11 in DeFusco, McLeavey, Pinto, and Runkle (2004).
21In Keynes’ economic thinking, psychological elements play a fundamental role. Keynes argued that
inexplicable changes in spontaneous confidence can be responsible for economic fluctuations. “Animal
spirits” is the term he coined to express the state of spontaneous confidence. In The General Theory of
Employment, Interest and Money, he wrote, “Even apart from the instability due to speculation, there
is the instability due to the characteristic of human nature that a large proportion of our positive
activities depend on spontaneous optimism rather than mathematical expectations, whether moral or
hedonistic or economic. Most, probably, of our decisions to do something positive, the full
consequences of which will be drawn out over many days to come, can only be taken as the result of
animal spirits—a spontaneous urge to action rather than inaction, and not as the outcome of a
weighted average of quantitative benefits multiplied by quantitative probabilities” (pp. 161–162).
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should consider risk as well as return specifically, they should decide the allocation
of their investments on the basis of a trade-off between risk and return.22 The idea
that sound financial decision making is a quantitative trade-off between risk and
return was revolutionary for two reasons. First, it posited that one could make a
quantitative evaluation of risk and return jointly by considering all investments and
their correlations (i.e., their joint movements). Second, it posited that one could
optimize even large portfolios.

In making the critical assumption that determining the joint probability distri-
bution of returns of all possible investments is possible, Markowitz introduced to
investment management the notion of a quantitative evaluation of risk and returns.
A key aspect of Markowitz’s risk–return framework, known as “mean–variance
optimization” and considered the cornerstone of modern portfolio theory (MPT), is
the consideration of correlations.23 This concept was foreign to classical financial
analysis, which revolved around the notion of the value of single investments. 

The Markowitz framework is a one-period framework. Investors decide the
allocation of investments at time t with estimates of returns (or, equivalently, their
wealth) at some future date t + Δt.24 Markowitz assumed that investment returns
can be represented by a joint normal distribution.25 The bulk of the distribution
lies around the center (mean), and the “tails” of the distribution—that is, the regions
far from the center—are very thin. Thus, in a normal distribution, the probability
of extreme events is negligible.

The normal distribution is perhaps the most fundamental distribution in prob-
ability theory. Although it was introduced by Abraham de Moivre (1667–1754), the
normal distribution is generally associated with the German mathematician Karl
Gauss (1777–1855); in fact, the normal distribution is also known as the Gaussian
distribution. Its popularity rests on a fundamental result proven by Gauss, the central
limit theorem, according to which the distribution of the sum of a large number of

22Markowitz was awarded the Nobel Prize in Economic Sciences in 1990 for this work.
23Markowitz also understood early in the development of computers the potential they offered in
estimating moments (e.g., mean and variance, skewness, and kurtosis) and correlations and to optimize.
24An investment strategy that considers only one period ahead is called a “myopic strategy”; an
investment strategy that jointly considers multiple periods ahead is called a “far-sighted strategy.”
25In his 1952 paper, Markowitz did not explicitly mention normal distributions. But because his
analysis considered only the first two moments, mean and variance, we can say that Markowitz
implicitly assumed that return distributions are normal, in the sense that any nonnormal behavior is
considered irrelevant. (Given the first two moments, it can be formally demonstrated that the normal
distribution as defined by those two moments is the only distribution that does not introduce spurious
information; that is, assuming any distribution other than normal would spuriously introduce
information not based on the available data.) We use the assumption of normal distribution of returns
here because we believe it helps in understanding the mean–variance principle.
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independent random variables is approximately normal, even if the variables them-
selves have nonnormal distributions, as long as their variances are finite.26 

In view of this result, Markowitz’s assumption was reasonable because invest-
ment returns can be considered the sum of many independent events. This assump-
tion is still the basis of much of today’s financial econometrics, but it is being
questioned (we will come back to this controversy later in the chapter).

The assumption that returns are jointly normal allows a fundamental simplifi-
cation of the model describing them. A jointly normal distribution of returns on
multiple assets is perfectly described by (1) an array of expected returns and (2) a
variance–covariance matrix. The variance–covariance matrix is the matrix in which
the entry at the crossing of the ith row and the jth column is the covariance between
asset i and asset j. The diagonal entries are the variances. Under the assumption of
the joint normal distribution of returns and given the expected returns of each asset
and their variance–covariance matrix, the expected return and the variance of any
portfolio can be derived from the portfolio weights by using simple algebra.

Markowitz’s mean–variance principle posits that the risk associated with a
portfolio expected return is measured by the portfolio’s variance. Consider an
investor’s return objective. If the desired return is feasible, then an infinite number
of portfolios achieve the return objective. Among these portfolios, the problem for
the investor is to choose the portfolio that has the minimum variance; all other
portfolios are considered to be “inefficient.” This problem is a minimization (or
optimization) problem whose solution can be obtained through one of the many
optimizers now freely or commercially available. Markowitz’s mean–variance prin-
ciple can be stated alternatively by prescribing that, for any desired variance,
investors choose the portfolio that offers the maximum return.

We can sum up Markowitz’s mean–variance optimization theory as follows:27

• End-of-period returns are jointly normally distributed.
• All an investor needs to know are the expected returns of each asset and their

variance–covariance matrix.
• The expected value (i.e., the mean) and the variance of the return of any

portfolio can be determined as algebraic expressions of the weights of the assets
in the portfolio.

• For any desired return, investors should choose the portfolio that has the lowest
variance.

• The portfolio choice is a minimization problem that can be solved with
optimization software packages.28

26There are distributions with infinite variance. Samples extracted from these distributions exhibit a
variance that grows with the size of sample. 
27In economics, a distinction is made between positive theories that describe the economic state of
affairs and normative theories that prescribe a given behavior. Markowitz’s theory is considered a
normative theory because it prescribes investors’ behavior.
28For practical considerations in selecting optimization software, see Chapter 9.
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The mean–variance optimization principle does not identify a single best
(“optimal”) portfolio. It only identifies the best for a given desired return or desired
variance. The mean–variance principle identifies the set of all optimal variance-
return pairs, called the “Markowitz efficient frontier.” Investors are advised to
choose portfolios that are on this frontier. The smallest variance that can be achieved
in a portfolio of risky assets has a lower bound; the resulting portfolio is the “global
minimum variance” portfolio. Furthermore, if the amount of leverage that can be
used is constrained, then the maximum obtainable expected return of all the
portfolios on the efficient frontier has an upper bound. This portfolio, often referred
to as the “maximum return” portfolio, will, of course, be the riskiest portfolio—the
one with the highest volatility—of all the portfolios on the efficient frontier. It will
also contain just one asset, the highest-expected-return (and riskiest) asset.

Diversification. The purpose of diversification is to reduce volatility in the
portfolio. An investor can achieve diversification by adding assets to the portfolio
and, in particular, adding assets that have low correlations with one another. 

To understand the process of variance reduction, consider the following three
cases. (Assume that the assets all have the same finite variance.) First, if the asset
returns are perfectly correlated—that is, if all correlation coefficients are equal to
1—variance cannot be reduced. The asset returns move together perfectly; there-
fore, from the point of view of variance reduction, choosing more than one asset
provides no benefit. Second, if the asset returns are independent, then the variance
of a portfolio of N assets is 1/N of the variance of each asset. Being independent,
most return fluctuations, by pure chance, will cancel each other. Finally, consider
the case of perfect negative correlation. This case is interesting because, although
all asset returns can be perfectly correlated, it is not possible for all asset returns to
be perfectly negatively correlated. To see this point, consider two asset returns and
suppose that they are perfectly negatively correlated; that is, the two returns fluctuate
in exactly opposite directions. Now, add a third asset. Clearly, it cannot be perfectly
negatively correlated with both.

Suppose the set of assets from which investors may choose a portfolio is
small—say, the pool is 10 assets. In general, if the set is broadened—say, from 10
to 20—the investor achieves a considerable advantage in terms of variance reduc-
tion. If the investor continues to add assets, however, the variance reduction grows
progressively smaller until the point at which adding assets provides no practical
advantage. A well-diversified portfolio is a portfolio whose variance cannot be
further reduced by adding assets.29 

29The number of equity assets that are apparently needed to achieve an optimal level of diversification
has significantly changed over the years. At the end of the 1960s, Evans and Archer (1968) suggested
that as few as 20 stocks should be sufficient to achieve a good level of diversification, but more recent
studies (see, for example, Campbell, Lettau, Malkiel, and Xu 2001; Malkiel 2002) have found that as
many as 200 stocks are necessary to achieve a good level of diversification today because individual
stock variance and correlations have increased over time.
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Mean–Variance Utility Optimization. Mean–variance analysis as dis-
cussed in the previous sections does not allow an investor to identify a uniquely
optimal portfolio. To identify a uniquely optimal portfolio, investors need to specify
their risk–return preferences—that is, their mean–variance preferences. In fact,
mean–variance analysis identifies all mean–variance pairs; the investor must identify
his or her preferred mean–variance pair.

To solve this problem in a mathematical framework, one needs utility functions,
as discussed in Chapter 2. Suppose an investor has defined his or her utility function
as a function of mean and variance. That is, the investor is able to associate a utility
number to any mean–variance pair. (Note that utility defined in this way is a
deterministic function.) The uncertainty associated with the future behavior of
portfolios is now entirely represented by this mean–variance pair.

Given a utility function, the portfolio choice problem becomes the problem of
maximizing utility. There are two additional important logical elements in the
definition of a utility-based framework. First, note that an investor maximizes
utility, which we have defined as a function of mean and variance, by determining
the weights of the assets in the portfolio. Thus, optimization is about finding the
asset mix, or vector of holdings weights, that produces the desired portfolio mean
and variance. 

The second element is that we must go from variance to the square root of
variance, standard deviation. This step is useful for defining such properties as risk
aversion. “Expected return” and “variance” are not homogeneous terms because
variance is defined as the expected square of the fluctuations of returns around their
mean. To define risk aversion in simple terms, we need to measure risk and returns
in the same units.

Markowitz mean–variance analysis assumes a utility function that is propor-
tional to the expected return minus a weighting factor times the square of standard
deviation. The weighting factor is called the “coefficient of risk aversion.” A utility
function of this type is a quadratic function of the portfolio weights. The corre-
sponding optimization problem is thus a quadratic optimization problem.

Eventually, higher moments could be included. For example, an investor may
“like” skewness (denoted S3) but be averse to kurtosis (denoted S4), so his utility
function is given by

 

where k1, k2, and k3 are the coefficients of aversion to, respectively, variance,
skewness, and kurtosis. Note that k2 would be negative in this example (thus the
product, k2S3, is positive) and adds to utility because the investor likes skewness;
that is, all other things being equal, he prefers a distribution with positive skewness
to one with zero skewness). 

U = − − −μ σk k S k S1
2

2 3 3 4,
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Expected Utility Maximization. In the previous section, we defined
utility as a deterministic function of expected returns and standard deviation of
returns. In other words, we considered only the first two central moments of a
probability distribution (expected return and standard deviation) and ignored higher
moments of the probability distribution. The utility framework can be generalized,
however, to account for any distribution. In this expanded utility framework, we
define utility as a function of the entire probability distribution of returns; then,
portfolio weights are determined by maximizing the expectation of utility.30 

Robust Methods of Applying Mean–Variance 
Optimization 
Mean–variance optimization (MVO), although formulated in the early 1950s, was
not immediately applied in practice for various reasons. Some of the impediments
are related to the ways in which asset management firms were and are structured,
and some are related to technical problems. In this section, we discuss a few of the
reasons why the application of MVO slowed down.

A significant barrier to the spread of MVO is that adequate computing power
at a cost affordable by a medium-sized asset management firm became available only
in the 1990s. Before then, the cost of computing and storage was too high for wide
deployment of security-level optimization. (Because the number of asset classes is
limited, optimization at the asset-class level could be conducted in the late 1970s
and early 1980s.) The cost and difficulty of programming was also a significant
barrier. The cost of even off-the-shelf applications plus the cost of data were
prohibitive for most firms. So, many organizations could not adopt MVO in full.

In addition, the crucial inputs to mean–variance optimization—namely, esti-
mates of expected returns and the variance–covariance matrix—pose key practical
challenges in applying MVO. If a portfolio manager feeds an optimizer historical
mean returns and the historical variance–covariance matrix, the results obtained will
be poor. The reason is that for any realistic number of assets, the empirical mean
returns and the variance–covariance matrix are noisy estimates of the true expected
returns and the variance–covariance matrix. 

For an idea of the severity of the problem created by having to have a large
number of estimates, consider estimating the variance–covariance matrix of the
S&P 500 Index. Suppose we use two years of data—that is, roughly 500 data points
per return series. In total, 500 × 500 = 250,000 data points are available. Although
this number seems large, keep in mind that the variance–covariance matrix of the
S&P 500 has approximately 125,000 entries. Thus, on average, only two data points

30Chapter 2 of Fabozzi, Focardi, and Kolm (2006a) offers a discussion of the expected utility
framework and describes many classes of utility functions.
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per entry are available for estimates. The result is that many entries of the empirical
variance–covariance matrix are simply pure noise.

Suppose we feed this covariance matrix into an optimizer. Any optimizer seeks
the best combinations of return and variance. Unless we adopt specialized “robust
methods” (which we describe in the next section), the optimizer will not be able to
distinguish noise—or estimation error—from true information. The optimization
software treats all the inputs as deterministic and error free, which puts statistical
outliers or simply bad estimates in a position of power in the optimizer. The result
is the production of so-called corner portfolios. A corner portfolio is a portfolio with
a high concentration in a few stocks that, because of estimation error and pure noise,
seem to offer exceptional optimization opportunities. In short, the optimizer is
maximizing estimation errors. Many organizations that tried to implement MVO
had negative experiences primarily as a result of this phenomenon of error maximi-
zation. What was needed was a robust methodology for estimation and optimization.

Robust Estimation. Modeling returns is perhaps the most critical issue in
implementing the Markowitz framework.31 The Markowitz framework per se does
not require that returns be a sequence of independently and identically distributed
(IID) variables (i.e., that returns be independent from previous returns), only that
returns be conditionally normal.32 The problem in modeling returns is the difficulty
of estimating the variance–covariance matrix of the normal distribution of returns
A number of approaches to estimating expected returns and the variance–covariance
matrix have been tried: the empirical approach, the factor-based approach, the
clustering approach, the Bayesian approach, and the stochastic volatility approach.

■ Empirical approach. If the portfolio manager adopts a model of returns as a
sequence of IID variables, the manager can estimate the expected (future) returns
and the variance–covariance matrix by using the empirical (past) means and
empirical variance–covariance matrix. In this approach, the expected return is
calculated as the historical arithmetic average return. The expected variance–
covariance matrix is obtained similarly by assuming “future equals past.” Although
this estimation is theoretically correct for large IID samples, the results are poor in
practice. In fact, historical estimates are noisy, so using the historical means and
variance–covariance matrix in portfolio optimization typically produces the corner
portfolios. In addition, if the sequence of returns is not IID—for example, if returns
are mean reverting, estimation errors will be significant.

31For further discussion, see Chapter 4 of Fabozzi, Focardi, and Kolm (2006a). 
32If returns are normal but not independent and exhibit some forecastability, the Markowitz
framework can be applied. If returns are not independent, however, use of a one-period-ahead
framework is problematic because, in that case, there are forecastable trade-offs between transaction
costs and returns. We discuss this aspect later in the chapter.
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■ Factor-based approach. A key problem in estimating the variance–covariance
matrix is the large number of entries in the variance–covariance matrix in
comparison with the number of available sample data points. As a result of the small
number of data points, covariances are noisy. Very large or very small covariances
may appear by chance. The factor-based approach solves the problem by reducing
the number of covariances to those between a restricted number of common factors.
The entire variance–covariance matrix is, therefore, determined by the variance–
covariance matrix of the factors. Then, each asset must be characterized as a
“portfolio” (or weighted sum) of factor exposures so that the variance–covariance
estimates for factors can be applied to holdable assets.

In a factor model, every individual return is represented as a weighted sum of
a number of factors plus some noise. In this way, the covariance between any two
assets is a weighted average of the covariances between the factors. Factors them-
selves can be company fundamental factors (e.g., financial ratios) or economic
factors (e.g., the unemployment rate) or can be determined through statistical
techniques, such as principal-component analysis (see Chapter 9).

■ Clustering approach. The clustering approach is based on averaging the
entries of the empirical correlation matrix. The correlation matrix is obtained by
replacing covariances with correlations. The correlation matrix plus the array (or
vector) of individual variances gives the same information as the variance–
covariance matrix. Because averaging the entire matrix would be an inefficient
solution, machine-learning techniques (see Chapter 6) are used to identify clusters
(i.e., subsets of assets that are similar). A robust correlation matrix is obtained by
averaging over the different clusters.

■ Bayesian approach. The Bayesian approach is slightly different from the
approach of classical finance . The classical approach to estimating expected returns
assumes that the “true” expected returns and covariances of returns are unknown
and fixed. The portfolio manager obtains a point estimate (i.e., an estimate of the
most likely return represented by a single number) by using forecasting models of
observed market data and proprietary data. The Bayesian approach, in contrast,
assumes that the “true” expected returns are unknown and random.

Named after the English mathematician Thomas Bayes (1702–1761), the
Bayesian approach is based on a subjective interpretation of probability. A proba-
bility distribution is used to represent an investor’s (or asset manager’s) belief about
the probability that a specific event will actually occur. This probability distribution,
called the “prior distribution,” reflects an investor’s judgment before any data are
observed. When more information is provided, the investor’s judgment about the
probability of an event occurring may change. Bayes’ rule is the formula for
computing the probability distribution after more information is obtained. This
new probability distribution is called the “posterior distribution.”
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In Bayesian models, a posterior distribution of expected return is derived by
combining the forecast from the empirical data with the prior distribution. For
example, in the Black–Litterman model (Black and Litterman 1990, 1992), an
estimate of future expected returns is based on combining forecasts based on market
equilibrium (e.g., capital asset pricing model equilibrium) with an investor’s views.
Such views are expressed as absolute or relative deviations from equilibrium together
with confidence levels of the views. The confidence levels are measured by the
standard deviation of the views.

The Black–Litterman expected return is calculated as a weighted average of the
market equilibrium and the investor’s views. The weights depend on (1) the volatility
of each asset and its correlations with the other assets and (2) the degree of confidence
in each forecast. The resulting expected return, which is the mean of the posterior
distribution, is then used as an input in the classical mean–variance optimization
process. Portfolio weights computed in this fashion tend to be more intuitive and
less sensitive than other methods to small changes in the original inputs, such as
forecasts of market equilibrium, investor’s views, and the covariance matrix. The
Black–Litterman model modifies the inputs to the mean–variance framework, but
the risk–return optimization is the same as in Markowitz’s classical approach.

The attractiveness of the Bayesian approach is that it allows a portfolio manager
to incorporate into formal models some exogenous insight, such as the manager’s
judgment. This insight might well be the most valuable input used in the model.
In addition, because portfolio managers may not be willing to give up control to a
“black box,” the incorporation of exogenous insights into formal models through
Bayesian techniques is one way of giving the manager better control in a quantitative
framework. Forecasts are represented through probability distributions that can be
modified or adjusted to incorporate other sources of information. The only restric-
tion is that such additional information (i.e., the manager’s views) be combined with
the existing model through the laws of probability. In effect, incorporating Bayesian
views into a model allows a manager to “rationalize” subjectivity within a formal
quantitative framework. “[T]he rational investor is a Bayesian,” Markowitz (1987,
p. 57) noted.

■ Stochastic-volatility approach. Stochastic-volatility models treat volatility as
a variable term to be forecasted. Generally, the entire covariance matrix, not only
volatility, can be regarded as a set of variable terms to be forecasted. Estimates of
the covariance matrix are not stable, however, but vary over time, so this aspect must
be dealt with. 

An early (and not entirely satisfactory) attempt to deal with this problem was
covariance-matrix discounting, which assumes that the covariance matrix changes
over time. At any moment, there is a “local” covariance matrix. The covariance
matrix is estimated as a weighted average of past local covariance matrices, and the
weighting factors typically decay exponentially over time. Since being introduced
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in the 1980s, covariance discounting has been used as a component of applied
Bayesian forecasting models in financial applications.33

However, covariance-matrix discounting does not have any real predictive
power; the methods (simplistically) provide exponentially smoothed estimates of
the local covariance structure (i.e., the covariance matrix that is supposed to hold at
a given moment) within the Bayesian modeling framework. Covariance-matrix
discounting estimates change; it does not forecast change. As a consequence, models
based on these methods tend to work reasonably well in environments where
volatility changes slowly, but they do poorly in rapidly changing markets or when
structural change occurs.

Dynamic factor models (see Chapter 5) that explicitly capture change through
patterns of variation in process parameters throughout time provide greater flexi-
bility than does covariance-matrix discounting. In dynamic factor models, the
covariance matrix is driven by a multifactor model. This approach has shown
significant improvement in the short-term forecasting of multiple financial and
economic time series and appears to be a promising technique also for the interme-
diate and long term. Although dynamic factor models are computationally demand-
ing and often require time-consuming simulations, increasing computer power and
recent advances in Markov chain Monte Carlo methods will contribute to growing
use of these models. 

Robust Portfolio Optimization. As discussed previously, the inputs to
the portfolio allocation process are unknown and have to be estimated. Any
statistical estimate is subject to error—estimation error. Therefore, it would be
useful if the portfolio optimization problem could handle the inputs given as ranges,
or even as statistical distributions, rather than as the traditional point estimates.
Moreover, MVO assumes that all estimates are equally precise or imprecise and
treats all securities equally. But it would be desirable if, when managers calculate
optimal portfolios, the differences in precision of the estimates could be explicitly
incorporated in the process. Providing this benefit is the underlying aim of robust
portfolio optimization. 

For simplicity, assume that a portfolio manager knows the correct covariance
matrix and that only the expected returns are estimated with some error. Some
securities may have larger estimation errors than others, resulting in greater standard
errors and also larger confidence intervals around those estimates. Robust portfolio
optimization takes these differences in uncertainty into account. In a nutshell, the
robust counterpart of mean–variance solutions calculates the portfolio weights that
maximize the expected return subject to a certain level of portfolio standard deviation,
not by using the estimated expected returns alone, but by using the worst-case

33Covariance-matrix discounting was introduced in the second half of the 1980s; a recent discussion
is provided in Aguilar and West (2000).
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realization of the expected return from the range given by the confidence interval.
The result is a “max-min” problem: One maximizes the expected return of the
portfolio given the most pessimistic realization of the expected returns of the assets.
(Please note that this method is not the only possible robust optimization method.) 

What is the result of this procedure? Because we are using the worst-case
expected return, when our confidence is low for a particular security (i.e., the
confidence interval is large), we will decrease the resulting portfolio weight. Con-
versely, when our confidence is high, we consider the reliability of the estimated
expected return to be higher and we set the security’s weight in our portfolio much
closer to the weight that would be obtained from the classical mean–variance solution.

We chose a simple representation of uncertainty—the estimation risk—in the
estimates of the expected returns. But many more generalizations are possible and
result in more complicated uncertainty sets. For example, we could consider uncer-
tainty in the expected returns and the covariance matrix simultaneously. The basic
principle, however, remains the same.

To construct a robust portfolio, a manager needs to understand how uncertainty
in return and correlation estimation translates into a distribution of portfolios.
Monte Carlo methods offer a “brute force” approach; that is, in these methods, one
simulates a large number of different portfolios. This approach is computationally
onerous because every portfolio requires a separate optimization. Robust optimiza-
tion is a more parsimonious approach. Introduced by Ben-Tal and Nemirovski
(1998, 1999) and by El Ghaoui and Lebret (1977), robust optimization allows a
portfolio manager to solve the robust version of the mean–variance optimization
problem efficiently in about the same time as needed for solving the classical mean–
variance optimization problem. The technique explicitly uses the distribution from
the estimation process to find a robust portfolio in one single optimization. It
thereby incorporates uncertainties about inputs into a deterministic framework. The
classical portfolio optimization methods—such as mean–variance optimization,
using the maximum Sharpe ratio, and using value at risk—all have robust counter-
parts that can be solved in roughly the same amount of time as the original
optimization (see Goldfarb and Iyengar 2003).

Robust mean–variance portfolios are more stable than other portfolios as inputs
change and tend to perform better than classical mean–variance portfolios. More-
over, the robust optimization framework offers a lot of flexibility and many
interesting new applications. For example, robust portfolio optimization can exploit
the existence of statistically equivalent portfolios that are cheaper to trade into. This
capability is important in large-scale portfolio management involving many com-
plex constraints on transaction costs, turnover, or market impact. For instance, with
robust optimization, a manager can calculate the new portfolio that (1) minimizes
trading costs with respect to the current holdings and (2) has an expected portfolio
return and variance that are statistically equivalent to those of the classical mean–
variance portfolio. 
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Finally, the robust counterparts to the classical mean–variance problem are not
quadratic programming problems. The structure of the robust optimization prob-
lem depends on the particular uncertainty set used, but most uncertainty sets being
used in practice lead to “second-order cone programs,” which can be solved by
modern optimization algorithms in about the same time as solving the classical
mean–variance problem.34 

Departure from Normality: Portfolio Allocation for General
Return Distributions. The classical mean–variance framework relies on the
assumption that the return distribution can be characterized by the first and second
moments (the mean and the variance) alone. Asset returns are far from normal,
however, and the mean and variance do not accurately describe the characteristics
of an asset’s return distribution.35 For example, many risks and undesirable scenarios
faced by a portfolio manager cannot be captured solely by the variance of the
portfolio. As a result, in cases of significant nonnormality, the MVO approach will
not be a satisfactory portfolio allocation model.

Considerable thought and innovation in the financial industry since the mid-
1990s have been directed to bettering the profession’s understanding of risk and its
measurement and to improving the management of risk in financial portfolios. The
main focus of this research is the ratio between the bulk of the risk and the risk of the
tails of security return distributions.

One can distinguish between two types of risk measures: (1) dispersion and (2)
downside risk.36 Dispersion measures are measures of uncertainty—that is, of
fluctuations on the upside and the downside. Standard deviation is one such
measure. Downside risk measures, as the name implies, attempt to measure only
deviations that have a negative impact. Most downside measures try to quantify an
investment’s probability of loss and/or severity of loss. An example is value at risk,
which measures the predicted maximum loss at a specified probability level (95
percent, for instance) over a certain time horizon (say, 10 days).

The question is: When should one risk measure be used and not another? The
short answer is: It depends. There is no “one size fits all” risk measure. On the one
hand, a portfolio manager tracking the S&P 500 is concerned about tracking error—
how much the portfolio is deviating (monthly, quarterly, yearly) from the index.
Such tracking error is typically measured by the standard deviation of the difference

34See, for example, Alizadeh and Goldfarb (2003); Ben-Tal and Nemirovski (2001); Lobo,
Vandenberghe, Boyd, and Lebret (1998). Chapters 6 and 9 of Fabozzi, Focardi, and Kolm (2006a)
provide a more detailed discussion of the technical issues of robust portfolio optimization and a general
overview of modern optimization algorithms.
35For a discussion of the empirical evidence, see Rachev, Menn, and Fabozzi (2005).
36See Rachev et al. (2005).
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in return between the fund and the index.37 On the other hand, a portfolio manager
deploying sophisticated derivative strategies (for example, selling out-of-the-money
equity put options) is going to be more worried about downside risk. In particular,
this manager wants to be able to assess the likelihood of losing a certain amount of
money when the market goes down.

The Myopic (One-Period) Framework. The Markowitz framework
is a one-period-ahead framework. At every time step, the investor is concerned with
returns at the end of and not beyond a single given period. Such a myopic framework
does not take into consideration any decisions that might be made at the end of the
period. A far-sighted framework anticipates the impact of decisions that will be
made later, in the sense of a possible trade-off between returns at the end of the
period and costs that might be incurred beyond the period.

If one believes that present decisions must be influenced by future trade-offs
between returns and costs, the myopic framework is inappropriate. For example, if
an investor forecasts that an asset will exhibit a positive return in the next period
but negative returns in the following periods, the investor must consider transaction
costs and liquidity risk at the next step, when the asset is likely to be sold. As a
result, the investor might not invest in an asset that would look profitable at a one-
period horizon. Hedge funds with high turnover are a typical instance of investors
that might have to consider multiple periods ahead.

A myopic framework is also inappropriate when an investor has to optimize a
consumption stream. In this case, the investor must consider the entire future path
of consumption and returns. A pension fund has the opposite problem: The
consumption stream (i.e., liability structure) is given but contributions and invest-
ment allocations need to be optimized. A myopic approach is also inappropriate in
this case.38

The one-period-ahead framework is thus applicable to an investment environ-
ment characterized by low turnover, low transaction costs, little liquidity risk, and
no stream of consumption or contributions to optimize. It is also generally appli-
cable if returns are (at least approximately) IID sequences, although using the
framework will nevertheless generate transaction costs because of rebalancing. The
one-period-ahead framework will not allow one to forecast or, consequently,
optimize costs from rebalancing or from any other type of transaction. 

A far-sighted framework is the realm of multistage stochastic optimization,
which requires the creation of a tree of scenarios up to the horizon at which the
investor can reasonably make dynamic forecasts.39 Multistage stochastic optimiza-
tion is a complex technique, however, and is rarely used now in the industry.

37The typical annual tracking error of an S&P 500 index fund is 5–30 bps after fees.
38See, for example, Mulvey, Simsek, Zhang, Fabozzi, and Pauling (2005).
39For more on stochastic optimization and its application to asset management, see Ziemba (2003).
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Rebalancing Portfolios. Portfolios need to be rebalanced when weights
are no longer optimal, which can occur because (1) asset prices are subject to random
fluctuations, (2) the forecast of returns has changed (if some predictability exists),
or (3) model performance has changed. We consider each reason.

First, asset prices fluctuate randomly. If an investor assumes returns are IID
variables, the optimal weights will be constant because they are determined by the
time-invariant statistical properties of returns. The actual weights of any portfolio
will fluctuate, however, and rebalancing will be necessary. When coupled with the
CAPM framework, this situation creates a difficulty. In the CAPM, the optimal
weights, which are constant, are always equal to the weights of the market portfolio;
however, the weights of the market portfolio fluctuate. 

Second, if the portfolio manager assumes predictability in asset expected returns
or in the variance–covariance matrix, rebalancing will be necessary because risk and
return forecasts change from period to period. The extent of the rebalancing that
results from changing forecasts, however, can be predicted. For example, if the
manager adopts a mean-reverting model, the manager knows that the forecast of
returns will change when returns revert to the mean. Thus, the manager can estimate
the timing of the change.

Third, the performance of the models themselves might change. These changes
might be caused by predictable regime changes (e.g., rising interest rates) or unpre-
dictable structural breaks. In practice, managers periodically reestimate their models
on the basis of a moving window and change them in light of new information.

Because rebalancing portfolios entails transaction costs, optimizing the fre-
quency of portfolio rebalancing is important. Various strategies can be adopted.
Calendar rebalancing looks at portfolios at given dates and rebalances them on the
basis of new estimates. Threshold rebalancing is applied when the portfolio weights
differ from the optimal weights by more than a given threshold.
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4. New Territory: Modeling for 
Portfolio and Tactical Asset 
Management

Arbitrage pricing theories preclude only situations of arbitrage; that is, they prevent
the possibility of making a sure profit without an investment. The theories leave
open the possibility of many active trading strategies based on the joint forecasta-
bility of risk and returns. The focus of this chapter is the models designed for the
short time horizons typical of portfolio management and tactical asset management.
These models enable the investor to make forecasts that depend on the present and
past state of the market and are expected to be profitable over those horizons.40 The
time horizon of tactical asset management—the horizon for which forecasts are
made and portfolios are rebalanced—ranges from a few days to a few months.

The first point to keep in mind is that a number of consequences of the capital
asset pricing model (CAPM) are not in line with observations of the markets over
short time horizons. In discussing this topic, we introduce some concepts that are
important to understanding predictive models and their role in portfolio manage-
ment and in tactical asset allocation. Specifically, we show how the belief that
markets remunerate risk is incompatible with the hypothesis of the unforecastability
of financial markets. In fact, the remuneration of risk implies that one can make an
estimate of both risk and expected returns. Unless one believes that these estimates
are static and valid for every future moment (which is unlikely), one has to admit
that forecasts of expected returns are conditional on the present market situation—
that is, markets must exhibit some predictability.

Active managers have always believed that markets are forecastable, although
only through judgment and intuition backed by traditional financial analysis of
individual companies, industries, or the economy. Market forecastability has been
ascribed to mistakes the market makes in setting the prices of assets or to the “animal
spirits” that drive markets. In contrast to these attitudes of active managers,
mainstream finance theory has generally refused to admit market forecastability.
Now, the availability of data and the speed and power of computers allow a scientific,
quantitative evaluation of short-term market forecastability.

40Models that exhibit forecastability for the long time horizons typical of strategic asset allocation are
discussed in Chapter 5.
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The CAPM vs. Empirical Evidence
The CAPM was considered a major breakthrough when it was proposed in the
1960s by Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966). In
introducing general equilibrium, the CAPM offered a formidable conceptual
consolidation of asset-pricing theory. The merits and shortcomings of the CAPM
have been widely discussed in the literature; our objective here is to show how a
number of consequences of the CAPM (and of static factor models in general) are
incompatible with empirical findings about stock price behavior. In particular, we
discuss the consequences of the two-fund separation theorem and of the static risk–
return remuneration implied by the CAPM.

The Two-Fund Separation Theorem. Asset managers who use mean–
variance optimization expect to rebalance their portfolios periodically in light of
changing market situations. However, if all investors behaved as mean–variance
optimizers (as assumed by the CAPM), the market would be subject to an incon-
sistency. This inconsistency, as pointed out by Rosenberg and Ohlson (1976), is
the consequence of the two-fund separation property.

The CAPM concludes that the only risk measure investors need to estimate is
the beta of each asset—that is, the (scaled) covariance of that asset’s returns with
those of the market portfolio. This feature of the CAPM is attractive because it
implies that the number of parameters that need to be estimated is proportional to
the number of assets in a portfolio. If one had to take into consideration the mutual
covariances between each pair of assets, the number of parameters to estimate would
grow with the square of the number of assets, making estimates too numerous and
too noisy. For example, in the case of the S&P 500 Index, the CAPM requires the
estimation of 500 variances plus 500 betas (covariances scaled to the variance of the
market portfolio). If all covariances had to be estimated, approximately 125,000
estimates would be needed.

The two-fund separation theorem states that if the market includes a risk-free
asset, investors invest in a combination of only two “funds”: the risk-free asset and
the market portfolio. This statement, which can be analytically demonstrated in the
context of the CAPM, was made by Tobin (1958) before the formulation of the
CAPM. Tobin argued that investment is a two-stage process. The first stage is
deciding how to build an efficient portfolio of risky assets. The second stage is the
allocation of one’s entire store of investment money between the efficient portfolio
of risky assets and the risk-free asset.41 This process is called “two-fund separation.”

The two-fund separation theorem implies, however, that if the number of
stocks remains constant, all stock prices must be perfectly collinear (i.e., perfectly

41The two-fund separation theorem can be generalized to m funds: An m-fund separation theorem
holds if investors invest in m mutual funds. The conclusion that asset prices must be perfectly collinear
remains unaltered.
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correlated). In other words, there cannot be any relative price fluctuation. To see
this implication intuitively, consider that Markowitz mean–variance optimization
determines each investor’s portfolio weights as a function of the statistical properties
of asset returns. The CAPM explicitly assumes that investors behave as prescribed
by the Markowitz theory. If the statistical properties of asset returns remain
constant, as assumed by the CAPM, portfolio weights are also constant. Because
all investors invest in the market portfolio, the market portfolio must have constant
weights; that is, assets must be perfectly collinear.

But assets are not perfectly collinear. The prices of stocks fluctuate, so the
perfect collinearity of stock prices does not hold. This conclusion can be avoided if
we allow for the circumstance that the number of outstanding stocks is not constant.
However, the fluctuations in the number of stocks are not of a magnitude sufficient
to explain return fluctuations. Thus, the reader can see the inconsistency between
a static market model and the concept of investors capable of discriminating
expected returns and measures of risk.

Asset Pricing with Multiple Interacting Agents
In practice, investors are heterogeneous, make approximate forecasts (subject to
error), and change their forecasts when new information arrives. The flow of
information is not immediate and equal for all investors but reaches different
investors at different moments; the reasons are differences in the diffusion, recep-
tion, and interpretation of data. 

In practice, the same news item is received, interpreted, and acted upon
differently by different investors (or market agents). For example, five new research
documents come out of Wall Street every minute, and the asset managers at
medium-sized firms receive up to 1,000 e-mails daily and work with as many as five
screens on their desk (Intertek Group 2002). Even though data providers such as
Factiva and FactSet Research Systems offer automatic systems that filter data
according to criteria specified by the customer, agents are not number crunchers.
Nor are agents perfectly rational. They communicate among themselves and are
subject to mutual influences. They are subject to imitation (or herding) and other
psychological or judgmental biases. In short, agents have only limited forecasting
ability based on (partial) past data; they are boundedly rational agents.

Research on the behavior of markets as collections of heterogeneous and
interacting agents began in earnest in the second half of the 1990s at the Santa Fe
Institute under the direction of economist W. Brian Arthur.42 This strain of
research attempts to describe what happens to prices and returns under different

42The research was initially supported and funded by Citibank. John S. Reed, who was then CEO of
Citibank and who was a chemical engineer by training, wanted to explore unconventional ways of
using science to reinvent the bank.
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characterizations of agent behavior. Arthur and his team built an artificial market
to simulate the behavior of markets populated by interacting agents. Such simula-
tions were (and still are) important because of the difficulty of analytically charac-
terizing the behavior of large populations of heterogeneous agents.

A general conclusion of the many studies on heterogeneous interacting agents
is that such agents form patterns of behavior—in particular, patterns of supply-and-
demand behavior.43 This conclusion seems counterintuitive if one expects that a
multitude of boundedly rational agents would create random supply-and-demand
patterns and thus uncertainty in investment behavior. Instead, at the aggregate level,
a multitude of boundedly rational agents generally shows specific patterns of
behavior and thus produces forecastability. That is, any multitude of boundedly
rational agents exhibits a distribution of delayed responses. The interplay of these
responses creates structure in market prices.

A number of short-term market price patterns have been empirically ascer-
tained in financial markets. These patterns are the subject of the following section.

Market Feedbacks
Among the phenomena being modeled in an attempt to forecast equity returns are
• delayed response,
• momentum,
• reversal, and
• mean reversion and cointegration.

Delayed Response. The use of exogenous predictors to forecast equity
returns is widely practiced in the industry for analyzing some market indices. It is
the bread and butter of the modeling effort (see Chapter 11). From the point of
view of market microstructure, the existence of predictors implies that agents exhibit
a delayed response to new information: Clearly, if all agents reacted immediately to
new information, no market predictor would exist; the effect of new information
would be immediate. 

For example, as documented in Campbell, Lo, and MacKinlay (1996) and,
formally, in Kanas and Kouretas (2005), the market has price leaders and price
laggards; specifically, the prices of large companies affect the prices of small
companies, but the reverse does not occur. 

Delays in response to new information are a result of one-way causal links (e.g.,
the price leader/laggard phenomenon) and the distribution of agent responses. As
for distribution, consider the example of news breaking about a public company.
Some information (such as increased profits) is immediately interpreted by all agents
in a similar way and translated into an immediate change in the price of the

43For a good introduction to heterogeneous interacting agents, see Kirman (1994).
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company’s stock. Other news, however (such as a change in company president),
might be interpreted differently and at a different pace by agents. These differences
affect company financial ratios as predictors, and authors have various opinions on
the subject.44 

Momentum. The term “momentum” is used to describe both a market
phenomenon and a trading strategy. Momentum strategies generally buy the past
winners and sell the past losers. They rest on the idea that if a stock’s price is rising,
it will continue to rise, at least momentarily, and if a stock’s price is falling, it will
continue to fall. The existence of momentum effects can be explained quite
naturally. If the financial markets are populated by agents who exhibit a delayed
response to new information and are subject to mutual influence and if causal chains
of influence do exist, then prices will naturally exhibit momentum. 

The nature of behavioral patterns that lead to momentum profits has been
investigated in the literature. Momentum effects are characterized by (1) the number
of past time lags on which returns are evaluated and (2) the number of future time
lags that form the prediction horizon. In their studies of the movement of stock
prices, Jegadeesh and Titman (1993, 2001) found such momentum effects system-
atically for various horizons. Lewellen (2005) confirmed the finding of momentum
in U.S. stock markets, and Rouwenhorst (1998) found momentum effects in
European markets. We found (see Chapter 11) that momentum strategies occupy
the second place after strategies based on predictors—such as company financial
ratios or macroeconomic variables—that anticipate price movements. In analyzing
possible sources of momentum (and contrarian) profit at the level of individual stocks
and indices, these researchers found momentum for periods between 3 and 12
months when returns were measured over periods in the same range. Lo and
MacKinlay (1990) proposed a convenient tool for analyzing whether momentum
profits depend on individual momentum or on cross-autocorrelation effects.

The real challenge is not to prove the existence of momentum effects but to
use momentum effects to implement profitable trading strategies. To construct
momentum trading strategies that provide profits from large aggregates after
transaction costs is relatively easy. Lo and MacKinlay (1990), for example, described
one such strategy. The turnover suggested by the use of momentum strategies,
however, is often excessive. This characteristic is one of the drawbacks mentioned
by a number of sources in our survey. Practical implementation of momentum
strategies requires some sort of optimization of momentum. This challenge is the
realm of proprietary trading strategies.

44For this research, Bhargava and Malhotra (2006) use cointegration to give a definitive answer.
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Reversal. Momentum and reversal are partners but appear at different time
horizons. Where momentum exists, reversal must exist; prices cannot exhibit
momentum—in one direction or another—ad infinitum. The same papers noted in
the previous section that documented momentum also documented reversal.
Momentum and reversal are thus well-documented phenomena, but the magnitude
of the two phenomena and their time horizons in various markets differ considerably.

Reversal strategies are more difficult to implement than momentum strategies.
Whereas momentum is a well-defined, persistent phenomenon, reversals are diffi-
cult to identify and to time precisely. For a strategy based on reversal, one has to
identify or predict (with at least some degree of accuracy) the moment the direction
in the trend of a stock price reverts.

Our survey showed that, although reversal strategies are being implemented,
they are being used less than momentum strategies. Indeed, an advantage in
implementing a reversal strategy is that because they are used less often, profitability
from the strategy is less likely to be eroded by wide application.

Cointegration and Mean Reversion. Two or more time series are said
to be cointegrated if they stay close together even if, individually, they behave as
random walks. A pictorial illustration of cointegration is that of a drunken man
walking his dog: Both wander aimlessly about, but the distance between the man
and the dog fluctuates in a stationary way. Cointegrating relationships express long-
run equilibrium between time series. As explained in Chapter 8, Bossaerts (1988)
proposed cointegration as a possible solution to the inconsistencies of agents as
mean–variance optimizers under the CAPM. As Chapter 8 shows, the existence of
cointegration in asset prices (returns cannot be cointegrated because they are
stationary) implies that a small number of common trends are at work in financial
markets. If cointegration is present, price processes can be expressed as regressions
on a restricted number of common stochastic (i.e., random) trends. In addition, one
can construct stationary portfolios.

Cointegration is related to mean reversion. In fact, in a cointegrating relation-
ship, one process reverts to the other(s). A classical question about the behavior of
stock price processes is the presence (or absence) of mean reversion: Do stock prices
fluctuate in the long run around some deterministic trend, or do they meander as a
random walk? Meandering has been argued by, among others, Malkiel (1973).
Empirical studies have found mixed evidence of random walk behavior and no strong
evidence in favor of mean reversion (see Campbell, Lo, and MacKinlay 1996).

Again, from an asset manager’s point of view, the key question is not whether
cointegration exists in financial prices but whether there is sufficient cointegration
for a trading strategy to yield profits. In practice, cointegrating relationships are
difficult to identify in large sets of data, such as the individual stocks composing
the S&P 500. The usual methodologies for testing and estimating cointegrating
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relationships are applicable only to a small number, in the range of 10–20, of
processes. For this reason, cointegration has been exploited primarily at the level
of pair trading—that is, applied to pairs of stocks—or to a small number of indices.
(This approach does not, however, exploit the full potential of cointegration.)
Moreover, successful use of cointegration typically relies on proprietary methods
to identify cointegrating relationships and common trends.

Data and Model Complexity
Phenomena such as delayed response, momentum, reversal, and cointegration offer
reasons to believe that financial markets are somehow predictable in the short term.
(We look at the longer term in Chapter 5.) The question is: Can portfolio managers
model the predictability to create a profitable strategy for the short term? 

Predictive models are by nature dynamic models, not static models (like the
CAPM). Other things being equal, predictive models include many more param-
eters than static models. For example, the number of parameters in a linear
autoregressive model with two time lags is three times that of a random walk model.
As we showed in Chapter 3, estimating a variance–covariance matrix is already so
challenging that it calls for drastic reduction in the number of parameters. Clearly,
estimating a dynamic model requires an even more significant reduction in the
number of parameters.

The problem is that, as discussed in Chapter 7, from the point of view of
modeling, the financial data are scarce and can support only simple models.45

Therefore, in considering the transition from static to dynamic models—both of
which are only approximations of reality—remember that only simple dynamic
models can be realistically estimated. Modelers cannot simply add the complexity
of dynamic relationships to static models. Using dynamic models involves a trade-
off between the gain in terms of explanatory power and the loss in terms of
estimation noise. 

For example, suppose a manager has estimated 15 static factors to estimate a
variance–covariance matrix; if the manager decides to determine the dynamic
structure of the factors by using three lags, the manager will probably have to be
content with only 3 of the 15 factors because of insufficient data for estimating a
dynamic model of the factors. 

Transaction Costs and Profitability
The possibility of forecasting financial markets does not necessarily translate into
profitable trading strategies. In fact, an apparently profitable forecast may entail
increased risk and transaction costs that can wipe out profits. Consider, for example,

45The assertion of a scarcity of data may sound strange in light of the apparent superabundance of
financial data, but statistically, it is correct.
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a long–short equity strategy that offers the prospect of a substantial profit, although
with substantial residual risk. If the apparent profitability of the strategy disappears
in practice, the reason is often that transaction costs are larger than anticipated. 

In accounting for transaction costs, a manager must consider both the cost
charged by the broker to perform transactions and the impact of the trades on prices.
Thus, strategies requiring heavy trading or involving the stocks of small companies
are often much less profitable in practice than in a backtest or simulation that does
not account for transaction costs. 

Transaction costs also increase the difficulty of understanding the risk–return
profile of dynamic models. In a predictive environment with transaction costs, the
one-period mean–variance framework is no longer applicable. The reason is that at
every moment, the investor must take into account that decisions will be revised at
a later date at an associated cost. Suppose, for example, that a model forecasts a
significant positive expected return of a given asset in one period followed by a
negative expected return in the following period. An investor has to weigh the
expected profit from investing in the asset in the first period against the cost of
investing and then disinvesting in an ensuing period. These situations are typical of
cointegration-based strategies, in which the stationary mean-reverting behavior of
cointegrating portfolios calls for frequent rebalancing.

The consideration of transaction costs in far-sighted asset management calls
for optimization over multiple future periods. Optimization methods that consider
multiple periods are called “multistage stochastic optimization methods.” They
typically work by (1) creating scenarios representative of all possible situations and
(2) assigning a probability to each scenario.

The problem is that stochastic optimization is cumbersome and computation-
ally intensive. In realistic applications, the number of scenarios to be considered can
reach thousands. Our survey of asset managers (see Chapter 11) found that none
were presently using the technique.46

Conclusion
The predictability of expected returns and risk allows one to solve a number of
inconsistencies that have been found in purely static models of returns. Among the
market phenomena that allow the forecasting of equity returns and risk are delayed
response, momentum, reversal, and cointegration. These phenomena are being
addressed with dynamic models that we discuss in Chapters 6 and 8.

46In a 2004 study on modeling at pension funds in the Netherlands, Switzerland, the United
Kingdom, and the United States, Fabozzi, Focardi, and Jonas (2005) found that, although multistage
stochastic optimization was being widely used on the asset/liability management side by consultants,
most large Dutch funds preferred simulation to optimization.
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Two problems emerge, however, in the use of dynamic models: (1) a scarcity
of financial data and (2) hurdles to implementing profitable trading strategies. The
scarcity of data is the key limiting factor. Although overabundant from the human
point of view, data are insufficient to estimate complex models. The existence of
predictability in itself is not sufficient to guarantee profitable trading strategies. Risk
and transaction costs can nullify the profit of apparently sound trading strategies.
Careful consideration of risk–return trade-offs and costs is needed to ensure that
market predictability results in profitable trading.
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5. New Territory: 
Forecastability and the 
Long-Term Perspective

In the previous chapter, we discussed the economic basis of market forecastability
from the perspective of the short time horizon typical of portfolio management and
of tactical asset allocation. In this chapter, we discuss market forecastability from
the perspective of a longer time horizon. We approach the question of profitable
long-term forecastability from the perspective of robust modeling as defined in
previous chapters. We do so by first considering some important questions encoun-
tered in shifting the time perspective from the short term to the long term. We then
briefly discuss the modeling of long-term stock price or stock index behavior.

Shifting Time Perspectives
We begin by considering four questions that arise when one shifts from a short-
term to a long-term perspective:
• How does market behavior aggregate over time?
• Can one assume that patterns of market behavior are the same at short and

long time horizons?
• Can one recognize regime shifts (i.e., reversals in trends)?
• Can practitioners use approximate models, estimating them on moving data

windows across time (e.g., January 1999–December 2004, February 1999–
January 2005, and so on)?
Answering these questions is not easy, but at least a partial response is required

to determine just what phenomena can be modeled and with what techniques. The
practice of estimating models on a moving window, for example, rests on important
assumptions about the long-term behavior of the models being estimated. We use
the following section to take a close look at each of the questions posed.

Aggregation over Time. The first question deals with how market
behavior aggregates over time, an issue that has been widely considered in the
literature. The first thing to do in discussing the question is to define the concept
of time aggregation. Suppose that we have daily stock price data or return data and
that we have a model of the evolution of prices through time. Consider now that we
want to apply the model to different time spans—for example, hourly intervals and
monthly intervals. Can the same model be applied to the short as well as the long
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time intervals? The answer, generally speaking, is no. For example, an autoregressive
process with an autocorrelation period of a few days becomes (approximately) an
independent and identically distributed (IID) sequence at monthly intervals. Or a
series might look approximately IID at short time intervals but exhibit an autocor-
related structure at long time intervals. For example, a random walk with very slow
periodic fluctuations in its average growth rate (e.g., its average growth rate fluctuates
slowly between 3 percent and 4 percent) will be indistinguishable from a random
walk at short time intervals but is forecastable at a longer time horizon. 

Processes that do look the same for different time aggregations are called “self-
similar.” And the simplest process that is invariant after time aggregation is the
random walk. One of the reasons models of self-similar behavior—such as chaos,
nonlinear dynamics, and fractals—have attracted so much attention in the past
several decades is that they are self-similar after time aggregation.47

In the 1960s, Benoît Mandelbrot, a mathematician working at the IBM
Thomas J. Watson Research Center in Yorktown Heights, New York, observed
that many price–time series, including the price of cotton over time, have descrip-
tions that do not depend on the scale of the measurements and these descriptions
are often self-replicating or self-similar (see, e.g., Mandelbrot 1963). In other
words, Mandelbrot observed that the time series of daily cotton prices is practically
indistinguishable from the series of monthly cotton prices. Since Mandelbrot’s
observation, the hypothesis of the self-similarity of stock prices has been widely
debated. If prices follow a random walk, then they are self-similar.48 

Most long-term predictive models currently in use are not self-similar but
exhibit a well-defined time scale. Regressive and autoregressive models (see Chapter
7) have a time scale given by the time horizon at which correlations and autocorre-
lations decay. The generalized autoregressive conditional heteroscedasticity
(GARCH) family of models has a time scale and does not remain invariant after
time aggregation. Regime-shift models also exhibit a time scale.

The ability to aggregate time and to use models developed and calibrated on
a short horizon for long horizons would be extremely useful. It would allow
researchers not only to study long-term market behavior from, say, daily data, but
also to take advantage of high-frequency data for portfolio management, to make
useful forecasts, or to make more accurate estimates of the variance–covariance
matrix than are now possible. Consider that Falkenberry (2002) estimated that
the median stock in the Russell 3000 Index produces approximately 2,100 ticks

47Such self-similar models are not frequently used in asset management, although they are used in
several other disciplines, such as the analysis of communication traffic. For a survey, see
Samorodnitsky and Taqqu (1994).
48Although an arithmetic random walk with normal increments is a self-similar process, there are
also self-similar processes with nonnormal distributions that are thus more complicated than the
random walk.
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per day (530,000 per year). If we could use high-frequency data, we would have
access to databases 2,000-fold larger than the usual daily databases.49

Market Behavior at Different Time Horizons. From an economic
point of view, the long-run behavior of stock prices is influenced by factors different
from those that influence their short-term behavior. At time horizons of days or
weeks, trading practices and the way traders react to news are primarily responsible
for asset price predictability; in the long run, the price of an individual asset is
determined not only by the financial performance of the company but also by the
quantity of money in the market and the global performance of the economy. Rapidly
expanding financial markets require rapidly expanding monetary flows, which are
eventually selectively channeled. Thus, from a long-term perspective, the monetary
policies of central banks play a key role in determining market performance. As for
the global performance of the economy (domestic and worldwide), the formation of
economic areas characterized by extensive innovation favors the creation of a rapidly
expanding quantity of money with minimal impact on inflation.50

In the long run, prices are unlikely to behave as correlated random walks with
different rates of drift. If they did, the result would be exponentially diverging price
processes and, ultimately, the concentration of the economy in one or a limited
number of companies. But as is well known, neither the distribution of stock prices
nor the distribution of market capitalization decays exponentially. Actually, it has
been empirically ascertained that the market capitalization of companies follows a
Pareto law and does not decay exponentially.51

Determining whether financial markets behave the same over short time
horizons as they do over long time horizons would require homogeneous data, and
researchers do not have such data. Being open systems, financial markets are
continuously changing, with new companies entering and others exiting or merging.
Moreover, although detailed stock price data are available for about one century,
the structure of the stock market has changed significantly during that period. At
the end of the 19th century, far fewer companies were listed on the New York Stock
Exchange than at the end of the 20th century. Clearly, simple tests of similarity of
market behavior are meaningless.

49See Mantegna and Stanley (1999) for a survey of the status of research in this area. 
50In modern times, monetary expansion without significant inflation is typically related to
technological innovation, but such a relationship is by no means the only possibility. For example, in
the 1300–1600 period in Italy, consumption patterns changed significantly (and the economy
developed rapidly) with the new demand for art in all its forms—architecture, sculpture, painting, objets
d’art, and domestic furnishings—by both the clergy and secular society. See Goldthwaite (1995).
51Pareto’s law states that there is a linear relationship between the logarithms of income, I, and the
number of people that earn more than I (see also Chapter 2). Axtell (2001) confirmed that the Pareto
law applies to market capitalization across all U.S. companies.
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Although it might seem plausible for the behavior of financial markets to be
different at different time horizons, the high level of noise in financial market prices
(i.e., the numerous fluctuations that models do not explain) makes it difficult to draw
definite conclusions. The models that asset management firms use do not differ much
for different time horizons, although their parameterizations change significantly.

Recognizing Regime Shifts. A key question in modeling for long time
horizons is whether feedback is continuous or of a more discrete nature. Do markets
adjust continuously, or do they follow a given regime and then switch suddenly to
another regime—or do they do a bit of both? Discrete changes call for a modeling
strategy in which market behavior is approximated piecewise in relatively simple
models. Regime shifts of a discrete nature can be set off by exogenous changes (for
example, monetary policy changes) or by particular endogenous situations that
trigger significant change (such as the crash of October 1987). In the strategies for
modeling regime shifts, there is no clear-cut separation between the two because
both are approximations of reality.

The need to model regime shifts arises from the fact that our models are only
simplified approximations. Researchers use simple models to approximate real
market behavior and adjust the models to fit empirical data by allowing the model
parameters to change. Modelers introduce auxiliary (typically, nonobservable or
hidden) variables that represent regimes, or “state variables.”52,53 In some cases,
regimes seem to have a clear economic interpretation. For example, the recession/
expansion cycles seem to be a clear economic reality. In other cases, the economic
interpretation is difficult, perhaps impossible.

Actually, whether regime shifts are continuous or discrete is not clear. The
answer hinges, ultimately, on which models best describe economic reality. For
example, GARCH models and Hamilton models represent the clustering of, respec-
tively, volatility and drift. That is, the GARCH model represents the fact that
periods of high volatility are followed by periods of low volatility, whereas the
Hamilton model represents the fact that periods of economic growth are followed
by periods when the economy does not grow or shrinks. GARCH models posit a
continuous regime shift; the Hamilton model, a discrete regime shift. In Chapter 7,
we briefly describe a number of models that implement regime shifts. Whether one
should adopt one or another model is an empirical question.

52Modeling strategies of this type are often used in the physical sciences. For example, the
development of thermodynamics progressively introduced new variables that were not directly
observable. Einstein, who did not like the uncertain nature of quantum mechanics, argued that
quantum mechanics could be explained by adding hidden variables. This approach is the so-called
EPR conjecture (named after its proponents Einstein, Podolsky, and Rosenberg).
53For a discussion of these models, see Chapter 16 in Fabozzi, Focardi, and Kolm (2006a).
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Estimating Approximate Models on Moving Windows. Is esti-
mating approximate models on moving windows (i.e., on periods of time that move)
legitimate? If so, what errors might thereby be introduced? 

Estimating models on a moving window is a current practice in modeling. On
the one hand, if regime shifts are gradual and continuous, estimating models on a
moving window will be an approximation without major shifts. On the other hand,
if regime shifts are sharp, models will perform well until the moment of the shift,
and then, their performance will degrade abruptly.

Unlike the problem of the stability of market behavior at different time horizons,
researchers can, with appropriate tests, detect regime breaks. The question is what
to do after a break has been detected and the models have not yet learned the new
parameters. Methodologies such as those described in Chapter 8 should help.

Modeling Long-Term Behavior
How do researchers model the long-term behavior of financial markets? Recall that
a static model is a model in which relationships do not depend on the past. The
CAPM is such a model: It computes a stock’s excess return as a function of the
market portfolio excess return and the covariability of the stock with the market
portfolio. Static relationships of this type cannot be long-term models of stock
prices. Empirical research has ascertained that there are different levels of covari-
ability between stocks and the market portfolio. The implication is that static
models of the market exhibit exponentially diverging price processes.

The same conclusion (i.e., that exponentially diverging price processes exist)
holds if one assumes that returns are multivariate-correlated, IID variables. This
assumption is made in, for example, the arbitrage pricing theory model formulated
by Ross (1976), in which each stock return is a weighted average of a number of
factors. Although the no-arbitrage condition restricts the eventual intercept term—
the alpha—the existence of assets with different risk levels means that expected excess
returns can be different for different assets, as in the univariate CAPM. In the long
run, different expected excess returns produce exponentially diverging price processes.

This discussion leads to the conclusion that static models of returns cannot
serve to model the long term. To appreciate this point, we simulated a market
portfolio random walk process for a period of 30 years. We assumed a 4 percent
yearly excess return over a 3 percent yearly risk-free rate, and we generated 10,000
individual random walks representing 10,000 different stocks. Each process was
specified according to the CAPM, with levels of beta uniformly distributed from
0.5 to 2. The starting stock price was set to 1.0 for all processes. Figure 5.1 gives a
bird’s eye view of the behavior of the stocks’ cumulative returns over the 30-year
period. The heavy line represents the market portfolio and the lighter lines and area
are the area filled by the 10,000 random walk paths. The exponential growth of the



New Territory: Forecastability and the Long-Term Perspective

©2006, The Research Foundation of CFA Institute 49

spread is visually clear. The three panels of Figure 5.2 represent the distribution of
prices at 10 years, 15 years, and 30 years. Clearly, the distribution of prices is
approximately lognormal at 10 years but tends progressively to an exponential
distribution over time.

Static models of returns are not reasonable long-term models of returns because
they cannot capture changes in the markets or in individual companies. Public
companies experience various vicissitudes during their lives, and the market changes
its evaluation of companies, the economy, and market segments over time. 

So, can dynamic models be considered reasonable long-term models? The
answer to this question hinges on exactly what type of dynamic model(s) are to be
used, and the answer elucidates some of the fundamental questions about modeling
the long term. In a dynamic model, the distribution of prices or returns at a next
step (i.e., the forecast) depends on present and past prices and returns. In general,
researchers consider only a small number of past returns (or time lags); otherwise,
estimation becomes too noisy.

Can dynamic models capture long-term regime shifts? This question is treated
in detail in Chapter 7; here, it suffices to say that if only linear models are considered,
the answer is no: A linear dynamic model cannot capture long-term regime shifts.
It can only (eventually) capture oscillations or decay of a long duration. Linear
models can capture only periodic movements with a fixed period. 

Figure 5.1. Behavior of 10,000 Random 
Walk Paths
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Figure 5.2. Distribution of Prices 
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The more complex nonlinear dynamic models can capture a broad variety of
behavior, but to be useful, this complexity must be “tamed.” Nonlinear models may
exhibit chaotic behavior—oscillating behavior without any fixed periodicity. Unfor-
tunately, despite efforts in the past two decades, representing economic behavior as
deterministic nonlinear chaos has been impossible.

A class of models that has proved useful is the nonlinear coupling of two dynamic
models. The coupling is obtained by making the parameters of the principal model
a function of another, auxiliary model. The best known of these models is the
GARCH family. Other vector autoregressive models that belong to this category
include the Hamilton model and the Markov models (both discussed in Chapter 7).

A fundamental difficulty with nonlinear dynamic models is that they require
the coupling of very different time constants. The principal model captures the
dynamics of prices or returns that fluctuate over short time periods—say, days or
even shorter periods. The auxiliary model must capture regime shifts, which might
have a time horizon of months, years, or even decades. Additional difficulties arise
if the regime shifts are to be considered endogenous (that is, at least partly a function
of other parameters and variables in the model).

Mean Reversion
Whether market returns are mean reverting has been widely discussed in the
literature. In this section, we discuss the following three questions that are important
in modeling as it regards mean reversion:
• How does the compounding of returns affect mean reversion?
• How is the central trend to be defined?
• How does mean reversion affect time diversification?

Compounding and Mean Reversion. Mean reversion exists if the
autocorrelation coefficient of the logarithm of the indices is less than 1. (If the
autocorrelation coefficient is equal to 1, the process is a random walk. If the
correlation is less than 1, the process oscillates around a linear trend.) A number of
early studies found some evidence of mean reversion in the stock markets—in
particular, Fama and French (1988), Lo and MacKinlay (1988), and Poterba and
Summers (1988). These studies tested two hypotheses that the index behaves (1) as
a random walk or (2) as a stationary process oscillating around a linear trend. Kim,
Nelson, and Startz (1991), testing similar hypotheses, concluded that in the U.S.
stock market, mean reversion is a pre–World War II phenomenon. Risager (1998)
studied mean reversion in the Danish stock market following World War I with
similar criteria and found evidence of mean reversion, especially in modern times. 

All these studies were performed with the use of some version of the variance
ratio test. This test is based on the fact that in a random walk, the variance grows
proportionally with time. If the variance grows less rapidly than time, then the
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process is mean reverting. In other words, in a mean-reverting process, risk cancels
itself out over time to some degree, whereas in a non-mean-reverting process, it
does not.54

If the logarithms of prices behave as a stationary process with a linear trend, they
are “trend stationary.” That is, the prices themselves fluctuate around exponential
trends. The standard deviation of prices—the dispersion around the trend—grows
exponentially at the same rate as the trend. Note the fundamental difference between
a trend-stationary process and a random walk with a linear trend. The variance of a
random walk keeps on growing with time, but the variance of a trend-stationary
process remains constant. Figure 5.3 illustrates 50 paths of a trend-stationary
process. The paths appear as the grey area of constant width around the black mean.
Figure 5.4 shows the mean and standard deviation for the trend-stationary process
of Figure 5.3. Because the process is trend stationary, the mean grows linearly
whereas the standard deviation remains approximately constant. Figure 5.5 shows
the corresponding exponential paths. The grey area represents the 50 paths; note
that the width grows exponentially. Figure 5.6 shows the mean (the thick line) and

54The variance ratio test, with its associated sampling distributions and critical values, is discussed in
Cochrane (1988) and Lo and MacKinlay (1988).
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Figure 5.4. Mean and Standard Deviation of 
Trend-Stationary Process in 
Figure 5.3
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the standard deviation (the thin line) of the exponential processes. Note that the
mean and the standard deviation follow approximately the same exponential path.
These aspects are important from the point of view of risk management, as shown
in the next section.

Defining the Central Tendency. Mean reversion of the logarithms of
prices means that the logarithms of prices are stationary with a linear trend. Mean
reversion, as defined previously, is interpreted as a property of single stock prices
or, more commonly, indices. Actually, mean reversion can be articulated in three
properties: (1) Stock prices are stationary around some trend; (2) trends are linear;
(3) trends are all equal.

The property of stationarity around a linear trend can be generalized to cover
the case of stationarity around nonlinear deterministic trends, stochastic trends,
and stochastically broken trends. Nonlinear deterministic trends are trends that
follow nonlinear behavior—for example, a logarithmic behavior. Stochastic trends
are trends that are not deterministic but are subject to a probability distribution.
Stochastically broken trends are trends that change at random times. The possibility
of identifying nonlinear deterministic trends is quite unlikely. Stationarity around
a stochastic trend has been proposed as the permanent/transitory model initially
proposed by Muth (1960). In this model, stock prices are formed by a long-term

Figure 5.6. Mean and Standard Deviation of the 
Exponential Processes
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random walk plus a short-term, transitory stationary adjustment. Broken-trend
models include the Markov switching models, which handle different regimes and
thus different trends.55

Given that a stock price process can be mean reverting around many different
trends, the next question is: Does the entire market exhibit only one trend, or do
many trends coexist? As shown previously, if the logarithms of prices behave in the
long run as stationary processes with a linear trend, the linear trend must be the
same for all processes. If not, the market would reflect an exponential spread of
prices and thus of market capitalizations, but in practice, we find only a Pareto law
of market capitalization. If trends involve some stochastic element, the question is
more complex. A reasonable assumption is that if regime shifts can occur, each
regime must be unique. The implication for practitioners is that in the long run,
stock prices can have only one linear or stochastic trend.

These questions are presently not well discussed in the literature. The key
problem is data. The data are insufficient to analyze multiple regime shifts—
especially considering that in the long run, companies start, close, and undergo
mergers and acquisitions. The tests of mean reversion have so far tested only one
specific behavior—namely, mean reversion around a linear trend.

Time Diversification. “Time diversification” is the term given to the con-
cept that stocks are less risky in the long run than in the short run. Based on time
diversification, proponents of life-cycle investing suggest that in the early stages of
life, one should take more risk (say, by investing in stocks) and later, when
approaching retirement age, one should reduce risk by increasing one’s allocation
to bonds. Whether time diversification is a valid principle has been the subject of
heated debate. Samuelson (1994), Bodie (1995), and Kritzman (1994, 1997) have
argued that time diversification is not a valid investment principle. Thorley (1995)
and Vanini and Vignola (2002) have argued that time diversification may be valid.
Kritzman and Rich (2002) introduced a new perspective in the time diversification
debate by arguing that investors should be concerned with the distributions of
wealth at intermediate as well as final periods. Fabozzi, Focardi, and Kolm (forth-
coming 2006b) observed that time diversification should be quantitatively measured
as the ratio of a measure of risk to expected return.

As noted in this chapter, if in the long run the logarithms of prices are assumed
to be stationary with linear trends, then prices themselves will exhibit a constant ratio
of standard deviation (risk) to the mean return. That is, multiplicative compounding
of returns implies that financial markets exhibit an approximately constant ratio of
global risk to global return—that is, the reward expected per unit of risk is the same
no matter what time horizon is being considered. Therefore, because of the com-
pounding of returns, markets are unlikely to exhibit time diversification.

55Nielsen and Olesen (2000) investigated mean reversion with regime shifts in the Danish market.
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Summary
The question of market forecastability from the perspective of a long time horizon
must address several issues, including the aggregation of market behavior over
different time spans, regime shifts, and the estimation of approximate models on
moving windows. In analyzing the appropriate models to use for modeling market
behavior over the long term (time horizons beyond a few months), we made the
following points:
• Static models cannot be long-term models because permanent differences in

the expected returns of different assets would lead to exponentially diverging
market capitalizations.

• Linear dynamic models cannot be long-term models because their solutions
allow only for exponential decay or periodic oscillations.

• Nonlinear dynamic models can be long-term models, but they are prone to
intractable chaotic behavior.

• Coupling nonlinear dynamic models to represent both the short term and the
long term might offer a solution, but simultaneously estimating short-term and
long-term dynamics is a problem.

• Time diversification is the property by which risk (uncertainty) is less in long-
term forecasts than in short-term forecasts. We believe that because of the
geometric compounding of returns, time diversification does not exist in the
market, even if the logarithms of prices are trend stationary. If the logarithms
of prices are trend stationary with a linear trend, then prices evolve as exponen-
tials and their standard deviations remain approximately proportional to the
level of prices.
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6. Machine Learning

The machine-learning approach to financial modeling is an attempt to find financial
models automatically—without any theoretical assumptions—through a process of
progressive adaptation. Machine learning is rooted in statistics and artificial intel-
ligence (AI). We begin by commenting on two key concepts—learning and problem
solving. Then, we describe several machine-learning approaches to automatic
problem solving that play a role in asset management.

Machine learning (and AI techniques in general) is one of the many techniques
used in specific applications in financial modeling. In the 1990s, AI and its
application to financial forecasting generated a lot of exaggerated claims and hype
and received a lot of professional and media attention. AI was considered a
revolutionary technology that could completely change the way people were doing
business in finance. Today, as noted by one of the pioneers in the application of AI
to finance, David Leinweber, those days are over. The hyperbole has made way for
a more pragmatic attitude: AI is useful, but its merits and limits are now more clearly
understood (see Leinweber and Beinart 1996).

Concepts of Learning
The term “learning” assumes different meanings in different contexts. In our daily
life, we use the concept of learning in two senses. In one sense, learning indicates
an increase of knowledge, the conscious acquisition of a mental model. In this sense,
a student learns literature at school, for example. We also use learning in another
sense—that of acquiring a habit. This concept of learning is not restricted to any
notion of a mental model. For example, when we learn to ride a bicycle, we acquire
the right motor reflexes without any cognitive intermediation.

Machine learning is based on this second concept of learning. Learning is seen
as a process of progressive adaptation that can be described in purely mechanical
terms. In a general sense, learning is considered to be the ability to produce the right
patterns in response to a given set of inputs. In principle, this notion of learning
includes such high-level mental activities as automatic language translation.

How to formally represent the process of adapting the behavior of a machine
(or an animal) to some target has been the subject of several decades of study. In
machine learning, two fundamental forms of learning are distinguished: supervised
and unsupervised learning.

Supervised Learning. In machine learning, supervised learning is learn-
ing from examples. From a number of approximately correct examples of pairs of
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output patterns and input stimuli, the machine learns how to respond to future
stimuli. For example, machines that recognize human handwriting associate the
correct sequence of letters (the output) to handwritten words (the stimuli).
Machines are trained by showing them a number of handwritten patterns and the
associated correct letters or words.

In more abstract terms, supervised learning is defined as learning a function about
which one has a number of approximate examples. For example, the data-generation
process (DGP) of a time series of prices is a function that links future returns with
present and past returns. If only two lags are used, the DGP that we want to learn is
the function, if it exists, that links prices at time t + 1 with prices at time t and t – 1.
The sample in this case will be all the “triples” formed by prices in three consecutive
instants for all the sample set. The sample is formed by approximate realizations of
the DGP.

Supervised learning thus means approximation of a function for which a
number of samples are known. In this sense, learning is equivalent to fitting a curve
to a set of points. Many learning methods, however, work by rules that adapt a model
progressively to new samples, a process that is different from usual curve fitting.
The notion of learning is often associated with specific learning rules. For example,
neural network learning is often associated with the backpropagation algorithm
(discussed later), which is a learning rule. The two notions of “learning” and
“learning rules” are potentially confusing and should be clearly distinguished. 

Unsupervised Learning. Unsupervised learning is more difficult to define
and understand than supervised learning. In unsupervised learning, a system dis-
covers the structure of data through a process of endogenous evolution. Clustering is
the typical example of unsupervised learning. One starts with a set of points and
discovers the grouping of points into clusters. 

In principle, the method of unsupervised learning applies to all available data.
One can apply unsupervised learning to a sample, however, and then generalize to
the entire population. For example, a financial application performs clustering of
price–time series on sample data and then applies the same clustering to new data.

Statistical Learning. Supervised learning as defined here is the process of
approximating a function from examples. The key ingredients in this concept are
(1) a mathematical model able to approximate any function and (2) a set of rules
for the approximation process from examples. 

The concept of supervised learning does not, in itself, include any notion of
prediction or generalization. The main objective of a considerable body of research
has been to show that specific learning rules can effectively learn any pattern. Learning
patterns of small samples with high precision, however, produces poor generalization
and forecasting results for the population from which the sample came. 



Machine Learning

©2006, The Research Foundation of CFA Institute 59

The approach that places the learning process in the context of generalization
and forecasting is statistical learning. Given an efficient process of learning, statis-
tical learning deals with how one can make sure that the learning process has good
generalization and forecasting abilities.

Statistical learning attempts to answer this question in a probabilistic frame-
work. Classical learning theory places limits on the model complexity in order to
improve the forecasting capabilities of learned models. It does so by adding a penalty
function that constrains model complexity. Vapnik (1995, 1998) introduced an
important conceptual novelty by showing that not only does the complexity of the
model matter but so also does the type of functions used. He was able to construct
a mathematical framework to predict how well a given set of approximating
functions would generalize.

Problem Solving
One area of AI deals with solving problems automatically. In this approach, the
problem is specified by some general objective and the problem solver must
synthesize the solution. For example, automatic methods have been applied to a
typical problem in financial modeling—the design of new factor models. 

The concept and techniques of problem solving evolved in the 1960s. In 1960,
Herbert Simon forcefully expressed the notion that human decision-making pro-
cesses can be automated through computational processes. The idea that a computer,
which acts according to preprogrammed instructions, can exhibit creative power is
difficult to believe. The link between algorithmic processes—that is, the step-by-step
processes of computers—and creative problem solving is the concept of searching. 

Automatic problem solving is based on the concept that human decision
making and problem solving are ultimately the guided exploration of a set of
predetermined possibilities. Automatic problem solving works by searching a
“space,” or “ensemble,” of opportunities and choosing according to some criterion.
Problem solving entails (1) the ability to describe the set of various possibilities, (2)
a quantitative way to rate various solutions, and (3) a search and optimization
strategy. Ultimately, problem solving is an application of optimization.56

Problem-solving methodologies have also been tackled from a different point
of view. In exploring a vast set of opportunities, the temptation is to use probabilistic
methods. John Holland (1976) had the idea of using probabilistic searches in the

56Several difficulties are associated with this concept of problem solving. As defined here, problem
solving can search only a solution that already exists, at least conceptually. Much of human problem
solving, however, is the definition of new concepts. How searches could find genuinely new concepts
is not obvious. In addition, it was discovered that many apparently simple problems in daily life involve
searching an infinite space. This is the so-called frame problem of AI.



Trends in Quantitative Finance

60 ©2006, The Research Foundation of CFA Institute

context of genetic evolution. Holland reasoned that genetic evolution in biology
seems to be an efficient probabilistic exploration device to find optimal solutions.
From this idea, genetic algorithms were born.

Clearly, some of the concepts of AI—in particular, learning and problem
solving—are continuations of the methodologies that have been used in statistics
for more than a century. In the following sections, we discuss a number of machine-
learning tools and some of their applications.

Neural Networks
From the point of view of financial modeling, artificial neural networks (ANNs) are
universal function approximators. ANNs, however, have been studied from the
general point of view of connectionist structures able to imitate some of the functions
of the brain. It is useful to separate the two areas. As we stated earlier, AI has been
surrounded by a lot of hype. The hype created, in turn, a lot of disappointment,
because results were inferior to expectations. Much of the hype resulted from the fact
that it was often assumed that AI was about building artificial brains with humanlike
cognitive capabilities. In particular, although the properties of ANNs as nonlinear
function approximators are well established, the possibilities that large ANNs exhibit
cognitive abilities similar to a human brain is far from being demonstrated.

Basically, neural networks are machine-learning tools that can be used either
in a supervised or an unsupervised mode. In a supervised mode, a neural network
is used to learn a function from samples—for example, the DGP of a series from
its past realization.

A neural network in a computer program for financial applications is formed
by nodes and connections. Nodes are placed in multiple layers. The number of layers
and the number of nodes in each layer are arbitrary. Nodes in one layer are connected
only to nodes in the layers immediately below or above. A node receives inputs from
the nodes in the layer below. Inputs are weighted, in the sense that each connection
has an associated weight. The output of each node depends on the sum of the
weighted inputs. If the sum of the inputs is below a given threshold, the output is
zero; if it is above the threshold, the output is a given fixed value. When the network
is in operation, inputs are applied to the lowest layer and propagate to the highest
layer. Typically, the inputs represent one or more binary numbers and the output
represents one binary number. But many configurations are possible.

The parameters to be learned are the weights. During the training phase—that
is, during the learning process—both the inputs and the outputs are known. The
objective is to determine the weights. Figure 6.1 illustrates the schema of an ANN.

In general, in financial applications, neural networks are implemented as
computer programs. In technological applications, neural networks are often imple-
mented as stand-alone electronic devices. In this latter implementation, the neural
network is trained offline and then physically implemented as an electronic circuit.
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If the number of nodes and connections, and thus the number of weights, is
unrestricted, one can fit any function with arbitrary precision.57 The number of
layers and nodes has to be restricted, however, to capture some true feature of the
data. Many criteria and heuristics are available for choosing the right number of
nodes and layers, but no constructive methodology exists. Designing a neural
network is thus a question of intuition, trial and error, and testing.

Once the network topology—that is the number of nodes and their connections—
has been fixed, one can estimate the weights by using either an optimizer or a specific
learning procedure, such as backpropagation. An optimizer is a computer program
that finds the maximum or minimum of a function. It considers all input–output
sample data at the same time. First, one computes the errors as a function of the
weights. The optimizer finds those weights that minimize errors. This process is
similar to least-squares estimation. In backpropagation, input data are sequentially
fed to the network and weights are updated as a function of output data. Backprop-
agation is an adaptive process: One starts with an initial guess of the weights, and
the guess is progressively modified as a function of new data. 

Neural networks can also be used in an unsupervised mode. A typical such
application is vector quantization—a process that tries to find prototypes of a set of
items. Suppose, for example, that one is given a set of companies defined by their
financial ratios. The objective is to create a set of prototype companies so that each
company is associated with a prototype.

Figure 6.1. Schema of a Neural Network with Input 
Layer, Output Layer, and Hidden Layer 
of Neurons

57The proof of this statement was given by Cybenko (1989).

Output Layer

Hidden Layer

Input Layer
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To perform vector quantization with neural networks, one has to know in
advance the number of prototypes. Given that number, one uses a network with as
many outputs as prototypes. All data are explored sequentially. Every time a new
piece of data is acquired, the learning process selects the output that is the closest
to the new data and slightly adjusts the weights of that output. At the end of the
process, the weights of each network output represent a prototype.

Typically, neural networks are black boxes: Finding an interpretation of the
weights is practically impossible. The only justification of a neural network comes
from its testing. Rigorous testing methodologies are required.

In addition to the traditional neural network, numerous variants of networklike
topology and training methods have been suggested. Hertz, Krogh, and Palmer
(1991) provide an introduction to the mathematical theory of neural computation.

Neural networks have been widely applied in trading and portfolio management.
Initially used as a new paradigm in forecasting, neural networks are now routinely
used as nonlinear regressions. Our survey showed (see Chapter 11) that a number of
asset management firms are quite happy with ANN applications, although nobody
expects them to be the definitive answer to forecasting problems. ANNs are currently
implemented in such computer packages as MATLAB, SAS, and SPSS.

Support Vector Machines
Support vector machines (SVMs) are a new generation of learning networks based
on the Vapnik–Chervonenkis theory of statistical learning.58 The VC theory of
statistical learning is complex, but despite the complexity of the theory behind them,
SVMs are typically not more difficult to implement than neural networks. More-
over, Gunn, Brown, and Bossley (1997) reported that the performance of SVMs is
generally superior to that of traditional neural networks.

Classification and Regression Trees
Trees are ubiquitous in AI because they implement a natural way of searching
variables. In AI, trees are called “identification trees.” Ross Quinlan (1979) built a
well-known family of identification trees. As an AI procedure, identification trees
work by applying a sequence of binary classification tests to a set of examples. In
this way, the method constructs a tree that exactly classifies each example. 

Trees can be constructed as hierarchical sets of rules. For example, ID3, the
best known system of the ID family of trees developed by Quinlan, has been used
to mine databases in areas ranging from credit assessment to medical diagnosis.
Quinlan described the application of ID3 to a database of patients with hypothyroid
diseases. The system produced rules from a simple type—“If the patient’s TSH

58Developed from 1960 to 1990 by Vladimir Vapnik and Alexey Chervonenkis. See Vapnik (1995,
1998). 



Machine Learning

©2006, The Research Foundation of CFA Institute 63

[thyroid stimulating hormone] level is less than 6.05 units, then the classification
is negative”—to more complicated types.

The generalizability of a tree depends on when the tree is stopped, thus creating
an approximate classification. As in every application of automatic learning, under-
standing where to stop the accuracy of in-sample analysis is the critical task.

Classification can be interpreted as a kind of discrete regression, insofar as it
assigns a discrete classification value to each item. Classification and regression trees
are the statistical counterpart of Quinlan’s identification trees. Classification and
regression trees work by splitting variables into two or more segments, such as
return ≤ 3 percent, return >3 percent. The objective is to identify what combination
of values of the independent variables corresponds to a given value of the
dependent variable. Each item might be identified by both continuous variables
and categorical variables (i.e., discrete variables that identify categories). For
example, a group of companies could be identified by both continuous variables
(e.g., financial ratios) and by categorical variables (e.g., industrial sector). By
successive splitting, one can identify what financial ratios and sector identifier
correspond to a given credit rating. At the end of the process, the result is an
exhaustive classification. In short, standard regressions work only with continuous
variables, but classification and regression trees accept as inputs a combination of
different types of variables, including discrete variables.

Various classification tree programs have been developed.59 One of the most
useful in finance and banking is the CART® method.60 For example, CART
methods have been widely used to determine credit ratings and to detect credit card
fraud. Our survey revealed that a number of asset management firms use CART
methods in portfolio management (see Chapter 11). These firms consider the
results satisfactory.

Genetic Algorithms
Genetic algorithms (GAs) are probabilistic optimizers. Given a function, GAs
implement a systematic search for the maximum of that function by exploring the
domain where the function is defined. The searching process is driven by the
generation of random numbers. The search is not random; it is guided by genetic
principles, in the sense that the mechanism of the search is inspired by genetic
concepts.

GAs, which were inspired by genetic evolution in biology, were conceived by
Holland (1976). According to the modern concept of evolution, random mutations
produce individuals with new features. Those new features that make an individual

59Classification trees include the QUEST program of Loh and Shih (1997), C&RT devised by
Breiman, Friedman, Olshen, and Stone (1984), FACT developed by Loh and Vanichestakul (1988),
the THAID method of Morgan and Messenger (1973), and the CHAID approach of Kass (1980).
60CART is a registered trademark of California Statistical Software. 
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better adapted to the environment are preserved whereas other mutations disappear.
Genetic evolution seems to be an efficient mechanism in terms of adaptation of
various living beings to different environments.

Holland had the idea of creating a computational version of genetic evolution.
Genetic computation proceeds in steps. The basic units for computation are arrays
of zeros and ones called “chromosomes.” The function to be optimized is defined
on the chromosomes. At each step, random mutations are introduced in the
chromosomes and operations that swap portions of the contents of chromosomes
are applied. These operations mimic what happens in sexual reproduction. Those
new chromosomes that correspond to higher values of the function to be maximized
are retained.

In problem-solving applications, chromosomes represent possible solutions to
the problem and the function to be optimized represents the objective. For example,
in a trading application, chromosomes might represent trading strategy.

GAs can be considered optimizers or searching strategies. Ultimately, problem
solving is implemented through an optimization process. One defines a space of
variables to be searched, the variables that define the problem, and an objective
function, called the “fitness function,” that defines the quality of the solution.
Problem solving consists of searching for the maximum of the objective function.
GAs are useful in problem solving because, given their probabilistic nature, they do
not get stuck in local maximum or minimum values, as often happens with
conventional optimizers.

GAs have been used as a problem-solving paradigm. For example, Koza (1992)
used genetic algorithms to implement genetic programming, a technique to develop
computer programs automatically. In the domain of financial modeling, Leinweber
used genetic algorithms to improve asset allocation strategies. He coded various
models as chromosomes and defined a fitness function in terms of prediction results.
The GAs explored a vast number of models and determined the optimal models.
Results, reported in Kiernan (1994), were satisfactory. 

A number of applications have been described in the finance literature.
Armano, Marchesi, and Murru (2005) presented an application to forecasting stock
indices. The forecasting activity results from the interaction of a population of
“experts,” each integrating genetic and neural technologies. An expert is a genetic
classifier designed to control the activation of a feed-forward ANN. Applied to the
S&P 500, this system exhibited remarkable forecasting performance.61

Thawornwong and Enke (2004) described the use of GAs for selecting predic-
tors. The objective was to examine whether using recent relevant variables leads to
additional improvements in stock return forecasting. The authors claimed that

61Many of these applications were designed as proprietary trading applications. As a consequence,
only overall descriptions of the methods are available.
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neural network models that use the recent relevant variables generated higher profits
with lower risks than the buy-and-hold strategy, conventional linear regression, the
random walk model, or neural network models that used constant relevant variables.

Text Mining
Text mining broadly defines a set of computer applications that can handle
nonstructured data. Examples are reading, classifying, and summarizing text. It also
includes automatic translation and the ability to search databases of textual data.

Text mining encompasses two technologies. The first is a body of technologies
that handles text not specifically prepared for automatic processing. For example, an
application might search a database of scientific articles and prepare abstracts of each
paper. The second type of technology consists of handling texts that have already
been conceived for automatic treatment. The semantic web is one such technology.

The first type of technology proved to have limited applications in finance. The
reason is that texts now being produced, such as news and research reports, are
prepared for automatic handling. The second type of technology is proving highly
valuable. In connection with the diffusion of standards and with Web-searching
technologies, the automatic handling of news and reports is now embedded in most
information service providers.

Conclusion
The attractiveness of AI in financial modeling rests on three primary reasons:
• AI is not a black box but can deal with rules and statements that can be

understood.
• AI can deal with a broad variety of categorical and continuous variables.
• AI can learn and solve problems that are only partially formulated.

The fact that AI is not a black box has proved to be less appealing than
anticipated. Trees and rule-based systems are certainly not black boxes, and their
working can be understood, but the number of rules that a large system can handle
generally exceeds what human beings can effectively handle. In addition, growing
familiarity with econometric modeling has reduced the demand for systems that
can be followed. Our recent survey revealed that many people feel comfortable with
black boxes.

AI’s ability to learn to solve problems with both categorical and continuous
variables is an important asset of AI methods. CART methods are often used
because the modeler needs to use heterogeneous variables. Methods like CART,
however, can be considered part of mainstream statistical analysis. CART does not
contain much more artificial intelligence than does any other estimation technique. 
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The third point is the critical element that divides AI applications from
conventional modeling. Unfortunately, the expectation that AI would allow prob-
lems to be solved automatically from incomplete or fuzzy data has proved to be
unfounded. True, a well-trained pattern recognition application can recognize
human faces or handwritten characters perhaps better than humans can, but those
applications are well specified. The possibility of feeding computers data and news
and letting the machines find profitable strategies is a far cry from reality. Although
computers can perform repetitive operations at a speed that is billions of times that
of human capabilities, the possibility of replacing intuition and judgment is remote.
Problems need to be well defined and data well specified for AI to succeed.
Ultimately, AI and machine learning are an extension of more conventional
modeling that allow handling of broader sets of data.
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7. Model Selection, Data 
Snooping, Overfitting, and 
Model Risk

Model selection is fraught with pitfalls—in particular, data snooping and over-
fitting—but methods are available for mitigating these risks. Model selection is
typically part of a process of innovation in methodologies in use at asset manage-
ment firms. By the standards of modern science and technology, innovation in
equity modeling is slow and difficult, for both technical and business reasons.

Finance has traditionally been associated with speculation and deal making.
Since the broad diffusion of equity holdings after World War II in the United States
and as of the 1990s in Western Europe, the management of equity portfolios has
been entrusted to professionals whose knowledge and judgment are considered to
enable them to produce returns in excess of what the investor might be able to obtain
without professional assistance (for example, by stock selection or indexing). The
ability of portfolio managers to realize excess returns has been questioned, however,
by academic writers—starting with Samuelson (1965) and Fama (1965). These
writers observed that financial markets are efficient. As a consequence, investment
managers cannot produce excess returns; they can only optimize the risk–return
trade-offs of investments. 

Although studies showed that portfolio managers cannot consistently produce
excess returns, the long bull market of the 1980s and 1990s made these discussions
appear to be irrelevant: Investors were happy with the double-digit returns. The
1987 market crash forced some intellectual discipline into the equity investment
process. Many firms introduced risk management to supervise the risk taking of
asset managers and, in some cases, the risk position of the entire firm. Institutional
investors were also instrumental in pushing asset management firms to adopt a more
disciplined investment process. 

The size and complexity of modern equity markets also played a role. The
investable universe of traded stocks in the United States is presently several
thousands.62 No individual can have knowledge of a universe this size. Even if a

62The Russell 3000 Index represents about 99 percent of the variation in the U.S. equity market, and
the Russell 1000 Index represents about 90 percent, but many of the smaller stocks are illiquid. What
the “investable universe” is depends greatly on what kind of investment strategy a portfolio manager
follows. The Wilshire 5000 Index contains about 5,000 stocks, and Wilshire considers all of them to
be tradable to some degree.
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firm employs specialized managers, the problem of understanding the correlations,
cross-autocorrelations, and feedbacks (delayed response, momentum, reversal, and
mean reversion/cointegration) among investments that have been empirically ascer-
tained is not solvable without computerized models. For example, the S&P 500
Index contains approximately 125,000 pairwise correlations. These correlations are
noisy and cannot be directly applied in portfolio management. By reducing the
problem to correlations between a small number of factors (10–15 factors), factor
analysis can reduce the number of correlations to 50–120. Without computers and
statistical software, such an analysis is impossible. Adding cross-autocorrelations
and feedbacks compounds the situation. As a consequence, modeling capabilities
are necessary if an asset manager is to understand the markets and produce excess
returns for clients.

Model Selection 
In practice, model selection involves some interplay between business requirements
and economic intuition. Business needs can be of various kinds, including the need
to build or modify a suite of models and the need to model specific markets, market
segments, or market regimes. Given a broad business need, the starting point of the
modeler will be economic intuition; a purely data-mining approach in which the
modeler probes data automatically in a search for patterns is not feasible (see
Chapter 6). Even if the modeler decides to use machine-learning methods (see
Chapter 6), some economic intuition to suggest a basic approach will be required.
For example, intuition will suggest whether to use an explanatory model, which is
based on exogenous factors, or an autopredictive model, which makes predictions on
the basis of its own past.

Or the process may be the reverse: The economic intuition of the modeler may
suggest a business opportunity. For example, a modeler might suggest examining
specific market segments or specific patterns in financial markets that can be
exploited. This process necessitates the sharing and managing of knowledge,
something many asset management firms find difficult to foster.

Once the economic intuition has been articulated, the process of model
selection can begin in earnest. The process consists of a sequence of four steps:
1. formulating the econometric hypothesis,
2. building the model,
3. estimating the model, and then,
4. testing the model.

Suppose, for example, that the objective is to model the economic intuition
that a set of company financial ratios are good predictors of stock returns. The first
step is to formulate the econometric hypothesis that embodies this intuition.
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Among the decisions that have to be made are the choice of regressions (i.e., linear
or nonlinear), the number and type of predictors, and the number of lags. Perhaps
the modeler wants to use functions (modifications) of financial ratios, such as
logarithms, or to extract special predictors formed as combinations of returns and/
or exogenous variables. 

Next, the model has to be constructed as a software program, and its parameters
must be estimated on sample data.

After estimation, the model must be tested. A number of tests can be performed
on sample data. For example, in a linear regression, one can use sample data to test
the relative importance of regressors. The real issue, however, is whether the model
performs well when applied to new data—out-of-sample data. For this reason, the
model has to be tested on test data that are different from the data used for
estimating the model.

The construction process is only a general prescription, not a formal method-
ology, for model building. Despite many efforts in problem solving, no “recipe” for
model design exists.63 Each step requires creative thinking. The testing and analysis
of models, however, is a well-defined step-by-step methodology with a sound
scientific foundation. The most important part of the discipline required in model
selection is implementation of a rigorous testing methodology. We cover some of
the standard testing procedures later in this chapter.

Simple vs. Complex Models
An important lesson in the theory of learning is that a key virtue for models is
simplicity. Complex models require huge amounts of data for estimation and testing. 

Trade-offs always have to be made among model complexity, explanatory
power, and the size of available datasets. Despite their apparent superabundance,
economic and financial data are actually scarce relative to what is needed to estimate
many kinds of models. For example, the 125,000 individual possible pairwise
correlations in the S&P 500 need to be reduced. Only a tiny fraction of the potential
correlation structure is revealing; the rest is noise.

Financial econometrics ignores the details and attempts to determine probabi-
listic laws. Discovering probabilistic laws with confidence, however, requires work-
ing with large samples. The samples available for financial econometric analysis are
too small to allow for a safe estimate of probability laws; small changes in the sample
induce changes in the laws.

As a result of this scarcity of economic data, many different statistical models,
even simple ones, can be compatible with the same data with roughly the same level
of statistical confidence. Therefore, simplicity is a fundamental requirement. If two

63The same is true in almost all sectors of design and engineering.
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models have roughly the same explanatory power, the simpler model—that is, the
one with a smaller number of parameters to estimate—is preferable.

Machine-Learning Approach to Model Selection
The salient feature of machine learning, which is discussed at length in Chapter 6,
is its universality. By its nature, machine learning can be adapted to any process.
Machine learning—a by-product of the diffusion of computers—is characterized
by the following:
• a set of empirical data that requires explanation,
• models that include an unbounded number of parameters,
• the ability of models to fit sample data with any desired degree of precision if

the number of parameters is not constrained, and
• learning methodologies to constrain the number of parameters.

Neural networks, a machine-learning tool widely used to model data, illustrate
how models can fit data with arbitrary precision. If one allows a sufficient number
of layers and nodes, a neural network can approximate any given function with
arbitrary precision. 

The key concept of the theory of machine learning, however, is that a model
that perfectly fits sample data has no explanatory power; that is, the model captures
noise but does not capture any true feature of the data. The cause is the assumption
that empirical data are described by some simple structure with a large amount of
noise superimposed. In an economic context, machine learning can perfectly explain
sample data, but if it does so, the explanation has no forecasting power because it
fits noise. This phenomenon is called “overfitting.” 

To address the problem, the theory of machine learning constrains model
complexity so that models fit sample data only partially but, in return, retain some
forecasting power. Constraints typically embody a trade-off between the size of
samples and the complexity of models. Fundamentally, large sample datasets
support more complex models. If the sample dataset is small, the model can learn
only simple patterns—provided that the patterns do indeed exist.

In most practical applications, the theory of machine learning works by intro-
ducing a penalty function to decide between various models. Adding parameters
reduces the errors in sample but is penalized by the penalty function. Models can be
compared by adding the penalty function to the likelihood function (see Chapter 9).
The result is an ideal trade-off between model complexity and forecasting ability.

The theory of machine learning offers no guarantee of success: It is always
possible to fit simple models to random patterns. To illustrate this point, we can
generate a random walk and fit a polynomial of low order to the path. Figure 7.1
illustrates how a polynomial of order 5 seems to capture some real behavior of data.
But because the data are random, the fit is spurious.  
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Finding Real Patterns
When analyzing a dataset made up of many patterns—for example, many time series
of stock prices—one can always find patterns that look profitable in sample. For
instance, in large sets, some patterns will seem to follow a profitable trend. A
modeler who tries to find rare or unique patterns in large sets of data is erring because
these patterns are typically not permanent and disappear in test data and in real
data. This mistake is made easy by the availability of powerful computers that can
explore large amounts of data. With the help of a computer, one can easily test the
existence of interesting patterns in a large number of generated paths. To avoid
looking for ephemeral patterns, one must stick rigorously to the paradigm of
statistical tests. That is, one should not look for patterns that are exceptional but
for patterns that appear with a frequency that allows rejecting the hypothesis that
they are the product of chance.

Capturing the exceptional was an important source of failure in early data
mining applications. Excited by the power of computers to discover hidden struc-
tures, many investigators failed to understand that in large databases, one can
discover almost any structure. The development of the rigorous theory of machine
learning shed light on exactly what structures can and cannot be learned.

The temptation to look for the exceptional is often difficult to recognize and
resist. Suppose we are constructing a trading strategy based on a forecasting system
that analyzes several hundred return processes. We may be tempted to base our
trading strategy on selecting a small number of stocks that exhibit the highest
returns. By doing so, however, we are likely to experience unpleasant surprises
because many of the stocks selected will have been selected by chance. To reduce

Figure 7.1. Polynomial Fitting of a Random Walk
with a Polynomial of Degree 5
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the risk of choosing spurious returns, we must select a large number of stocks. But
choosing the optimal number of stocks to include in the strategy might not be a
trivial task: It depends on the sampling distribution of returns (see Chapter 9 on
estimation) and the amount of noise in the investable universe.

Note also that good practice calls for testing any model or pattern recognition
method against a surrogate random sample generated with the same statistical
characteristics as the empirical sample. For example, a model and strategy intended
to find excess returns should be tested on a set of computer-generated random walks.
If the proposed strategy finds profit in the computer-generated random walks, the
strategy must be reconsidered.

Data Snooping
Calibrating models on some dataset, called the “training set,” and testing them on
another dataset, called the “test set,” is good practice. Failure to do so is data
snooping. Needless to say, the test set must be large and must cover all possible
patterns, at least in some approximate sense. For example, to test a trading strategy,
one needs to test data in many varied market conditions—those with high volatility
and those with low volatility, in expansionary and recessionary periods, in various
correlation situations, and so on.

Data snooping is not always easy to understand or detect. Suppose that a new
model has not passed the tests and the modeling team starts the model selection
process again. If the modelers use the same data for the new effort, some data
snooping is unavoidable. 

The real danger is the possibility that no true data-generation process (DGP)
exists.64 If so, through trial and error, the team may still hit upon a strategy that
performs well in-sample but poorly when applied in the real world. Another form
of hidden data snooping is when a methodology is finely calibrated to sample data.
Again, a calibration parameterization may be found by trial and error that works
well in the sample but poorly in the real world.

There is no sound theoretical way to avoid this problem ex ante. “Resampling”
techniques have been proposed to alleviate the problem. Intuitively, the idea behind
resampling is that a stable DGP calibrated on any portion of the data should work
on the remaining data. Widely used resampling techniques include “leave-one-out”
and “bootstrapping.” The bootstrap technique creates surrogate data from the initial
sample data.65 

64The DGP of a series is a mathematical process that computes the future values of the variables given
all information known at time t.
65The term “bootstrap” was given to this methodology because of initial skepticism about its
soundness. It comes from the fictional Baron Munchausen, who lifted himself out of a well by pulling
on his own bootstrap. Bootstrapping is an important technique but its description goes beyond the
scope of this book. For a useful review of bootstrapping, see Davison and Hinkley (1999).
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Survivor Bias
The sample data can also hold pitfalls. In addition to errors and missing data, one
of the most common (and dangerous) problems with sample data is survivor bias.
This bias is a consequence of selecting time series—in particular, asset price time
series—by criteria that apply at the end of the period, not the beginning. For
example, suppose a sample contains 10 years of price data for all stocks that are in
a given index today and that existed for the previous 10 years. This sample is
apparently well formed, but it is biased. In fact, the sample is made up of only the
companies that have “survived” in sufficiently good shape to (still) be in the index.
Those firms that were in the index in the period under investigation but are no
longer there—because of bankruptcy, for example—have been ignored.

To illustrate the importance of survivor bias, we describe a simple experiment.
We choose a large sample of price processes—the S&P 500 or the MSCI Europe
Index over six or seven years. We implement a simple trading strategy that
rebalances portfolios at regular intervals by buying or keeping the 20–30 highest
priced stocks and selling short the corresponding 20–30 lowest priced stocks. In
general, in the middle of this strategy’s duration—from about the second to the
fourth year—it will provide an exceptional return. The reason is that in the middle
period, we find distressed companies that were nonetheless able to recover and
remain in the index. Any trading strategy whose profits are low in the beginning
and the end but high in-between should raise flags: The profits may be the result
of survivor bias.

Avoiding survivor bias appears simple in principle: Base any sample selection
on the stocks in the index at the beginning (rather than at the end) of the training
period so that no invalid information enters the strategy prior to trading. The fact
that companies are founded, closed, and merged, however, plays havoc with such a
simple model. In fact, calibrating a simple model requires data on each asset for the
entire training period—which, in itself, introduces a potentially large training bias.
On the one hand, a simple model cannot handle processes that start or end in the
middle of the training period. On the other hand, models that take into account
the foundation or closing of companies are often not simple.

This problem has no easy solution. Care is required in estimating the possible
performance biases consequent to sample biases. For example, suppose we use
models today that were trained on the past three or four years of return data to make
a forecast (using the same processes) of future returns. Clearly, data snooping is not
involved because we used only information available prior to forecasting. But we
must understand that we are estimating our models from data that contain biases.
In other words, snooping and biases are not the same; a model that does not involve
snooping can still contain biases and be unreliable (or even unusable) for forecasting.
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Moving Windows and Regime Changes
So far, we have assumed that the DGP exists as a time-invariant model. Can we
assume that the DGP varies, however, and that it can be estimated on a moving
window? If so, how can the DGP be tested? 

These complex questions do not have an easy answer. One aspect is whether
we assume the processes change slowly or dramatically. Processes whose parameters
change slowly are considered to be evolutionary processes. Processes that undergo
singular changes at fixed or random time points are said to have “structural breaks”
or “regime shifts.” Do the economy and the markets experience evolutionary
processes with slowly changing parameters, or do they experience structural breaks,
or are both evolutionary processes and regime changes at work? If economic/market
processes are evolutionary, modelers can hope to calibrate them on moving windows
by slowly adapting parameters to changing situations. If the economy/market is
subject to breaks or shifts, however, and if the time between breaks is long, models
will perform well for a while and then, at the point of the break, degrade until a
new model is learned.

Moreover, the economy and markets appear to experience periodic regime
changes; they oscillate between different states. Obvious examples are the boom
and bust cycles in the economy and bull and bear markets. In this case, if the regime
changes are frequent and the interval between the changes short, one can use a
model that incorporates the changes. The result is typically a nonlinear model, such
as the Markov switching model (see Chapter 8). Estimating models of this type is
onerous because of the nonlinearities inherent in the models and the long training
periods required. An alternative is to try estimating models in various regimes, as
long as the regimes are recognizable, and then use dynamically adjusted weights to
calculate a weighted average of the model results. This approach is the idea behind
random coefficient models (see Longford 1993).

Conclusion
To choose a modeling strategy, one must first keep in mind that if the model
parameters change rapidly, the model coefficients are noisy and do not carry genuine
information. Simply reestimating the model will not be sufficient, therefore, for
finding model parameters that are useful for forecasting. One must determine how
to separate noise from information in the coefficients. For example, a large vector
autoregressive (VAR) model used to represent prices or returns will generally be
unstable. To reestimate the model frequently would not make sense, so one should
first reduce the model’s dimensionality by, for example, factor analysis.

If the model parameters change slowly or, what is better, if a slow change is
superimposed on the natural noise of the estimation process, one has to determine
the nature of the change. Understanding if and how changes actually occur requires
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long time series. An analyst at a fairly large asset management firm who was
interviewed for this monograph summarized the situation as follows: “In a couple
thousand years, we will perhaps know how prices really behave.” Structural breaks
have received much attention in recent literature. Many tests have been suggested
that allow detecting the presence of structural breaks, but given the size of available
samples, the power of these tests is questionable.

Until we know more about how prices behave, we can use statistical tools to
make educated guesses about the nature of price change. Modeling regime shifts is
intrinsically more onerous than modeling simple linear processes. For this reason,
the usual choice is to estimate models on a moving window—perhaps adding other
techniques to reduce error, such as averaging the results of different models.

The length of the training window is clearly an issue. The need to calibrate the
training window introduces the danger of data snooping. In fact, to make a
meaningful calibration, one must see how models behave in the sample data and in
the test (out-of-sample) data. In this situation (i.e., the joint consideration of the
training data and the test data), data snooping is practically unavoidable. Again, no
clear-cut theoretical solution exists. Modelers must use the available statistical test
tools in addition to intuition and reasoning.

Clearly, simplicity (i.e., having only a small number of parameters to calibrate)
is a virtue in financial modeling. A simple model that works well is to be favored
over a complex model that runs the risk of producing unpredictable results.
Nonlinear models, in particular, are always subject to the danger of unpredictable,
chaotic behavior; extra care is required when they are used to avoid generating
chaotic behavior. Every step of the discovery process has to be checked for empirical,
theoretical, and logical consistency.
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8. Predictive Models of Return

In the less rewarding markets that have followed the 2000 U.S. market downturn,
the need of asset management firms to reduce costs and improve performance was
behind the search for models with predictive capability. Predictive return models
make conditional forecasts of expected returns that are dependent on the present
information set. The use of these models represents a departure from the past, in
that finance theory had held that expected returns are unpredictable.

A number of econometric models are currently being used in equity portfolio
management to model risk and returns in a predictive environment. In this chapter,
we explore four major families of predictive return models:
• regressive models that regress returns on factors (or predictors),
• linear autoregressive models that regress returns on their own lagged values,
• dynamic factor models and cointegration-based models that mix prices and

returns, and
• hidden-variable models that try to capture regime change.66

Generally, when analysts consider adopting a model, they first need to ask a
number of questions. The most important questions are the following:
• What are the statistical properties of the model?
• How many variables should enter the model?
• How does one estimate the model?
• How does one test whether the model is correct?
• How can the consequences of errors in the choice of model be mitigated?
The focus of this chapter is on the first question—that is, the statistical properties
of various families of models. We discuss the basic statistical concepts behind
models and their economic meaning, but we omit most mathematical details.

An important factor in the growing adoption of modeling is the availability of
software packages that implement the principal econometric building blocks. Most
of the models described in this chapter can be implemented with minimal coding
by using functions available in standard statistical software packages.67 

66In addition to these models, analysts have developed models based on machine learning, but because
such models are based on different principles from those of a more classical econometric approach,
we discuss them separately in Chapter 6.
67Software is available from such companies as E-ViEWS, GAUSS, MATLAB, PcGive, and SAS.
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Regressive Models
Regressive models of returns are generally based on linear regressions on “factors”
(which are also referred to as “predictors”). Linear regressions are simple yet
powerful statistical models. Conceptually, regressive models may be categorized as
one of two fundamental kinds:
• Static regressive models do not make predictions about the future. These

models regress present returns on present factors. 
• Predictive regressive models regress future returns on present and past factors

to make predictions.
Although the mathematical principles of linear regression are the same for both

categories, the economic meanings are significantly different. 

Principles of Linear Regression.68 Regression is a statistical construct
for expressing the notion of dependence between random variables. Consider the
simplest case: Assume we have two random variables, X and Y.69 If X and Y are
deterministic variables, we say that one variable—say, Y—depends on the other
variable—in this case, X—if there is a functional dependence of the sort that if the
value of X is known, the value of Y is also known with certainty. In a statistical
environment, this concept of dependence is too strict and, instead, dependence is
expressed through the concepts of conditional distribution and conditional expectation.
Thus, we say that random variable Y depends on variable X if the distribution of Y
depends on the value assumed by X.70

It is necessary to distinguish between two types of dependence of Y on X: 
• First, the distribution of variable Y depends on variable X, and the expected

value of Y depends on X.

68For a more detailed review of linear regressions, see Chapter 9 in DeFusco, McLeavey, Pinto, and
Runkle (2004).
69A random variable is a variable that can assume one of many values, subject to uncertainty. The
defining property of a random variable is that for any two values a and b, one can assign a probability
to the event that the variable x is greater than a and smaller than b. Thus, by referring to a variable as
random, we do not mean that it is a random walk or unpredictable.
70The concepts of conditional distribution and conditional expectation are subject to many important
mathematical subtleties. The main reason is that the probability of a single value of a variable is zero.
Thus, in conditioning, one cannot divide for the probability of the conditioning variable, as we do in
the usual formula  that defines the conditional probability of event A given
event B. It may be helpful to think of conditioning as a parameterization of the distribution—that is,
the distribution of Y is parameterized with X. But although this approach may help intuition, it hides
fundamental probabilistic facts about conditioning—such as the factorization of the joint density of
X,Y into a conditional density and a marginal density. Interested readers can consult Focardi and
Fabozzi (2004) or any advanced text on probability.

P A B P AB P B( ) ( ) / ( )  =
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• Second, the distribution of variable Y depends on variable X, but the expected
value of Y does not depend on X.71

In the second case, the dependence includes only the variance and higher moments,
not the expectation.

Now, suppose that the expectation of Y depends on the value assumed by X.
The regression function of Y on X is the deterministic function that expresses the
expectation of Y conditional on the value assumed by the variable X. Linear
regressions are characterized by a linear regression function—for example:

where a is the coefficient of regression of Y on X, b is the intercept or constant term,
and ε is a zero-mean noise term. 

Two important observations are in order:
• First, the concept of regression does not imply any notion of time. Analysts can

regress one time series on another time series, however, in the sense that a
sequence of regressions is carried out by performing one at each time step.
Because most regressions are of one time series on another and the results are
usually thought of as meaningful in an intertemporal time context, the fact that
there is no dependency on time must be checked. As shown in Chapter 9 on
estimation, this operation may result in correlations between the noise terms—
which has significant consequences for the estimation process.

• Second, the dependent variable can be regarded as either a deterministic
variable or a random variable. If it is regarded as a deterministic variable, which
is conceptually the simpler case, the regression equation is considered to be a
parameterization of the distribution of the dependent variables not subject to
uncertainty. If it is regarded as a random variable (in which case, both variables
are random variables), the modeler can introduce probabilistic and statistical
concepts, such as the correlation coefficient of Y,X.
Linear regressions are simple statistical models. The conditional distribution of

returns is always the same as that of the error term; that is, if the error term is normally
distributed, the returns are also normally distributed, and if the error term is not
normally distributed, then neither is the conditional distribution of returns. How-
ever, the unconditional distribution of returns depends on the distributions of both
the factors and the error terms. Linear regressions can also be determined if the noise
terms and the factors exhibit infinite variance (see Rachev and Mittnik 2000).

71This restricted type of dependence is important in financial econometrics. In fact, returns, after
appropriate discounting, are believed to be martingales—that is, processes in which the expectation
of returns does not depend on past values of returns but in which higher moments may be dependent
on present and past returns.

Y      + = +aX b ε,
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The quality of a linear regressive model (i.e., its ability to explain data) can be
measured by evaluating the ratio of the variance explained by the model to the total
variance or, alternatively, the ratio of the variance of the noise terms to the total
variance. The total variance is the variance of the dependent variable (i.e., the
returns). The variance explained by the regressive model is the total variance minus
the error variance. This measure is the coefficient of determination and is commonly
denoted by R2.

A critical issue in regression analysis is the number of factors. In principle, if the
number of factors with some predictive power is increased, the quality of the regression
should improve. As explained in Chapter 9, however, increasing the number of factors
increases the noise in the estimates, thereby reducing forecasting accuracy. As a result,
modelers face a trade-off between the number of factors and accuracy: Indiscrimi-
nately adding predictive factors reduces the accuracy of predictions.

Static Regressive Models of Return. The best known example of a
static regressive model of return is the capital asset pricing model (CAPM). Suppose
the risk-free return is rf and the return of the market portfolio is rM. The CAPM
states that each stock return, ri, is characterized by a constant beta, β, such that the
expected excess return of that stock (i.e., the difference between the return of that
stock and the risk-free return) is proportional to the expected market excess return.
Proportionality constant β is the covariance between the stock and the market
portfolio scaled (i.e., divided) by the variance of the market portfolio and is a
measure of the stock’s systematic risk.

The CAPM can also be expressed as a static linear regression in which each
stock’s excess return is regressed on the market excess return plus a noise term. Static
multifactor models can also be expressed as linear regressions. For example, the
arbitrage pricing theory (APT) model is a linear regression of each stock’s return on
a small number of factors. In general, these factors can be interpreted as portfolios.

Figure 8.1 illustrates the effects of a CAPM-type regression on price processes.
In it, the market process is simulated by the MSCI Europe Index for the period
January 1999 through April 2005. Beta represents risk: Higher beta should com-
mand a higher expected return. The higher beta stock has a negative excess return
when market returns are positive and a positive excess return when market returns
are negative. The lower beta stock behaves in the opposite way. Over the entire
period, because the market return was negative, the higher beta stock exhibits a
negative excess return and the lower beta stock exhibits a positive excess return.

Graphically in Figure 8.1, the price process of a stock with a beta greater than
1 seems to magnify the market fluctuations whereas the price process of a stock with
a beta less than 1 seems to smooth market fluctuations. In both cases a constant
drift with respect to the market appears. 
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These regressions should be viewed as timeless relationships that are valid at
any moment. They are not predictive because there is no time lag between the return
and the factor. For example, in the CAPM, the conditional expectation of each
stock’s return at time t is proportional to the excess return of the market portfolio,
which is not known at time t. Predictions would be possible only if one could predict
the excess return of the market portfolio. If one wants to use the CAPM or APT
to build a portfolio or to compute portfolio risk measures such as value at risk, some
assumption about how to forecast the factor(s) is needed. The usual assumption is
that the factors (and thus the returns) are sequences of independent and identically
distributed random variables.

Note that nothing in the CAPM regression precludes assuming that the market
portfolio return can be predicted. Should the market portfolio return be predictable,
however, the theoretical static CAPM relationship would have to be replaced by a
dynamic model because prices would be explosive if betas did not change. Theo-
retical dynamic asset-pricing models have been developed, but they have limited
practical applicability, as explained in Chapter 7. In practice, for portfolio manage-
ment, one needs simple models that can be estimated from the limited amount of
empirical data. Note, however, that dynamic models, in which both expected returns
and risk are predictable, do not contradict the basic principles of absence of arbitrage
and market efficiency.

Figure 8.1. Behavior of Stock Price Processes that 
Behave According to the CAPM, 
January 1999–April 2005
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Predictive Regressive Models. The other family of regressive models
of returns—the predictive regressive models—have been developed in the quest for
models that predict returns. Consider a stock return, rt, and a number of predictors—
for example, a number of company financial ratios, fi,t . A predictive linear regressive
model assumes that the stock return at any given time t is a weighted average of its
predictors at an earlier time plus a constant and some error.

Figure 8.2 illustrates the behavior of a predictive regression. The setting is the
same as the CAPM but with a time lag; that is, the expected excess return of a stock
at time t is beta times the excess return of the market at an earlier date. For
illustration purposes, we chose a time lag of 50 days (that is, the stock price process
begins 50 days after the market price process). Note that the path of the stock price
has the same shape as that of the market but is shifted in time.  

Predictive regressions can also be defined by regressing returns on factors at
different lags. Models of this type are called distributed lag (DL) models. The
advantage of these models is their ability to capture the eventual dependence of
returns not only on factors but also on the rate of change of factors. To appreciate
the economic importance of DL models, suppose we want to create a predictive
model based on, among other factors, “market sentiment.” Market sentiment is
typically measured as a weighted average of analysts’ forecasts. A reasonable

Figure 8.2. Predictive Regression
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assumption is that stock returns will be sensitive to the value of market sentiment
but will be even more sensitive to changes in market sentiment. Hence, DL models
will be useful in this setting.

Linear Autoregressive Models
In a linear autoregressive model, a variable is regressed on its own lagged values—
that is, on its own past. If the model involves only one variable, it is called an
“autoregressive” (AR) model. If more than one variable is regressed contempora-
neously in the model, it is called a “vector autoregressive” (VAR) model because the
model variables are now vectors (i.e., arrays of variables).72

An AR model prescribes that the value of a variable at time t be a weighted
average of the values of the same variable at times t – 1, t – 2, . . ., and so on (depending
on number of lags) plus an error term. The weighting coefficients are the model
parameters. If the model includes p lags, then p parameters must be estimated.

Now, consider a VAR model that includes two variables. The model expresses
each variable as a weighted average of its own lagged values plus the lagged values
of the other variable. If the model includes p lags, each variable is regressed on 2p
lagged values, and therefore, the model includes 4p parameters. This reasoning can
be extended to any number of variables. If the model includes n variables and p lags,
each equation includes np lagged values. Because the model has n variables (and
thus n equations), it has n2 p parameters. Note that no symmetry considerations can
reduce the number of these parameters.

A VAR model with p lags is written as a VAR(p) model. As we are about to
explain, every VAR(p) model is equivalent to a specific VAR(1) model. The
equivalence is established by formally adding new variables that are the lagged values
of other variables. In this way, a VAR(p) model with n equations is equivalent to a
VAR(1) model with np equations.

Clearly, a VAR model can capture cross-autocorrelations; that is, a VAR model
can model how values of a variable at time t are linked to the values of another
variable at some other time. An important question is whether these links are causal
or simply correlations.73

These considerations make clear that a VAR model can model only a small
number of series. A large number of series—for example, the return processes for
the individual securities making up such aggregates as the S&P 500 Index—would
result in a huge number of parameters to estimate. For example, if one wanted to
model the daily returns of the S&P 500 with a VAR model that included two lags,
the number of parameters to estimate would be 500 × 500 × 2 = 500,000 parameters.

72We focus on VAR models because the properties of AR models are similar to, although simpler
than, those of VAR models.
73For a discussion of the analysis of causality in VAR models, see Fabozzi, Focardi, and Kolm (2006a).
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To have at least as many data points as parameters, one would need at least four
years of data, or 1,000 trading days, for each stock return process, which is 1,000 ×
500 = 500,000 data points. Under these conditions, estimates would be extremely
noisy and the estimated model, meaningless.

We explain later how dynamic factor analysis can significantly reduce the
number of parameters to estimate. Unrestricted VAR models remain a key building
block of any dynamic factor modeling; however, in this case, they model common
factors.74 In addition, unrestricted VAR models can be used to model the behavior
of indices and broad aggregates.

Statistical Properties of Autoregressive Models. Autoregressive
models are truly dynamic models, in the sense that they describe the evolution of a
system starting from initial conditions. Suppose we create a VAR model to represent
the returns of a number of indices. Using a computer, we can run a simulation in
which we, step by step, update the model equations from initial conditions. In fact,
a VAR model implements a data-generation process (DGP), which is a mechanism
that is able to generate data with given statistical properties.

VAR models are of two basic types—stable and unstable. Stable VAR models
generate stationary processes; unstable VAR models generate processes that can be
explosive or integrated.

■ Stable VAR models. Perhaps the easiest way to understand the statistical
properties of a stable VAR model is by looking at the explicit form of its solutions.
Consider a stable VAR process that starts from deterministic initial conditions and
is subject to a stream of external shocks. This process describes what would happen
in a computer simulation. The computer would start from some initial conditions
and generate a random noise term at each step. In economic terms, the random
noise terms can represent such phenomena as news or fluctuations in cash flows.

The response of a stable VAR model to each shock is an exponential with
exponent less than 1. The solutions of a stable VAR model are thus sums of weighted
exponentials with exponents less than 1, corresponding to past shocks. In all cases,
the solutions decrease exponentially. As a consequence, the influence of the initial
conditions dies out exponentially (i.e., the influence is damped) and becomes
negligible. The influence of each random term will also die out exponentially.

Therefore, the solutions produced by a VAR model will, in every moment, be
the sum of all past noise terms but exponentially damped. Consequently, only the
most recent shocks will have a nonnegligible effect; the effects of initial conditions
and of shocks in the distant past will vanish. 

74A VAR model is called “unrestricted” if its parameters are allowed to assume any real value. A VAR
model is called “restricted” if its coefficients can assume values only within a given range.
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Figure 8.3 illustrates the behavior of stable solutions of VAR processes. We
can thus imagine the solutions of a stable VAR process as stationary time series
around some mean. These series will be subject to continuous mutual influences
but will remain stationary. As Figure 8.3 shows, some of the solutions will exhibit
oscillatory behavior while other solutions simply exhibit exponential decay. In all
cases, solutions will exhibit autocorrelation; in other words, there will be a nonneg-
ligible correlation between the values of each series at different time lags. Correla-
tions will decay with time and eventually disappear.  

Figure 8.3. VAR Processes with Various Solutions
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The behavior of the autocorrelation function is quite intuitive. Clearly, at each
moment, the future of the system is determined partially by the deterministic
response to the present and past shocks and partially by new shocks. The portion
of future behavior that depends on the response to present and past shocks is
responsible for correlations. As this predictable part decays with time, the entire
autocorrelation function will decay. Figure 8.4 shows the behavior of the autocor-
relation function of a VAR(2) process. The dotted horizontal lines represent the
confidence band; points within the band are not significant. The economic meaning
is that the effects of present events and events in the immediate past will be felt for
some time and only gradually become negligible and be replaced by new events.

Figure 8.3. VAR Processes with Various Solutions (continued)
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■ Unstable VAR models. All solutions of VAR models are exponentials.
Unstable solutions of VAR models are exponentials with an exponent greater than
or equal to 1. In this discussion, we exclude solutions with exponents greater than
1 because these solutions are explosive and thus economically irrelevant.

Solutions with exponent 1 originate integrated processes—that is, processes in
which shocks accumulate and never decay. In many integrated processes, the error
terms are autocorrelated. The simplest, but by no means only, example of an
integrated process is a random walk. Integrated processes are processes in which a
stationary process keeps on cumulating. In fact, by differencing an integrated
process, one obtains a stationary process. Figure 8.5 shows four paths of integrated
processes. The pale solid line and the dashed line are autocorrelated.

Figure 8.4. Sample Autocorrelation Functions
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Suppose that an unstable VAR model has only integrated solutions and these
solutions represent the logarithms of stock prices. These solutions can exhibit two
fundamentally different types of behavior. The first alternative is that every possible
portfolio formed with these stocks exhibits integrated behavior. The other, more
interesting alternative is that although all solutions are individually integrated, linear
combinations of (that is, portfolios formed with) these solutions may be stationary.
This behavior is called “cointegration.” It was first discovered in the 1980s by Robert
Engle and Clive Granger (1987) and was among the reasons they received the Nobel
Memorial Prize in Economic Sciences in 2003.

Given n integrated processes, there can be from 1 to n – 1 cointegrating
relationships (i.e., different linear combinations that are stationary). If there are k
cointegrating relationships, a crucial finding of Engle and Granger is that, then,
there are n – k common trends such that every other solution can be expressed as a
linear regression on these common trends. Figure 8.6 shows three cointegrated
processes with two common trends.  

Cointegration can be interpreted in various ways. We have already mentioned
two potential implications: (1) the existence of stationary linear combinations and
(2) the existence of common trends. A third important potential implication of
cointegration is that meaningful linear regressions between integrated time series
are possible. In general, a meaningful linear regression of one integrated time series
on another integrated time series is not possible because they are both random. Such
regressions are spurious, although they might well pass the R2 test. If the series are
cointegrated, however, the linear regressions are meaningful.

The problem of spurious regressions is one of the major difficulties in perform-
ing predictive regressions. We have discussed how financial ratios and other
variables can be used as predictors of returns, but financial ratios are often close to

Figure 8.5. Four Integrated Processes
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integrated processes. Therefore, regressing returns that are stationary variables on
financial ratios may yield spurious predictive relationships.

Dynamic Factor Models
We previously discussed predictive regressive models, in which returns are linearly
regressed on factors but the factors are left unmodeled. We described two types of
regressive behavior—predictive and nonpredictive. In general, a model in which
factors follow a VAR model and returns (or prices) are linearly regressed on these
factors is a dynamic factor model.

Dynamic factor models are cointegrated models in which factors are the
common trends. Figure 8.7 uses three processes with a dynamic factor to illustrate
the behavior of dynamic factor models.

Other formulations of dynamic factor models, however, are possible. In par-
ticular, dynamic factor models are a compact formulation of some state-space model.
A state-space model is formed from two parts: the observable variables and the
hidden state variables. State variables are auxiliary variables; they are not observable
but are useful for describing the entire system. The dynamics of the state variables
are modeled by a VAR(1) model; the dynamics of the observables are linear
regressions of the observables on the state variables. Any VAR model and any
dynamic factor model can be expanded into a state-space model. 

In principle, the number of state variables can exceed the number of observables.
For example, to prove the equivalence of a VAR(p) model to a state-space model,
one has to expand the observables into a bigger number of state variables. In financial

Figure 8.6. Three Cointegrated Processes with 
Two Common Trends
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econometrics, however, the interest in state-space models and dynamic factor
models arises from the possibility of reducing the model’s dimensionality.

Recall that for a model to be useful, the number of parameters to be estimated
needs to be small. A dynamic factor model fulfills this requirement by concentrating
the dynamics of an aggregate (such as the S&P 500) into a small number of dynamic
factors that, in turn, correspond to a small number of state variables. For example,
a modeler might identify in the S&P 500 three dynamic factors modeled by a VAR
with, say, four lags, which results in only 12 state variables rather than the initial 500.

Both dynamic factor models and state-space models can represent either
integrated or stable processes. In the case of stable processes, the identification of
factors with common trends is no longer valid because all processes are stationary.

In light of the equivalence of dynamic factor models with state-space models
and, therefore, with VAR models, solutions to the two types of model have the
same form already encountered—that is, sums of exponentials. From an economic
perspective, the possibility of writing dynamic factor models of prices implies that
returns are predictable. Note that VAR models or factor models of returns also
imply that returns are predictable. But the ability to mix levels (i.e., prices) and
differences (i.e., returns) in the same model adds significant forecasting possibilities.
To see this point, suppose that we identified only one common trend for prices;
that is, all prices are mean reverting on a single common trend. Behavior of this
type cannot be generated by return processes with a finite memory. 

Figure 8.7. Three Processes with One Dynamic
Factor
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Hidden-Variable Models
The state-space models are hidden-variable models in the sense that the state
variables are not directly observable. State-space models are linear models, so one can
use the same mathematical form of linear state-space models to represent a nonlinear
family of hidden-variable models in which state variables represent the model
parameters. Probably the best known of these processes is the autoregressive conditional
heteroscedasticity (ARCH) and generalized autoregressive conditional heteroscedasticity
(GARCH) family. ARCH/GARCH models use an autoregressive process to model
the volatility of another process. The result is a rich representation of the behavior of
the model volatility. 

Another category of nonlinear hidden-variable models is the Markov switching–
vector autoregressive (MS–VAR) family. These models do allow forecasting of
expected returns. The simplest MS–VAR model is the Hamilton model (Hamilton
1989). In economics, this model is based on two random walk models—one with a
drift for periods of economic expansion and the other with a smaller drift for periods
of economic recession. The switch between the two models is governed by a
probability transition table that prescribes the probability of switching from recession
to expansion, and vice versa, and the probability of remaining in the same state.

The Hamilton model can be generalized to cover the case in which a probability
transition table governs the switch to/from one of a set of VAR models. Such models
implement regime switching. 

Why Dynamic Models?
The salient characteristic of dynamic models of stock returns and stock prices is
their ability to predict expected returns on the basis of the present and past values
of the same returns plus—if greater model complexity is acceptable—other vari-
ables. Empirical studies have shown that returns exhibit some predictability. Indeed,
returns and risk (e.g., variance) are somewhat predictable. The more difficult
questions are whether and how return predictability can be turned into a profit. Any
application of dynamic models in actual asset management must make sure that the
risk–return trade-off remains positive.



©2006, The Research Foundation of CFA Institute 91

9. Model Estimation

In this discussion of methodologies for estimating models, we introduce the concept
of estimation and the concept of sampling distributions. We then discuss how
estimation methods are applied to specific models.

Statistical Estimation and Testing
Most statistical models have parameters that must be estimated. Statistical estima-
tion is a set of criteria and methodologies for determining the best estimates of
parameters. Testing is complementary to estimation. Critical parameters are often
tested before the estimation process starts in earnest, although some tests of the
adequacy of models can be performed after estimation.

In general terms, statistics is a way to make inferences from a sample to the entire
population from which the sample is taken. In financial econometrics, the sample is
typically an empirical time series. Data may be returns, prices, rates, company-
specific financial data, or macroeconomic data. The objective of estimation tech-
niques is to estimate the parameters of models that describe the empirical data.

The key concept in estimation is that of estimators. An estimator is a function
of sample data whose value is close to the true value of a parameter in a distribution.
For example, the empirical average (i.e., the sum of the samples divided by the
number of samples) is an estimator of the mean; that is, it is a function of the
empirical data that approximates the true mean. Estimators can be simple algebraic
expressions; they can also be the result of complex calculations.

Estimators must satisfy a number of properties. In particular, estimators
• should get progressively closer to the true value of the parameter to be estimated

as the sample size becomes larger,
• should not carry any systematic error, and
• should approach the true values of the parameter to be estimated as rapidly as

possible.
Being a function of sample data, an estimator is a random (i.e., stochastic)

variable. Therefore, the estimator has a probability distribution referred to as the
sampling distribution. In general, the probability distribution of an estimator is
difficult to compute accurately from small samples but is simpler for large samples. 

To illustrate these principles, we computer-generated 2 million random num-
bers extracted from a normal distribution with mean of 0 and variance of 1. We
then computed the variance on 100,000 samples of 20 numbers, each selected from
the given population. As shown in Figure 9.1, the sampling distribution is not
normal. When we repeated the same calculations on samples of 100 sample points
each, however, the sampling distribution became much closer to normal, as shown
in Figure 9.2.  
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Figure 9.1. Sampling Distribution of the Mean 
and Variance for Samples of 20 
Elements Each

Figure 9.2. Sampling Distribution of the Mean 
and Variance for Samples of 100 
Elements Each
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The sampling distribution is important because certain decisions, such as
determining whether a process is integrated, must often be made on the basis of
estimators. Because estimators are random variables, decisions are based on com-
paring empirical estimators with critical values computed from the sampling distri-
bution. A critical value is a number that allows one to discriminate between
accepting or rejecting a hypothesis. For example, suppose we need to know whether
a process is integrated. Integration means that the autoregression parameter is 1.
Even if a process is integrated, however, every estimate will give results different
from 1 because of purely statistical fluctuations. But sampling theory of regressions
allows us to determine critical values so that we can reject the hypothesis that the
process is integrated if the autoregression coefficient is smaller or larger than the
upper/lower critical values.75

Estimation Methods
Because estimation methods involve criteria that cannot be justified by themselves,
they are subject to some arbitrariness. The crucial point is that, whereas an estimation
process must “fit” a distribution to empirical data, any distribution can, with a few
restrictions, be fitted to any empirical data. The choice of distributions thus includes
an element of arbitrariness. Suppose we want to determine the probability distribu-
tion of the faces of a tossed coin, and in 1,000 experiments, heads comes out 950
times. We probably would conclude that the coin is highly biased and that heads has
a 95 percent probability of coming up. We have no objective way, however, to rule
out the possibility that the coin is fair and that we are experiencing an unlikely event.
Ultimately, whatever conclusion we draw is arbitrary.

Three estimation methods are commonly used in financial econometrics: the
least-squares, maximum-likelihood, and Bayesian methods.76

The Least-Squares Estimation Method. The least-squares (LS) esti-
mation method is a best-fit technique adapted to a statistical environment. Suppose
a set of points is given and we want to find the straight line that best approximates
these points. In financial modeling, a point may represent, for example, a return at
a given time. A sensible criterion in this case is to compute the distance of each
point from a generic straight line, form the sum of the squares of these distances,
and choose the line that minimizes this sum—in short, the ordinary least-squares
(OLS) method. 

75Critical values of the autoregressive parameters are tabulated and are available in all major time-
series software packages. 
76Other estimation methods include the M-methods, which are generalizations of the maximum-
likelihood method; the method of moments, which estimates parameters as functions of the empirical
moments; the instrumental variables method, which estimates a model parameter with the aid of
additional “instrumental” variables; and the generalized method of moments, which is a generalization
of the linear instrumental variables approach.
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The least-squares method can be adapted to any set of points and to different
functional forms (straight lines, polynomial functions, and so on). It can be used,
for example, to regress the returns of a stock on a financial ratio.

The Maximum-Likelihood Estimation Method. The maximum-
likelihood (ML) estimation method involves maximizing the likelihood of the
sample given an assumption of the underlying distribution (for example, that it is a
normal distribution or a uniform distribution). Likelihood is the distribution com-
puted for the sample. For example, suppose a coin is biased so that heads has a 30
percent probability of coming up and tails, a 70 percent probability. What is the
likelihood in a random independent sample of 3 heads and 2 tails coming up? It is
0.3 × 0.3 × 0.3 × 0.7 × 0.7. The ML method would choose these parameters because
they maximize the probability (likelihood) of the sample being observed. 

As just noted, the ML method implies that one knows the form of the
distribution; otherwise, one cannot compute the likelihood. ML methods can be
used, for example, to estimate the long-run relationships (cointegration) between
various rates of return.

Bayesian Estimation Methods. Bayesian estimation methods are based
on an interpretation of statistics that is different from that of the OLS or ML
methods. Bayesian statistics explicitly assume a subjective element in probability.
This subjective element is expressed by the so-called prior distribution, which is the
distribution that represents all available knowledge prior to data collection. Bayesian
statistics use a specific rule, Bayes’ theorem, to update prior probabilities as a function
of the arrival of new data to form posterior distributions. Bayes’ theorem simply states
that the posterior distribution is the prior distribution multiplied by the likelihood.
Thus, Bayesian estimates have three ingredients: a prior distribution, a likelihood,
and an updating rule.

Note that to write the likelihood, one needs to know the form of the
distribution—for example, that it is a Gaussian distribution. The prior distribution
will typically be expressed as a distribution of the parameters of the likelihood.

In practice, the Bayesian estimate of a model implies that one has an idea of a
typical model and that the estimated model is a “perturbation” of the typical model.
Bayesian methods are frequently used to allow a portfolio manager to plug his or her
own views into a model—that is, to subjectively influence or “perturb” the model.

Robust Estimation. With the widespread use of large predictive models
having many parameters, the techniques of robust estimation (that is, estimation
that is relatively insensitive to (1) a violation of one or more assumptions and/or (2)
estimation errors in the inputs) have gained importance; they are now a key
component of estimation technology. For example, robust estimation takes the
uncertainty in the estimates into account in portfolio optimization (see Chapter 3).
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The motivation for robust estimation is that, because of the size of available samples,
estimates are typically noisy when large models are being estimated. In addition,
data may contain mistakes. Therefore, extracting the maximum amount of mean-
ingful information from a noisy process is important.

To understand the need for robust estimation, consider the estimation of a
correlation matrix. The correlation between two random variables is a number that
assumes values between –1 and +1. The value 0 indicates absence of correlation. As
discussed in the previous section, the empirical estimator of the correlation parameter
is a random variable. Consider two normally distributed variables that are indepen-
dent (consequently, the true, or population, correlation is zero). For n samples of
these variables, it is known in statistics that the correlation parameter will, with 99
percent probability (99 percent of the time), be in the range of plus/minus three times
the reciprocal of the square root of the number of samples. If we have 1,000 samples,
the correlation parameter will fall (approximately) in the range between –0.1 and
+0.1, with 99 percent probability. That is, with 1,000 samples, if the absolute value
of their estimated correlation exceeds 0.1, we can conclude at a 99 percent confidence
level that the two variables are correlated.

Now, consider the correlations of stock returns in a sample of 1,000 trading days
(that is, four years) of an aggregate stock index. In the case of the S&P 500 Index,
because of symmetry, the correlation matrix has approximately 125,000 entries.
Returns on individual stocks are known to be strongly correlated with one another.77

In fact, in any four-year period, the empirical average correlation well exceeds the 10
percent level. If we try to evaluate individual correlations (i.e., to discriminate
between the correlation levels of various pairs), however, we glean little information.
In fact, the distribution of empirical correlation coefficients in the entire correlation
matrix is similar to random fluctuations around some mean correlation. If we were
to feed this correlation matrix to a mean–variance optimizer, we would obtain
meaningless (and dangerous) results—the so-called corner portfolios—because the
optimizer would treat low or negative correlations appearing essentially at random,
as though they represented actual investment opportunities.78

Separating information from noise is a difficult problem. For example, in the
case of a correlation matrix, we have to extract a meaningful correlation structure
from a correlation matrix whose entries are corrupted by noise. The problem of
separating a signal (useful information) from noise by maximizing the “signal-to-
noise ratio” is well known in engineering. Communications technology and speech
and image recognition, to name a few, are areas where the minimization of noise is

77If stock returns were not correlated, diversification would make large portfolios nearly deterministic.
78In general, and all other things being equal, the lower the correlation a security has with other
securities, the more desirable it is.
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a critical component.79 The following sections outline the techniques of robust
estimation used for each class of financial models.

Estimation of Matrices
Consider the task of estimating a variance–covariance matrix. Suppose we have two
random variables. Assume first that they have zero means. The variance of the two
variables is defined as the expectation of their square, and the covariance, as the
expectation of their product; the correlation is covariance scaled by dividing it by
the square root of the individual variances (i.e., the volatilities). Suppose we have a
sample formed by extracting n pairs of the two variables from a population. In this
case, the empirical variance of each variable is the sum of the squares of the samples
divided by the number of samples (i.e., the empirical average of the square of the
variables). The empirical variance is a measure of the dispersion of the variables
around zero. The empirical covariance between the two variables is a measure of
how the two variables move together. It is defined as the sum of the products of the
samples of two variables divided by the number of samples. In other words, the
empirical covariance is the empirical average of the products of the two variables.
Empirical correlation is empirical covariance normalized with (i.e., divided by) the
square root of the individual empirical variances.

If the two variables have nonzero means, we simply subtract the mean. For
example, we define the variance as the expectation of the variable minus the mean
and the covariance as the expectation of the product of the differences of each
variable minus the respective means. The empirical variances and covariances are
formed by subtracting the empirical mean, defined as the sum of the samples divided
by the number of samples. 

If k variables are given, we can form a k × k matrix whose entries are the variances
and covariances of each pair of the given variables. We can also form a matrix whose
entries are the correlations of each pair of variables. The empirical variances,
covariances, and correlations as defined here are estimators of the true variances,
covariances, and correlations. 

The empirical variance–covariance and empirical correlation matrices are noisy,
but a number of techniques can be used to make estimates more robust. We describe
one such technique, a method based on principal-component analysis (PCA).80

To understand PCA, a concrete example will be useful. In this example, the series
are formed by the returns of k stocks on n trading days. The empirical variance–
covariance matrix of these returns is computed as described earlier in this section. We

79In the last decade, however, scientists working on stochastic resonance have discovered that
sometimes adding noise might actually allow the extraction of more information. To our knowledge,
the implications of stochastic resonance for financial econometrics have not yet been clarified.
80For a detailed treatment of PCA and its applications, see Focardi and Fabozzi (2004).



Model Estimation

©2006, The Research Foundation of CFA Institute 97

can construct arbitrary portfolios of k stocks, in which the portfolio weights of
individual securities sum to 1. Each arbitrary portfolio has a determined variance, and
different portfolios have different variances. Although not immediately obvious, it
can be demonstrated mathematically that there is a portfolio with maximum variance.

Next, consider all portfolios that are uncorrelated with the maximum-variance
portfolio (actually the number is infinite even if the stocks are all positively
correlated). We can repeat the previous reasoning and find the maximum-variance
portfolio among these portfolios. Repeating this process k times, we can determine
k mutually uncorrelated portfolios with decreasing variances.

To illustrate this process, we performed a PCA of the daily returns of 495
stocks in the MSCI Europe Index in the four-year period from January 2000
through December 2003. Figure 9.3 shows the decay of the variances in the
mutually uncorrelated portfolios.81 The variance decays rapidly, and only the first
15–20 portfolios have a significant variance; the variances of all other portfolios
are close to zero.  

81A set of mutually uncorrelated portfolios is called a set of “orthogonal portfolios.”

Figure 9.3. Decay of Variance of Mutually 
Uncorrelated Portfolios: PCA of Daily 
Returns of 495 Stocks in the MSCI 
Europe Index, January 2000–
December 2003 
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The returns of these portfolios form k new time series. The variance–covariance
matrix of these series is a diagonal matrix—that is, only the elements on the diagonal
are nonzero. A key result in linear algebra is that the original time series can be
recovered as linear combinations of these new series. In other words, we started with
k series of returns, we formed k mutually uncorrelated portfolios, and we concluded
that all original returns are linear combinations of the returns of these portfolios.

A particularly interesting aspect of this construction is that an approximate
representation of the original returns can be recovered by considering only those
portfolios that have a large variance. Figure 9.3 shows that only 15–20 uncorrelated
portfolios have a nonnegligible variance. We can select these portfolios and express
each original series as a linear regression on the time series of the returns of these
portfolios. This construction is interesting and useful: All the covariances and
correlations are now determined solely by their dependence on common portfo-
lios—also referred to as “common factors.” In fact, we can now express all our
original time series as regressions on a restricted set of common factors. The
resulting covariance and correlation matrices determined by PCA contain less noise
and are, therefore, more appropriate for portfolio allocation purposes.

Estimation of Regression Models
As discussed in Chapter 8, linear regression is the workhorse of equity modeling.
Estimation of regression models is typically performed by using OLS methods.
OLS produces estimators that are algebraic expressions of the data. In the two-
dimensional xy plane, the OLS method can easily be understood: For a set of xy
pairs, one can calculate the straight line in the xy plane that minimizes the sum of
the squares of the distance from the line to each pair. To illustrate the OLS method,
we randomly generated 500 points and, using the OLS method, fitted the best
straight line. Figure 9.4 shows the cloud of points and the best straight line.

It has been proven that the estimators of the regression parameters determined
in this way are optimal linear estimators. Under the assumption that the residuals
are normally distributed, the OLS estimators of regression parameters coincide with
the ML estimators. The ML estimators are obtained by first computing the
residuals with respect to a generic regression and then evaluating the likelihood.
The likelihood is obtained by computing the value of a normal distribution on the
residuals. The likelihood is then minimized.

Now, suppose we want to estimate the linear regression of one dependent time
series on one or more independent time series. At each time step, we observe a
sample of the linear regression to be estimated. However, there may be one
complication: Residuals might be autocorrelated. The autocorrelation of residuals
does not invalidate the standard OLS estimators, but it makes them less efficient
and thus not optimal for small samples. Corrections that take into account the
autocorrelation have been suggested and can be easily applied—provided one knows
how to determine the autocorrelations of residuals.  
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The asymptotic sampling distribution of regression parameters (i.e., the dis-
tribution of regression parameters estimated on large samples) can be easily
determined. In large samples, regression parameters are normally distributed, with
mean and variance that are simple algebraic functions of data. 

The estimates of a regression can be made robust. Robustness can be achieved
by replacing the standard OLS estimators with estimators that are less sensitive to
outliers (that is, to sample values much larger than the bulk of sample data).

Although linear regressions are simple statistical constructs, the analysis and
eventual improvement of their performance is delicate. The achievement of robust-
ness and performance of a linear regression hinges on our ability to (1) identify a
set of optimal regressors and (2) partition the samples to improve performance.

Consider first the identification of a set of optimal regressors. Simply increasing
the number of regressors is not a good strategy because by adding regressors, we
increase the number of parameters that must be estimated. Adding regressors also
augments the noise of all estimated parameters. Therefore, each additional regressor
must be understood and its contribution must be evaluated. 

We can determine the importance of a regressor by calculating the ratio of the
variance explained by that regressor to total variance. A regressor that explains only
a small fraction of the variance has little explanatory power and can be omitted. To

Figure 9.4. Cloud of 500 Points and the Best-Fitting Straight Line Determined 
by Using the OLS Method
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gauge the total effect of adding or removing a regressor, one can use a penalty function
that grows with the number of regressors. In this function, the eventual contribution
of an additional regressor is penalized to take into account the overall negative effect
of estimating more parameters. This type of analysis is performed by most statistical
software packages.

Clustering the sample data achieves different objectives. For example, the
clustering of sample data corresponds to the need to make estimates more robust
by averaging regression parameters estimated on different clusters. This approach
is the basic idea behind the techniques of shrinkage and random coefficient models.82

Alternatively, to improve performance, regressions might be made contextual. That
is, for example, a given predictor of returns might be particularly effective in a
specific context, such as a particular market segment or in particular market
conditions (Sorensen, Hua, and Qian 2005).

Clearly, despite the intrinsic simplicity of the model, designing and estimating
linear regressions is a delicate statistical (and, ultimately, economic) problem. It
entails one of the critical issues in testing and modeling—the ever-present trade-
offs among model complexity, model risk, and model performance. These trade-
offs are a major theme throughout this monograph. Increasing the dimensionality
of the model (for example, by adding regressors) makes it more powerful but also
makes the model noisier and thus “riskier.” 

Estimation of Vector Autoregressive Models
In principle, VAR models are kinds of regression models, so estimating VAR models
is similar to regression estimation. Some VAR models are subject to restrictions,
however, that require the use of special techniques. The simplest case is estimating
unrestricted stable VAR models. An unrestricted model is a model in which the
parameters are allowed to take any value that results from the estimation process. A
model is restricted if its parameters can assume values only in specified ranges.

As explained in Chapter 8, a VAR model is considered to be stable if its solutions
are stationary—that is, if the mean, variance, and covariances of its solutions do not
change over time. Stability conditions of a VAR model are expressed through
conditions that must be satisfied by its parameters—that is, coefficients of every
stable model satisfy certain conditions. In particular, stability conditions require
solutions to be exponentials with exponent less than 1 in modulus. 

Stable VAR models can be estimated by using standard LS and ML methods.
In fact, a VAR model is a linear regression of its variables over their own lagged
values plus error terms. Clearly, all such variables can be grouped together and
residuals can be expressed in terms of data and model parameters. If the residuals
are uncorrelated, we can then use multivariate LS methods to minimize the sum of

82See Chapters 8 and 17 in Fabozzi, Focardi, and Kolm (2006a).
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squared residuals as a function of the model parameters. As a result, if we arrange
the sample data in appropriate vectors and matrices, we can express the estimators
of the model parameters as algebraic functions that involve solely matrix operations,
such as inversion and multiplication. These estimators are implemented in com-
mercial software programs.83 

If we make specific assumptions about the distribution of residuals, we can also
use ML methods. In particular, if the model residuals are normally distributed, the
ML model estimators coincide with the LS estimators.

If the VAR model is not stable, unrestricted LS methods might still be usable.
In dealing with an unstable VAR model, however, one is generally interested in
testing and estimating cointegrating relationships, as discussed in Chapter 8. Recall
that a cointegrating relationship is a stationary linear combination of the process
variables. Taking into account cointegrating relationships in estimating a VAR
model cannot be done with standard ML regression methods. The cointegrating
relationships impose complicated restrictions on the likelihood function that must
be maximized. State-of-the-art ML-based estimation methods for cointegrated
systems use a complicated procedure to eliminate constraints from the likelihood
function (see Johansen 1991; Banerjee and Hendry 1992). Other methodologies
have been proposed, including one based on PCA that is applicable to large data sets.

Bayesian VARs (BVARs) are VAR models estimated by Bayesian methods.
When applied to VAR models, Bayesian estimates start from a priori distribution
of the model parameters. In practice, this distribution embodies a formulation of
an idealized model. The a priori distribution is then multiplied by the likelihood
function, computed as usual by using ML methods. The resulting so-called a
posteriori likelihood is maximized.

Perhaps the best known BVAR is the model proposed by Litterman (1986).
The essence of the Litterman model is that any financial VAR model is a pertur-
bation of a multivariate random walk. The Litterman model determines the a priori
distribution so that the average of this distribution is simply a random walk. The
likelihood function updates the a priori distribution, and the result is maximized.
Because it requires that the solutions of estimated VAR models do not deviate much
from a random walk, the Litterman model is robust.

Extending Bayesian estimates to cointegrated VAR models is not straightfor-
ward. The problem is that one has to impose a cointegration structure as an a priori
distribution. A number of solutions to this problem have been proposed, but none
of them has obtained the general acceptance enjoyed by BVARs.

83Such as those from MATLAB, SAS, and SPSS.
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Estimation of Linear Hidden-Variable Models
As discussed in Chapter 8, hidden-variable models include linear state-space
models in various formulations and nonlinear models—in particular, Markov
switching–VAR (MS–VAR) models. 

Linear State-Space Models. Because they include variables that are not
observed but must be estimated, state-space models cannot be estimated by using
standard regression techniques. A crucial component in estimating state-space mod-
els is a tool to filter data known as the “Kalman filter.”84 It is a recursive computational
algorithm that, assuming that the model is known, estimates the states from the data.
It was conceived in the 1960s to solve the problem of estimating true data—in
particular, the position of an aircraft or a missile—from noisy measurements.

Estimating state-space models is done through two general methodologies:
ML-based methods and subspace methods. ML-based methods compute the
likelihood function of the state-space model that includes hidden variables. Hidden
variables are then estimated from the data by using the Kalman filter and the
assumption of an unknown generic model. The result is a likelihood function that
is expressed as a function of only the unknown model parameters. Maximizing this
likelihood yields the estimators.

Subspace methods are technical. They estimate the states by using the Kalman
filter, divide the sample data into two sections (conventionally called the “past” and
the “future”), and then perform a regression of the future on the past.85

Dynamic factor models are a version of state-space models. Several other
estimation methods have been proposed, including estimating the equivalent state-
space model and the use of PCA-based methods. 

Robust Estimation Methods for Linear Models. These estimation
methods for VAR models are not intrinsically robust and do not scale well to large
systems that are common in finance. Litterman’s BVAR is a robust model but can
be applied only to small systems (e.g., systems made up of indices). Making VAR
estimates robust in the case of a large system requires reducing the dimensionality
of the model, which calls for factor models and, in particular, dynamic factor models
of prices or returns.

Estimation of Nonlinear Hidden-Variable Models
In discussing the estimation of nonlinear hidden-variable models, we focus on
the MS–VAR models because the generalized autoregressive conditional

84See Kalman (1960). The Kalman filter is sometimes called the “Kalman–Bucy filter” because of the
extension by Kalman and Bucy (1961).
85For more on the justification and the advantages of subspace methods, see Chapter 16 in Fabozzi,
Focardi, and Kolm (2006a).
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heteroscedasticity (GARCH) family of nonlinear hidden-variable models is rarely
used in equity modeling. MS–VAR models, however, are being adopted to model
regime changes.

Because nonlinear MS–VAR models have hidden variables, their estimation
presents the same difficulties as does the estimation of linear state-space models. And
for nonlinear MS–VAR models, no equivalent of the Kalman filter exists. Estimation
techniques for MS–VAR models typically use the expectation-maximization algo-
rithm (often referred to as the “EM” algorithm) used by Hamilton (1996) in his
regime-shift model.86

Conclusion
Estimation is the process that determines the parameters of a model. Many
estimation methods are available—least-squares, maximum-likelihood, and Baye-
sian methods. Estimators, being functions of sample data, are random variables. If
many parameters need to be estimated, the results will be noisy. Robust estimation
methods produce estimates with the minimum possible level of noise. These
methods are very important today for many financial applications, such as producing
the inputs to sophisticated portfolio optimization systems that are sensitive to noise.

86See also Chapter 16 in Fabozzi, Focardi, and Kolm (2006a).
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10. Practical Considerations 
When Using Optimization 
Software

The concept of optimization is fundamental to finance theory. The mean–variance
framework, first presented by Markowitz and discussed in Chapter 2, demonstrates
that the theory of portfolio selection is about achieving an optimal trade-off
between risk and return. In practice, portfolio allocation models often involve more
complicated functional forms and constraints than the classical mean–variance
optimization problem. The inclusion of transaction costs and taxes adds yet
another level of complexity.

Today, numerical software for solving many different types of problems
encountered by portfolio managers is widely available both publicly and commer-
cially. This software makes modeling and problem solving simpler and more
convenient. A portfolio manager can apply financial models by using modeling
languages and software packages or by using numerical subroutine libraries. Many
software packages geared toward standard asset allocation or security selection do
not require any complicated programming at all but, rather, rely on user input
through intuitive graphical interfaces.

A manager has to be careful, however, when using numerical routines as “black
boxes.” Despite available documentation, understanding exactly what methods and
techniques sophisticated numerical subroutines may use is often difficult. The incor-
rect use of numerical software may reduce efficiency, destroy robustness, and result
in a loss of accuracy. Or it may simply produce the wrong conclusions. In this chapter,
we provide some guidelines for solving optimization problems with software.87 

Optimization
The area of optimization is highly technical, and we do not aspire to provide a
theoretical treatment of it in this monograph. The tools for optimization modeling
come from the field of mathematical programming—more broadly, from operations

87The discussion in this chapter draws from Chapter 6 in Fabozzi, Focardi, and Kolm (2006a), which
provides a discussion of the basic workings of various types of optimization algorithms and focuses on
an intuitive understanding of the subject. The chapter covers the simplex algorithm, line-search
methods, Newton-type methods, barrier and interior point methods, sequential quadratic
programming, and combinatorial and integer programming. In addition, the authors survey the most
commonly used publicly and commercially available optimization software.
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research. These fields are devoted to the study of the theoretical properties of and
practical solution techniques for optimization problems of various forms.

An optimization problem consists of three basic components:
• an objective function,
• a set of unknown variables, and
• a set of constraints.

The objective function is a mathematical expression of what the modeler wants
to optimize (minimize or maximize) and depends on the unknown decision vari-
ables. For example, in the classical mean–variance framework, the objective function
is to maximize a portfolio’s expected return less risk aversion multiplied by portfolio
risk. In this case, the unknown variables are the portfolio weights, and they may be
constrained (for example, to be positive and sum to 1).

Constraints may be provided for all or a subset of the unknown decision
variables. Constraints are of two kinds: equality constraints and inequality con-
straints. Equality constraints are constraints that have to hold with equality (for
example, “the sum of the portfolio weights must equal 1”). Inequality constraints
are restrictions of the form “less than or equal to” or “greater than or equal to.” For
example, a portfolio manager might want to limit exposure of the portfolio to the
telecommunications industry to no more than 6 percent of the total portfolio value
or might want to make sure that the portfolio invests at least 20 percent in bonds.

In practice, portfolio managers encounter situations in which optimizing
several objectives simultaneously might be desirable. For example, in Chapter 2, we
mentioned portfolio optimization with higher moments; that is, a portfolio manager
might want to maximize the mean and the skewness while minimizing the variance
and the kurtosis. Optimization problems with multiple objectives are typically
reformulated as a problem with a single objective and then transformed into a
standard optimization problem.

In general, the solutions to an optimization problem are of two types: global
and local. The global maximum (minimum) solution is the global maximum (or
minimum) of the objective function over the whole range on which the function is
defined. A local maximum (minimum) solution is a point at which the objective
function is larger (smaller) than all other points in its vicinity. In most cases, it is
the global solution that the manager is ultimately solving for. Complicated objective
functions, however, may have multiple local optimal solutions. The difficulty in
these cases is that the manager must find all the local solutions to determine which
one is the global solution.

Most efficient modern optimization algorithms available today attempt to find
only a local solution because finding a global optimal solution is difficult. To locate
all local optimal solutions and then choose the best one requires an exhaustive
search. No general efficient algorithm for the global optimization problem is
currently available; the specialized algorithms rely on unique properties of the
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objective function and constraints. Fortunately, most optimization problems
encountered in portfolio management have one unique optimal solution; in such a
case, the local solution is the same as the global solution.

Optimization problems are classified according to the functional form of the
objective function and the constraints. Researchers have identified a basic set of
optimization problems, which are considered the standard forms. Some of the most
common standard forms are linear programs, quadratic programs, convex programs,
conic programs, and nonlinear programs. For portfolio allocation applications, the
optimization problems often take the form of quadratic or convex programs. For
instance, classic Markowitz mean–variance optimization is a quadratic program.

An important property of quadratic, convex, and conic programs is that they
have a unique solution. That is, in this case, the local optimal solutions are indeed
also global optimal solutions.

Today, optimization packages are built on sophisticated algorithms. Thus,
learning and understanding in detail how particular algorithms work is hard for the
nonexpert. And although a basic understanding of how they work is useful, such
knowledge is often unnecessary if one’s goal is simply to make efficient use of
optimization software. The next section introduces how one can work with opti-
mization software to efficiently solve a particular problem.

Solving Optimization Problems 
The solution process for an optimization problem can be divided into three parts:
(1) formulating the problem, (2) choosing an optimizer, and (3) solving the problem
with the optimizer. 

Formulating the Problem. Numerical optimization software has been
developed for various standard forms. Therefore, in solving an optimization prob-
lem with numerical software, the first step is to identify the problem’s form. This
step is straightforward if the problem has already been given in one of the standard
forms. Generally, however, the specific problem has to be transformed into the
appropriate form. As long as a particular optimization problem can be reformulated
into one of the standard forms, the portfolio manager is set.

Choosing an Optimizer. Choosing and purchasing optimization soft-
ware can be costly and time-consuming because evaluating the various solvers for
the specific applications in mind requires careful, systematic testing. Some solvers
work better for a certain type of problem than others do. Unfortunately, no single
technique is better or outperforms all the others for all problems. Often, the only
way to find out how well a solver works for a particular problem is through extensive
testing. Expecting to find a single software package that will solve all one’s optimi-
zation problems is also unrealistic. Different approaches and software packages may,
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however, be complementary. In practice, the recommendation is to try various
algorithms on the same problem to see which one performs best as far as speed,
accuracy, and stability are concerned.

Most optimization software is designed to handle prototypical mathematical
programs or types in some standard form. The optimization algorithms or software
for the various standard forms create a toolbox that can be used to solve a particular
part of a problem. Not every problem can be solved with a hammer alone; some
may also require a drill and a screwdriver. Although a simple linear program can be
solved with a general nonlinear programming algorithm, doing so is not a good
idea. The portfolio manager should always try to use software targeted to the specific
problem. By doing so, the manager will be able to solve the problem not only faster
but also more accurately.

■ Constraints. Whether a problem is constrained or unconstrained will affect
the choice of algorithm or technique used for its solution. In general, unconstrained
optimization is somewhat simpler than constrained optimization, but the types of
constraints also matter. Problems with equality constraints are generally easier to
deal with than those with inequality constraints, as are linear constraints compared
with nonlinear constraints.

■ Derivatives. Many optimization routines use derivative information.88

Therefore, the software needs to be able to access or compute the derivatives of the
objective function and the constraints. Thus, some or all of the first-order derivatives
(and sometimes also second-order derivatives) of the objective function and
constraints should be available as analytic expressions. If they are not, the algorithm
will have to calculate these derivatives numerically, which is more time-consuming.
Supplying the analytic derivatives will greatly speed up the solution process. In most
instances, supplying the analytic derivatives will also increase the numerical stability
and accuracy of the algorithm.

■ Dense vs. sparse and medium vs. large problems. When many decision
variables are involved (for nonlinear problems, “many” means more than a few
thousand, and for linear problems, “many” means more than a hundred thousand),
the problem is referred to as a “large-scale” optimization problem. For efficiency
reasons, large-scale numerical algorithms try to take advantage of the specific
structure in a problem. For example, so-called sparse matrix techniques are used
instead of dense matrix calculations, if possible, to improve the efficiency of the linear
algebra computations inside the routines.

■ User interface and settings. If a mathematical programming modeling
language is used, an optimization problem can be specified on a much higher level
(much closer to the original mathematical formulation) than if a lower-level

88Here, we refer to the mathematical meaning of “derivative” (i.e., the instantaneous rate of change
of a function), which is unrelated to the financial meaning of the word.
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programming language (much further away from the original mathematical
formulation) is used.89 Furthermore, by making the user interface and the
mathematical programming formulation independent of a particular optimizer, a
portfolio manager obtains flexibility and portability for the model. Portability will
facilitate testing the model with different optimizers.

Good optimization software allows a portfolio manager to specify various
options and settings of the algorithms, such as the maximum number of iterations
or function evaluations allowed and the convergence criteria and tolerances.

Many optimization platforms also provide a preoptimization phase. During
this phase, the manager analyzes the problem to select the best and most suitable
algorithm. Normally, software support is also available for checking the correct-
ness of the analytically supplied derivatives by comparing them with numerical
approximations.

Solving the Problem with the Optimizer. The final step of solving
the problem with the optimizer requires establishing a starting vector, running the
software, and analyzing the results.

■ Choose the starting vector. Some optimizers expect a starting vector. It should
be the portfolio manager’s best guess of the optimal solution. For some problems,
a natural candidate for a good starting point is easy to find. For example, the
analytical solution of a simplified problem sometimes works well. In general,
however, choosing the starting point is difficult. In using optimizers that provide
support in generating a good starting point, the manager would be wise to let the
algorithm choose, unless the portfolio manager knows that her or his information
is superior. Numerical testing should confirm this.

■ Run the software and monitor progress. Optimization algorithms are of an
iterative nature. That is, the algorithm, or the “solver,” generates a sequence of
approximate solutions that gets closer and closer to the true solution at each step.
Because the true solution is not known, however, and the solver cannot go on
indefinitely, the portfolio manager stops the iterative process when a termination
criterion is satisfied. One of the more common convergence criteria is when the
difference between two approximate solutions is smaller than a tolerance that the
manager has prespecified.

A portfolio manager can obtain valuable information by monitoring the
progress of the optimization process. In particular, the number of iterations and
function evaluations tells a manager how quickly the problem is converging. To
some extent, the sizes of constraint and first-order optimality condition violations
(standard outputs of an optimization algorithm as it is running) convey how far
away the process is from reaching the optimal point. The sizes of the Lagrange

89Some examples of higher-level model languages are AMPL, GAMS, MATLAB, Mathematica,
and LINGO. C, C++, C#, and Fortran are examples of low-level languages.
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multipliers provide information on which constraints are most binding and on the
sensitivity of the value of the objective function to the various constraints.90

■ Analyze the results. Even if the optimizer converges and produces a solution,
the analyst should not blindly believe that the output is correct. The best way to
understand how a particular software behaves is through experimentation. Indeed,
understanding the behavior of software is necessary for making practical decisions
about algorithm selection and to confirm that the results are valid. A good approach
is to rerun the optimization with more stringent settings (e.g., smaller convergence
tolerances) and evaluate whether the problem still converges. If several optimizers
are available, the analyst can compare the results generated by each one.

To make sure that the software is working correctly, good practice is to begin
by solving a simple problem that has a known solution. Sometimes, an analyst does
not know whether the problem at hand has a single local optimal solution or multiple
local optimal solutions. A simple way to check is to rerun the optimizer with
different starting values. If they all converge to the same solution, then the analyst
has probably found the unique solution.

By having a computer model of the problem, an analyst can test how sensitive
the outputs are to changes in the inputs. In the case of mean–variance optimization,
an analyst can study how the solution (the optimal solution) changes as slight
changes are made in expected return and covariance forecasts. A simple experiment
of this kind will show how sensitive the portfolio allocation model is to measurement
errors in the forecasts. If the results are sensitive to small changes, this may indicate
that the model is misspecified or ill posed. However, many financial optimization
models are sensitive to small changes in inputs, and in these cases, robust formula-
tions often offer a good alternative.

Optimization Software
Commercially and publicly provided optimization software is available. Optimiza-
tion software packages that have been developed specifically for portfolio manage-
ment applications are provided by Axioma, Barra, ITG, Northfield Information
Services, and APT.91 Readers who are seeking an optimizer to perform mean–
variance optimization on a set of securities will typically find this category of
optimizers, which does not require the use of any programming language, to fully
satisfy their needs. 

90The classical approach to solving constrained optimization problems is the method of Lagrange
multipliers. This approach converts the constrained optimization problem into an unconstrained one
by introducing artificial variables referred to as Lagrange multipliers.
91See, respectively, www.axiomainc.com, www.barra.com, www.itginc.com, www.northinfo.com,
and www.apt.com.

(corrected November 2006)
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Asset-class optimizers are a class of commercially available portfolio optimizers
that are “stripped down”—that is, they do not have the flexibility or power to handle
large numbers of securities but they can optimize across a limited number of asset
classes. These optimizers are typically less expensive (and also easier to use) than
security-level optimizers. Asset-class optimizers are provided by, for example,
Efficient Solutions, Ibbotson Associates, Insightful Corporation, with the AIG
SunAmerica (Polaris), Wagner Math Finance, and Sungard (WealthStation). New
Frontier Advisors’ ROM Optimizer uses resampling to reduce the impact of
estimation error on outputs, and one version of the Ibbotson optimizer uses a
different resampling technique to accomplish a similar objective. The Ibbotson
optimizer also has a Bayesian (specifically, Black–Litterman) function.
WealthStation, which is Web-based software for financial advisors serving high-
net-worth clients, offers tools for viewing and managing investors’ diverse assets
and for generating client-specific reports.

Much of the material we’ve covered in this chapter applies to more advanced
problem solving. Although noncommercial optimization packages are typically
slower than the best commercial optimization packages, they often provide more
flexibility and extendibility for advanced problem solving because the source code
can often be obtained. This feature is especially important for users who want to
develop customized solvers. In some noncommercial libraries, however, the docu-
mentation is sparse at best. If thorough documentation is important, the portfolio
manager should check for it.

Because optimization software is sophisticated, it can be difficult for the
nonexpert to use. Today, however, most optimization packages can be accessed in
user-friendly modeling language that provides a convenient interface for specifying
problems and that automates many of the underlying mathematical and algorithmic
details. In particular, a modeling language allows the user to specify particular
optimization problems in a generic fashion that is independent of the specific
algorithmic and to input requirements of optimization routines. Popular modeling
languages are AMPL and GAMS. 92 Online optimization software guides are good
starting points for selecting suitable optimization software.93

The NEOS Server for Optimization provides free Internet access to more than
50 optimization software packages that can solve a large class of unconstrained and
nonlinearly constrained optimization problems.94 Optimization problems can be
submitted online in a programming language, modeling language, or a wide variety
of other low-level data formats. The NEOS Server provides a great testing platform.

92AMPL is described at www.ampl.com, and GAMS, at www.gams.com.
93See, for example, the “NEOS Guide” (www-fp.mcs.anl.gov/otc/Guide/index.html), the “Decision
Tree for Optimization Software” (plato.asu.edu/guide.html), and Chapter 6 in Fabozzi, Focardi, and
Kolm (2006a). 
94See www-neos.mcs.anl.gov and Czyzyk, Mesnier, and Moré (1998).

(corrected November 2006)
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Standard spreadsheet programs, such as Microsoft Excel and Corel Quattro
Pro, are equipped with general-purpose optimization algorithms for linear, inte-
ger, and nonlinear programming problems. These routines work well for small-
scale problems (up to a few hundred decision variables) but are less suited for
larger problems.

GNU Octave and MATLAB are two high-level technical computing and
interactive environments for model development, data visualization, data analysis,
and numerical simulation.95 ILOG CPLEX, LINDO, MOSEK, and XPRESS-
MP are robust and efficient commercial optimizers for large linear and convex
quadratic programming.96 

95Available at, respectively, www.octave.org and www.mathworks.com.
96Available at, respectively, www.ilog.com/products/cplex, www.lindo.com, www.mosek.com, and
www.dashopt.com.
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11. Models in Practice: Industry 
Survey Results 

To understand how the industry evaluates some of the techniques discussed in this
monograph and to what degree these techniques are actually being used in equity
portfolio management, The Intertek Group spent the summer of 2005 interviewing
21 people responsible for quantitative methods at firms in North America and
Europe.97 Participants represented firms responsible for a total of US$4 trillion in
assets under management, of which roughly 50 percent was invested in equities at
that time. Two-thirds of the firms are among the largest money managers in their
respective markets, and one-third represent medium-size firms and/or quantita-
tively oriented organizations. Six are U.S. firms and fifteen are European firms. The
geographical distribution of the European firms is as follows: France, two; Ger-
many, three; Italy, two; the Netherlands, one; Sweden, one; Switzerland, four; and
the United Kingdom, two.

The survey covered three areas in equity portfolio management: (1) return
forecasting, (2) model-risk (that is, the risk of error in model selection) mitigation,
and (3) optimization. In each area, participants were asked what evaluation (if any)
they had made of a given technique and whether it was being used in practice.98

The survey built on the 2000/2001 and 2003 Intertek studies of quantitative
methods in asset management, for which The Intertek Group interviewed more than
150 people in North America and Europe.99 A comparison of the results of the 2005
survey with the previous Intertek survey results indicates that forecasting techniques
are playing a bigger role in the asset management process today than in the recent
past. In the 2000/2001 survey, most sources found that the major advantage of
modeling was “to bring discipline to the investment process.” Quantitative methods
were used primarily to measure risk, with models assessing exposure to a number of
factors. Only a small number of firms were using models to predict returns.

The active asset managers interviewed for the earlier surveys apparently
believed that they could use judgment and intuition to predict the market, although
the mainstream academic opinion at the time was that models can assess risk but

97The survey reported in this chapter was conducted by Caroline Jonas of The Intertek Group.
98The survey results for the use of modeling in the management of defined-benefit pension funds in
the United States and Europe is described in Fabozzi, Focardi, and Jonas (2005).
99Results of the earlier surveys for European firms are described in Fabozzi, Focardi, and Jonas (2004).
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cannot predict expected returns.100 Recent research, however, has shown that
markets are to some extent predictable. Many firms are now trying to exploit this
predictability by using models to forecast expected returns. Of the 21 firms surveyed
in 2005, 18 use models to predict returns. A trend found in the 2003 study toward
the use of multiple models was confirmed by this latest survey. Together with a
renewed interest in forecasting has come increased attention to robust optimization
(optimization that is relatively insensitive to errors in inputs) and model-risk
mitigation. Both are a confirmation that forecasting models are now used in
practice. In the previous surveys, we found that optimization techniques were not
widely used: They were considered to be too brittle (that is, too sensitive to changes
in the inputs) and prone to “error maximization.” This survey, however, found a
strong interest in methods for improving the reliability of optimizers. Similar
considerations apply to model-risk mitigation: Once considered an area of academic
research, model risk mitigation techniques are now being used at a number of the
more quantitatively oriented organizations.

The next three sections present details of our findings in the areas of return
forecasting, model-risk mitigation, and optimization. A summary of the number of
firms responding that they used a given technique is provided in Table 11.1.  

Equity Return-Forecasting Techniques
Among the firms surveyed, simple methods with a clear link to economic intuition
are typically preferred. Momentum and reversal models are the most widely used
techniques, but many sources remarked that the bread and butter of their modeling
effort was regression on predictors of stock returns, such as financial ratios. A
frequent comment was the desire of analysts to combine company fundamentals
(regression on predictors) with market sentiment (momentum/reversal models).
Autoregressive, cointegration, state-space, regime-switching, and nonlinear meth-
ods (such as neural networks and decision trees) play an important, sometimes
central, role at some firms. The survey also revealed a growing interest in the use
of high-frequency (more frequent than daily) data in asset management.

Models Based on Exogenous Predictors. Models based on exoge-
nous predictors (e.g., models that regress future returns on current company financial
ratios) are widely used. For a number of firms, this modeling technique is the core of
their return-forecasting effort. A U.S. source that uses ratios derived from financial
statements to predict future stock returns commented, “We use these ratios exten-
sively in our bottom-up equity model and categorize them into different categories,
such as operating efficiency, financial strength, earnings quality, capital expenditures.”

100Perhaps this difference in attitudes can be explained by the fact that most modeling efforts in the
1990s were related to valuation of derivatives.
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To capture market sentiment, models that capture fundamentals are typically
combined with momentum and/or reversal models. A source in Europe remarked,
“We use models based on exogenous predictors for valuation, and combine these
models with momentum and reversal models. Valuation is necessary, but psychol-
ogy also plays a role in the market. Look at the long bubble market: If you had based
your modeling on valuation only, you would have got killed. You need to add market
sentiment to valuation.”

Momentum and Reversal Models. Momentum models are intended to
capture the persistence of local trends, such as price rises. Reversal models model
the inversion of local trends, such as price reversals. Together, momentum and
reversal models are the most widely used modeling techniques at the firms surveyed. 

Sources frequently noted the problem of high turnover induced by these models
and described various techniques, including weighting and penalty functions,
designed to mitigate it. Many sources that use both techniques said that they use
reversal models less extensively than momentum models. The problem with high
turnover is more acute in reversal models than in momentum models. In addition,
the precise timing of reversals is a difficulty. One source remarked, “Due to the
excessive required turnover of strategies based on short-term price momentum and
reversals, we have limited the application in our model.”

Table 11.1. Summary of Survey Results
(21 firms)

Technique
Number
of Firms

Percentage
of Firms

Equity return forecasting 
Models based on exogenous predictors 13 62%
Momentum models 17 81
Reversal models 18 86
Cointegration models 7 33
Markov-switching/regime-switching 

models
2 10

Autoregressive models 5 24
State-space models 1 5
Nonlinear models 4 19
Models of higher-moment dynamics 2 10

Model-risk mitigation 

Bayesian estimation 2 10
Averaging/shrinkage 5 24
Random coefficient models 1 5

Optimization 
Robust optimization 7 33
Multistage stochastic optimization 2 10
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In contrast to those who advocated the use of momentum/reversal models, a
source who had been using various momentum models for some time remarked,
“Momentum models have received extensive academic attention in the last 30 years.
However, in our experience, the momentum effect has largely become a small-cap-
only phenomenon in the last 10 years.”

Momentum and reversal are coupled phenomena: If momentum exists, so does
reversal. As demonstrated by a number of academic studies, however, complex time
dynamics may exist in momentum and reversals that give rise to different patterns
of momentum and reversal at different time horizons. Some firms are using multiple
time horizons in their momentum/reversal models.

Cointegration Models. Cointegration models, models of short-term
dynamics and long-run equilibrium, are being used at one-third of the firms surveyed.
Several sources mentioned that cointegration is their core forecasting technique. A
source at one firm whose modeling approach is based on cointegration said, “We
chose a cointegration approach because the models are based on economic and
finance theory and calculated from economic data; they allow a transparent process.”

Another source at a European firm where cointegration is being used com-
mented, “The nice thing about cointegration is that you have a good story to tell
that makes sense to management—for example, long-term fair value and short-
term direction. But there are some problems. Cointegration is not very flexible, and
you need very long time series to put a number of variables into models, but if there
are too many variables, you have problems with estimation.”

In addition, several sources who use cointegration remarked that performance
of the models is sensitive to liquidity and volatility.

Markov-Switching/Regime-Switching Models. Markov-switching
or regime-switching models have not been widely evaluated by the industry.
Detecting the precise timing of a switch is one of the problems with using these
techniques. At most firms, judgment is used to assess regime change. One source
commented, “Market regime is, of course, taken into consideration in the overall
assessment of equity and sector attractiveness, but this is not done in a strictly
quantitative way using regime-switching models.”

Autoregressive Models. Autoregressive models (models incorporating
lagged values) are used in practice at one-fourth of the firms, but the technique has
not been widely evaluated. The perception is that autoregression techniques require
a lot of resources in terms of data and modeling.

A source at a firm that is using autoregressive models commented, “Autore-
gressive models are an extension of and a step ahead of momentum models. We are
using these quite a bit, though we are not doing fully structured vector autoregres-
sions. Doing so would take a very long time.”
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Another source remarked, “We are using autoregressive models, but with
caution due to the problem of overfitting the market.” (Recall from Chapter 7 that
overfitting is the fitting of unpredictable noise in small samples.)

State-Space Models. State-space models are not widely known in the
industry. These models are used to model hidden variables. Among those surveyed,
only one source mentioned using state-space models extensively (for data transfor-
mation before analysis). A second source mentioned that the firm is examining these
models with a high level of interest.

One source mentioned that, although state-space models were not being used,
the firm had considered the models because “state-space models perform interesting
tasks in estimating unobserved components of interest”—that is, components that
represent interesting market situations.

Nonlinear Methods. Nonlinear methods—such as neural networks, deci-
sion trees, and CART (see Chapter 6)—are being used by only one-fifth of the
firms surveyed, but half of the firms consider nonlinear methods to have potential
in equity return modeling. Obstacles to greater use of nonlinear methods include
the lack of theory (although most sources believed that nonlinear methods do have
explanatory power out of sample), a tendency of these methods toward overfitting,
and the firm’s lack of the requisite skills in-house.

A source at a European firm that is using nonlinear methods said, “In modeling,
one already makes a lot of assumptions that are far from the real world. It makes
sense to use nonlinear methods: They are great for nonlinear phenomena where one
wants to model extremes together. We use decision trees extensively. They are
flexible and dynamic, though they require a lot of parameterization and are quite
sensitive to the parameterization. Our experience with decision trees in stock
picking has been quite positive, and we are now trying to apply them to other areas.”

Models of Higher-Moment Dynamics. Models of the dynamics of
higher moments (i.e., variance, skewness, and kurtosis), such as the many variants
of generalized autoregressive conditional heteroscedasticity (GARCH) that link
volatility and expected returns, are used at fewer than 10 percent of the sources, but
interest in optimization with higher moments is growing.

A source at one firm that is using models of higher-moment dynamics said,
“GARCH techniques are used in trading, but we also see potential for GARCH
in conditional return forecasting.”

Another source, one at a firm that is not yet using higher-moment dynamics,
remarked, “While volatility is an important factor in our equity multifactor
models, we are not yet considering higher moments, even though we are aware of
the leptokurtic behavior of many daily return series.” (A return distribution is
leptokurtic—that is, has leftward kurtosis—if it has a fatter tail on the left side
than a normal distribution has.) 
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Another source commented, “We are in the early stages of experimentation
with higher moments. There might well be areas of applicability in equity portfolio
management. There is now a growing awareness of the importance of higher
moments.”

Model-Risk Mitigation Techniques
The issue of model-risk mitigation is gaining attention, but it has not been widely
addressed by the industry. A source in one European firm said, “We are not currently
using any model-risk mitigation techniques but we are aware of the problem and
would like to address it. We are presently considering how to deal with model risk
in the covariance matrix and are looking at possible solutions.”

The most widely used techniques for model-risk mitigation are Bayesian
shrinkage and model averaging. Most firms use several models, and averaging the
prediction of different models is only natural. More sophisticated techniques, such
as random coefficient models, are not widely used.

Bayesian Estimation. Although Bayesian techniques are considered to be
conceptually interesting, the firms surveyed generally consider Bayesian estimation
to be hard to use explicitly (many mention using it implicitly) and hard to implement.
One source that has looked at Bayesian estimation in model-risk mitigation
commented, “Bayesian estimation is intuitively appealing but hard to implement as
a standard process.”

Shrinkage/Averaging. The preferred techniques to mitigate model risk
are shrinkage (a Bayesian process of shrinking the predictions of one model toward
the predictions of another model) and, in line with the trend toward using multiple
models, averaging the results of several models. Shrinkage/averaging techniques are
being used at only one-quarter of the firms surveyed (several others have ongoing
research projects on the use of such techniques), but those using these techniques
consider them necessary, even essential, in reducing model risk.

A source at a European firm that is using averaging techniques remarked, “It
is the most common, most sensible approach to model-risk mitigation.” Another
source at a firm where Bayesian estimation forms the core of the model-risk
mitigation effort said, “We also use averaging/shrinkage. We consider it extremely
important, necessary.”

Random Coefficient Models. Random coefficient models, described in
Chapter 8, are not widely known in the industry; few sources mentioned having
evaluated the technique. One source in a firm that uses a form of the technique
commented, however, that they randomize data to ensure against overfitting.
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Optimization Techniques
Roughly half of the firms participating in the survey continue to eschew optimiza-
tion. A source at a firm that does no optimization said, “Optimization requires
elements that are sufficiently reliable for the alpha.” “Optimization goes down
because of the lack of data in the time series available in finance. Periods such as
the TMT [technology, media, telecommunications] bubble demonstrated that it is
not possible to manage the risk if you use optimization techniques.”

Another source commented, “The problem with any optimization routine is
that it is very difficult to identify the forecasting error. If one knew what the
forecasting error were, you would not have it in the first place.”

Robust Optimization. As firms begin to use forecasting methods in prac-
tice, they need to have some optimization technique in place to exploit the
correlations determined through the forecasting process. Although a number of
firms surveyed perform quadratic, mean–variance, or Markowitz optimization, they
do not consider these approaches to be robust. 

The robustness of the optimization process is a major concern. One-third of
the sources said they are using some form of robust optimization. Some sources
pointed out, however, that there is an integration between robust optimization and
robust estimation. Several sources cited the use of resampling methods to make
robust estimates of the variance–covariance matrix.

Multistage Stochastic Optimization. Multistage stochastic optimiza-
tion, described in Chapter 3, is being used at 10 percent of the firms surveyed. One
source mentioned that the firm has abandoned the technique and is now using
robust optimization. Sensitivity to forecasting errors is the main problem.

A source at a firm that is using the Black–Litterman model (see Black and
Litterman 1990) commented, “Multistage optimization is too complex; it does not
fit the forecasting models.”

In the area of optimization, the survey also revealed a strong interest in
optimization with higher moments.

Outstanding Issues
Data remain a big issue in modeling. Most sources interviewed agreed that modelers
have enough data to support even complex models, although quantity of data is still
an issue for European small-cap stocks. The problem is one of data quality. A source
in a European firm remarked, “Data quality has improved tremendously over the
past 10 years, but it is still an issue, at least in Europe. The problem is one of
combining data from different sources. For example, when companies merge and
different data sources treat the entities differently, the data have to be stitched
together . . . . It requires a lot of cleaning the data to make them the same.” 
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12. Quantitative Modeling 
Today and Tomorrow 

Modeling of the type we have been discussing has implications for portfolio
managers and for the industry in general. We summarize here the state of modeling
and, although predicting future developments is notoriously difficult, give our
insights on the future direction of modeling in the industry. 

Modeling in Portfolio Management 
Given the strong competition to manage assets, performance levels that can be
achieved by modeling will become a benchmark against which any portfolio
manager will be measured. In the previous chapters, we discussed a number of
modeling techniques for equity return forecasting and portfolio optimization. And
as described in Chapter 11, a survey by the Intertek Group of asset management
firms, including many of the largest firms in the world, showed that most firms
surveyed do use some forecasting techniques and the use of optimization is growing.
Because these firms are among the biggest players in the market, they set the
performance benchmarks that other firms must pursue. They also shape the market
itself. As a result of the use of sophisticated statistical techniques, the profit
opportunities available from the work of human judgment are being reduced, at
least in highly liquid markets where data on public companies are abundant and
reliable. As we remarked in Chapter 2, profit opportunities are essentially the result
of patterns of delayed response; computerized methods can quickly capture these
patterns and exploit any profitability. In so doing, they rapidly arbitrage out simple
profit opportunities.

The capabilities of computerized systems do not mean, however, that assets
will be managed in the future only by computer programs—although completely
automatic funds are now possible. For computer management, a number of issues
are still outstanding. First is the challenge presented by the data. The input of data
from multiple providers can be automated, but human intervention is needed to
handle data issues presented by, for example, mergers and acquisitions, stock splits,
and other financial operations that affect the data stream of stock prices. In
addition, the present level of standardization among data providers is not sufficient
to allow completely automatic operations: A lot of data cleaning is required to
ensure that data meet the quality standards required for modeling. The bottom line
is that running an automatic fund requires a highly trained human supervisor with
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experience in data handling and an understanding of the details of corporate events.
The supervisor oversees the feeding of data into models and can intervene manually
when data present problems.

Second, assuming that the data problems are correctly dealt with, an automatic
fund requires a forecasting methodology as well as a portfolio strategy. A portfolio
strategy is a mechanism that builds portfolios based on forecasts. In its most
complete implementation, a portfolio strategy is an optimizer. Both of these
components—forecasting methodologies and optimizers—exist and can be inte-
grated automatically. Technically, one can feed data to a forecasting algorithm, feed
the resulting forecasts to an optimizer or to some heuristic method, and build a
portfolio. This approach is already in use at some firms.

Before entrusting large sums of money to an automatic fund, however, firm
managers must be sure that the process is robust. Robustness can be achieved in
various ways. A typical approach is to implement layers of controls: The forecasting
and optimization methodologies produce outputs that are filtered through one or
more layers of risk management. A layered approach, however, presents significant
integration challenges. Forecasting models typically work on different principles
from those of risk management models. Integrating models has been identified by
many heads of quantitative investment as a key modeling challenge. 

A layered approach also typically requires a high-level human supervisor (for
example, the risk manager) who can make stop-loss decisions or solve conflicts
between various layers of control. When asked how he would describe his job, a
pilot of transatlantic flights answered, “Long hours of boredom punctuated by
instants of sheer terror.” Supervising an automatic fund is similar. It requires the
ability to make rare interventions should losses surpass established limits. Many
asset management firms have stop-loss procedures that interrupt the operations of
a fund to avoid excessive losses (with a safe-start function to resume operations after
a fund has been stopped). However, such a structure is only a partial solution. What
is required is the ability to intervene without stopping active investing—which calls
for robust forecasting and optimization methodologies.

Until recently, most efforts in developing robust methodologies were concen-
trated on the estimation of the variance–covariance matrix because it is the most
critical element in the widely used static models. The performance of optimizers
depends on it. For static models, estimates of expected returns are less critical than
the variance–covariance matrix. In the new generation of dynamic models and
optimizers, however, other elements are critical. The estimation of expected
returns that vary in time can become noisy, producing unstable optimization
results; higher moments, unless explicitly accounted for, may interfere with both
estimates and optimization. 
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What these models require is a global robust methodology that encompasses
both estimation and optimization in an integrated process. As explained in Chapter
7, methods currently being used to make estimations more robust include resam-
pling, averaging techniques, and Bayesian methods. In the area of optimization,
constraints are being used to increase the robustness of the process. Of the firms
surveyed, 33 percent were already using some form of robust optimization; another
14 percent said they were evaluating such techniques for future deployment.

The bottom line is that the safe operation of automatic funds requires robust
methods and a residual level of intelligent supervision. Supervision at this level
requires much skill. The model supervisor must combine an intimate knowledge of
the models and the markets with the ability to detect any performance degradation
that cannot be attributed to acceptable statistical fluctuations. Above all, the
supervisor must resist the temptation to intervene, to override the model, too often.

Clearly, on top of these necessities, the design team and the model supervisor
must be able to adapt models to changing market conditions—the disappearance
of old profit patterns and the appearance of new ones. The need to adapt models
to a changing market is undoubtedly a weakness from a scientific point of view, but
in practice, it is the reality of financial modeling.

State of Modeling in the Industry
Traditionally, one of two money management functions has been used to justify the
management fees charged by the industry. On the one hand, asset managers are
credited with facilitating investors’ access to the market and optimizing the risk–
return profile of investments. On the other hand, the argument is that active asset
managers are paid for producing returns in excess of what the investors themselves
might be able to obtain. 

The claim of superior performance has always been controversial. Clearly, the
ability to produce returns in excess of the market is not obvious when the industry
is, in practice, the market. Although the performances of individual portfolio
managers in any given year will differ significantly, numerous studies have thrown
doubt on the persistence of superior performance.101

During the long bull run that closed the 20th century in which markets
consistently delivered outstanding returns, investment performance above that of
the benchmark was not much of an issue. Since the disappointing performance of
the markets following the year 2000, however, the role, function, and cost structure
of the asset management industry is being closely scrutinized. The growing diffusion
of modeling gives a scientific twist to this debate. Econometric analysis has shown
that the market does reflect some predictability. The existing level of predictability,
found even in relatively simple strategies published in academic papers, seems to be
sufficient to earn an excess return after taking into consideration transaction costs.
If, as seems to be the case, a growing number of asset managers attempt to exploit

101See Rhodes (2000); Kazemi, Schneeweis, and Pancholi (2003).
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this predictability with sophisticated statistical programs, however, the ability to
earn excess returns will be reduced, at least until profitable predictability is found
in new strategies.

In addition to allowing one to identify profit opportunities in developed
markets, quantitative methods can increase efficiency in investment management
firms. This boon is certainly the motivation that firms implementing quantitative
management cite. Quantitative methods also facilitate the matching of risk and
returns to investor preferences. Given the advantages that quantitative methods
offer, the march toward modeling seems irreversible, at least in managing invest-
ments in liquid markets where quality data are abundant.

How, then, do asset management firms introduce the models that will allow
them to identify profit opportunities and increase efficiency? For firms not born as
quantitative boutiques, the typical pattern so far is one of progressive introduction.
A firm decides to begin to experiment with quantitative techniques and chooses a
methodology on the basis of the firm’s views and its ability to control the experi-
ment. Usually, after starting with simple functions, additional statistical function-
ality is added—for example, the evaluation of correlations or the analysis of
momentum and reversals.

When the firm has acquired sufficient confidence in a given technique, typically
by running a fund offline for a period of months, it entrusts a small amount of money
to the fund and takes it live. The performance of the fund is tracked against that of
other funds, and if the automated fund is successful, the firm transfers increasing
amounts of assets to it. Indeed, some asset management firms surveyed by Intertek
went entirely quantitative after comparing performance for several years and finding
that the quantitatively managed funds produced the more positive and more stable
results. Obviously, not every experience produces the same happy result. Other
paths to introducing quantitative methods are possible.

According to the Intertek survey, most asset management firms now have
some sort of ranking/screening system that orients and constrains the choices a
manager of a quantitative portfolio can make. Using such decision-making systems
as ranking and screening is essentially different, however, from using a full-fledged
quantitative approach.

In the end, if and how a firm moves toward modeling is a function of its culture
and structure, the markets in which it operates, the level of computer and mathe-
matical literacy of its managers, and the skills available in the market. 

The integration of a full-fledged quantitative approach with human judgment
has been and still is a central theme in financial modeling. Although human agents
can perform complex intellectual tasks, they can handle only a limited amount of
information—in particular, only a limited amount of statistical information. Models
thrive on masses of statistical information. For example, a human agent cannot easily
evaluate and effectively use the 45 correlation numbers that describe the correlation
structure of 10 sectors, but a computer can easily handle such rich correlation
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structures. But although computerized models can exploit statistical regularities that
cannot be handled by humans, humans bring firsthand experience with markets and
securities that can be critical in some market conditions. Several techniques were
designed specifically for this purpose—for example, Bayesian methods such as the
Black–Litterman framework (see Black and Litterman 1991; Litterman 2003)—and
are being used in the industry. Other methodologies have been developed to facilitate
the interaction of humans with models, including sophisticated visualization tools
that personalize the presentation of data and “query tools” for “drilling down” so that
various aggregates of the data can be constructed on demand.

Today’s modeling efforts in the industry are typically of an econometric type.
They concentrate on predicting returns—analyzing time series, prices, returns,
financial ratios, and so on. In a sense, this situation is surprising. One might expect
that modeling efforts would be directed at analyzing the external environment to
create an accurate picture of the economic relationships between firms, technolog-
ical innovations, economic development, and so on. One area in which modeling
is being used to understand corporate dynamics is credit-risk modeling.

Future Possibilities
An area that is only beginning to be explored by some of the most quantitatively
oriented organizations is the automatic handling of unstructured data, such as text,
which is currently the domain of judgment (see Leinweber 2003; Focardi and Jonas
2002). Some of the requisite technologies for this endeavor—for example, tagging,
keyword searches, and query—are routinely used by data providers to manage
information and allow users to manipulate data. But they are only the tip of the
iceberg. Standards such as XML (extensible markup language) and RDF (resource
description framework) and industry-specific standards now allow the computer-
ized handling of unstructured data. Text mining and related technologies presently
allow the analysis of huge amounts of textual information. Although investment
management firms are showing little interest in these possibilities, the pressure to
realize excess returns and reduce operating costs may lead some firms to seek to
integrate the mathematical modeling of time series with the computerized handling
of textual information. The standardization promised by the Semantic Web might
appear a bit futuristic, but all the technological components are now available.102

In banking and finance, a reduced “semantic web” might be contained in the ISO
15022 central data repository. 

The economic and financial reality behind investment management will dictate
future developments in modeling. Ultimately, investor preferences will determine
the type of innovations the industry pursues. 

102The Semantic Web, managed by Tim Berners-Lee, is a project to define and link all data on the
Web in such a way as to allow automated handling by computers across applications and platforms. It
will do so by attaching a descriptive structured metafile to each Web page. For discussion of the Semantic
Web, see Fensel, Wahlster, Lieberman, and Hendler (2004) and Daconta, Obrst, and Smith (2005).
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