
The Research Foundation of AIMR™

R
E

S
E

A
R

C
H

FOUN

D
A

T
IO

N

O
F A I M R

William T. Ziemba
University of British Columbia and Oxford University

The Stochastic 
Programming Approach 
to Asset, Liability, and 
Wealth Management



Research Foundation Publications

Anomalies and Efficient Portfolio Formation
by S.P. Kothari and Jay Shanken

Benchmarks and Investment Management
by Laurence B. Siegel

The Closed-End Fund Discount
by Elroy Dimson and Carolina Minio-Paluello

Common Determinants of Liquidity and Trading
by Tarun Chordia, Richard Roll, and Avanidhar 

Subrahmanyam

Company Performance and Measures of 
Value Added

by Pamela P. Peterson, CFA, and 
David R. Peterson

Controlling Misfit Risk in Multiple-Manager 
Investment Programs

by Jeffery V. Bailey, CFA, and David E. Tierney

Country Risk in Global Financial Management
by Claude B. Erb, CFA, Campbell R. Harvey, and 

Tadas E. Viskanta

Country, Sector, and Company Factors in 
Global Equity Portfolios

by Peter J.B. Hopkins and C. Hayes Miller, CFA

Currency Management: Concepts and Practices
by Roger G. Clarke and Mark P. Kritzman, CFA

Earnings: Measurement, Disclosure, and the 
Impact on Equity Valuation

by D. Eric Hirst and Patrick E. Hopkins

Economic Foundations of Capital Market Returns
by Brian D. Singer, CFA, and 

Kevin Terhaar, CFA

Emerging Stock Markets: Risk, Return, and 
Performance 

by Christopher B. Barry, John W. Peavy III, 
CFA, and Mauricio Rodriguez

Franchise Value and the Price/Earnings Ratio
by Martin L. Leibowitz and Stanley Kogelman 

The Franchise Value Approach to the Leveraged 
Company

by Martin L. Leibowitz

Global Asset Management and Performance 
Attribution 

by Denis S. Karnosky and Brian D. Singer, CFA

Interest Rate and Currency Swaps: A Tutorial
by Keith C. Brown, CFA, and Donald J. Smith

Interest Rate Modeling and the Risk Premiums in 
Interest Rate Swaps

by Robert Brooks, CFA

The International Equity Commitment
by Stephen A. Gorman, CFA

Investment Styles, Market Anomalies, and Global 
Stock Selection

by Richard O. Michaud

Long-Range Forecasting
by William S. Gray, CFA

Managed Futures and Their Role in Investment 
Portfolios 

by Don M. Chance, CFA 

Options and Futures: A Tutorial 
by Roger G. Clarke 

Real Options and Investment Valuation
by Don M. Chance, CFA, and 

Pamela P. Peterson, CFA 

Risk Management, Derivatives, and Financial 
Analysis under SFAS No. 133

by Gary L. Gastineau, Donald J. Smith, and 
Rebecca Todd, CFA 

The Role of Monetary Policy in 
Investment Management

by Gerald R. Jensen, Robert R. Johnson, CFA, 
and Jeffrey M. Mercer

Sales-Driven Franchise Value
by Martin L. Leibowitz

Term-Structure Models Using Binomial Trees
by Gerald W. Buetow, Jr., CFA, and 

James Sochacki

Time Diversification Revisited 
by William Reichenstein, CFA, and 

Dovalee Dorsett

The Welfare Effects of Soft Dollar Brokerage: 
Law and Ecomonics

by Stephen M. Horan, CFA, and 
D. Bruce Johnsen



The Stochastic 
Programming Approach 
to Asset, Liability, and 
Wealth Management



The Research Foundation of The Association for Investment Management and Research™,
the Research Foundation of AIMR™, and the Research Foundation logo are trademarks
owned by the Research Foundation of the Association for Investment Management and
Research. CFA®, Chartered Financial Analyst®, AIMR-PPS®, and GIPS® are just a few of the
trademarks owned by the Association for Investment Management and Research. To view a
list of the Association for Investment Management and Research’s trademarks and a Guide for
the Use of AIMR’s Marks, please visit our website at www.aimr.org.

© 2003 The Research Foundation of the Association for Investment Management and Research

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, 
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, 
or otherwise, without the prior written permission of the copyright holder.

This publication is designed to provide accurate and authoritative information in regard to the 
subject matter covered. It is sold with the understanding that the publisher is not engaged in 
rendering legal, accounting, or other professional service. If legal advice or other expert 
assistance is required, the services of a competent professional should be sought.

ISBN 0-943205-65-4

Printed in the United States of America

December 5, 2003

Editorial Staff  
Rebecca L. Bowman

Book Editor

Sophia E. Battaglia
Assistant Editor

Kara H. Morris
Production Manager

Kelly T. Bruton/Lois A. Carrier
Composition and Production



Mission

The Research Foundation’s mission is to 
encourage education for investment 
practitioners worldwide and to fund, 
publish, and distribute relevant research.



Biography

William T. Ziemba is Alumni Professor of Financial Modeling and
Stochastic Optimization at the Sauder School of Business, University of
British Columbia, where he has taught since 1968, and Nomura Visiting
Senior Research Fellow in Financial Mathematics at Oxford University. He
has been a visiting professor at the University of Chicago, Stanford University,
the University of California at Berkeley, the University of California at Los
Angeles, the London School of Economics, Cambridge University, the
National University of Singapore, University of Bergamo, and University of
Zurich and a consultant to a number of leading financial institutions, including
the Frank Russell Company and Morgan Stanley. Professor Ziemba has also
worked as a futures and equity trader and a hedge fund and investment
manager since 1983. His research has focused on asset/liability management,
portfolio theory and practice, security market imperfections, Japanese and
Asian financial markets, hedge funds, sports and lottery investments, and
applied stochastic programming. 

Professor Ziemba is the author or co-author of many articles and books,
including Stochastic Programming: State of the Art 1998, Worldwide Asset
and Liability Modeling, and Research in Stochastic Programming. Other
recent books are Security Market Imperfections in Worldwide Equity Markets
and Applications of Stochastic Programming. His articles have been
published in journals such as Operations Research, Management Science,
American Economic Review, Journal of Economic Perspectives, Economics
Letters, Journal of Finance, Mathematical Finance, Financial Analysts
Journal, Journal of Portfolio Management, Journal of Economic Dynamics and
Control, and Interfaces. (For details of his publications, see his website,
homepage.mac.com/wtzimi/index.htm.) He is the series editor for North
Holland’s Handbooks in Finance (see www.elsevier.com/homepage/sae/
hf/menu.htm) and a regular columnist for Wilmott, a London-based
institutional investor magazine. From 1982 to 1992, he was the department
of finance editor of Management Science. Professor Ziemba’s co-written
practitioner paper on the Russell–Yasuda Kasai model won second prize in
the 1993 Edelman Practice of Management Science Competition. He earned
a PhD from the University of California at Berkeley.



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1. The Fundamentals of Asset Allocation . . . . . . . . . . 1
Chapter 2. The Stochastic Programming Approach to 

Asset/Liability Management . . . . . . . . . . . . . . . . . . 23
Chapter 3. Insurance Company Applications . . . . . . . . . . . . . . 73
Chapter 4. Pension Fund Applications  . . . . . . . . . . . . . . . . . . . 94
Chapter 5. Individual Asset/Liability Planning Models. . . . . . 130
Chapter 6. Hedge Fund Applications. . . . . . . . . . . . . . . . . . . . . 142
Chapter 7. The Top 10 Points to Remember. . . . . . . . . . . . . . . 177

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



viii

Dedication

This Research Foundation monograph is dedicated to the memory of my two
most admired purists whose work has stood the test of time against the
critics—Theodore Samuel Williams, baseball player and fisherman, and
Merton H. Miller, finance theorist, financial market colleague, and
professional keynote speaker; to Chris Hensel, my late Frank Russell
colleague, and Teppo Martikainen, my late University of Helsinki colleague,
both of whom were most supportive of our joint work on anomalies and
portfolio management and the stochastic programming work discussed in this
monograph; and to my late UBC colleague Shelby Brumelle, who was always
supportive of my work in financial markets and stochastic programming.



©2003, The Research Foundation of  AIMR™ ix

Acknowledgments

Special thanks go to the Research Foundation of AIMR for financial support
for the research and writing of this monograph, which combines many of the
institutional investor lectures that I have presented over the past 10+ years.
Thanks also go to the organizers and participants of the Frank Russell
Consulting Client Conference; Decision Analysis Investment Systems (DAIS)
Group, New York; Berkeley Program in Finance; Pacific Investment
Management Company; Yamaichi Securities; San Francisco Institute of
Chartered Financial Analysts Quantitative Investment Program; Swiss
Institute of Banking, St. Gallen; Mexican Bolza; Chicago Board of Trade;
University of Bergamo Financier Association, Turin; Isaac Newton Institute,
Cambridge University; Den Norske Dataforening, Oslo; University of British
Columbia (UBC) Faculty Association; Charles University; UBC Global
Investment Conference, Lake Louise; UNICOM, London; Bendheim Center
for Finance, Princeton University; Portfolioakatemia Investment Manage-
ment Seminar Helsinki; Euro Plus, Dublin; Uni Credit, Milan; Centre for
Financial Engineering, National University of Singapore; Helsinki School of
Economics; Hermes Centre of Excellence in Computational Finance,
University of Cyprus; International Institute for Applied Systems Analysis,
Austria; Nomura Centre for Quantitative Finance at the Mathematical
Institute, Oxford University; Arrowstreet Capital Client Conference; and many
other academic conferences and universities around the world for help in
encouraging and developing my ideas.

The ideas in this monograph are the intersection of my theoretical and
applied work on stochastic programming and portfolio theory, my consulting
and money management activities, and my interest in various types of invest-
ments and gambling. My stochastic programming colleagues Roger Wets,
Chanaka Edirisinghe, Markus Rudolf, Stavros Zenios, John Mulvey, Stein
Wallace, Michael Dempster, Karl Frauendorfer, Alan King, Jitka Dupačovà,
John Birge, Marida Bertocchi, Rita D’Eclessia, Alexei Gavaronski, Julie Higle,
Suvrajeet Sen, Georg Pflug, Hercules Vladimirou, Leonard MacLean, Roy
Kouwenberg, Andrea Consiglio, Gautam Mitra, Yonggan Zhao and Horand
Gassmann have all made contributions to asset/liability management and
have encouraged me in my work. My nine years as a consultant to the Frank
Russell Company gave me an applied setting at the highest level to develop
and expand my ideas. Thanks go to my former colleagues there, Chris Hensel,
Andy Turner, David Cariño, David Myers, and Doug Stone. Thanks also go
to the members of my 1974 course on stochastic programming at UBC, where
this monograph started to develop in a serious way, especially Martin Kusy



The Stochastic Programming Approach to Asset, Liability, and Wealth Management

x ©2003, The Research Foundation of AIMR™

and Jerry Kallberg, who co-wrote key papers with me. My intellectual debt to
asset/liability management pioneers Kenneth Arrow, Harry Markowitz, Rob-
ert Merton, Bill Sharpe, Paul Samuelson, John Campbell, Robert Shiller, and
others is evident throughout the text. Thanks also go to colleagues Kaifeng
Chen, Stewart Hodges, Daniel Jones, Joachim Loebb, and Robert Tompkins
for comments on an earlier version of the manuscript. Special thanks also go
to my NumerikaALM and Operational Research Systems colleagues Pier Riva,
Reno Oberto, Al Hynd and Giorgio Consigli. The manuscript was completed
at the Nomura Centre for Quantitative Finance at the Mathematical Institute,
Oxford University. Thanks are due to Dr. Sam Howison, the director, for his
generous hospitality and to Keith Gillow, Sara Jolliffe, and Angela Howard for
their help with this project. Thanks also go to Master Roger Ainsworth, John
Ockendon, and the other fellows, staff, and friends of St. Catherine’s College
for their gracious hospitality during my stay as a Christensen visiting fellow.
Finally, special thanks go to my wife Sandra Schwartz for encouragement,
many discussions, and the production of the manuscript.

W.T.Z.
Vancouver, British Columbia, Canada

Oxford, United Kingdom
May 2003



©2003, The Research Foundation of  AIMR™ xi

Foreword

The recent confluence of low interest rates and substandard capital market
performance has strained institutions that manage assets for the purpose of
funding liabilities, namely, pension funds, endowment funds, and charitable
foundations. Individuals as well have found the recent investment climate
especially challenging as they strive to meet ongoing financial obligations
while accumulating sufficient capital to ensure a comfortable retirement.
These trying times have led many financial analysts to question several time-
honored beliefs, including the reliability of the equity risk premium and the
suitability of policy portfolios. William Ziemba’s excellent monograph is,
therefore, a timely and welcome contribution to the literature on asset,
liability, and wealth management. 

Ziemba begins with a concise and accessible explication of mean–variance
analysis, utility maximization, and capital asset pricing. This chapter provides
the theoretical foundation for the standard tools used by most financial
analysts to form portfolios. The remainder of the monograph departs from the
static world of mean–variance analysis and introduces us to the dynamic world
of stochastic programming.

Ziemba motivates this transition to dynamic programming by first dem-
onstrating that the real world is far different from the theoretical world of
mean–variance analysis. For example, he recounts many of the extreme
events that have recently plagued the capital markets as evidence that return
distributions tend not toward normality but rather toward fat tails. He also
shows that correlations seem to be scenario dependent; hence, they offer less
diversification during stressful markets than typically assumed. In addition,
he discusses certain time-series dynamics of returns, such as mean reversion,
as well as certain time-series dynamics of volatility, such as clustering. He then
introduces stochastic programming and shows why it is more suitable than
static approaches for tackling these real-world complexities. 

In the next few chapters, Ziemba presents applications of stochastic
programming models for various types of investors, including insurance
companies, pension funds, individuals, and hedge funds. These applications
illustrate the benefits of stochastic programming in addressing such impor-
tant but often neglected investment considerations as human capital in the
case of pension funds and taxes in the case of individual investors. 

Although some readers may find parts of the material mathematically
daunting, Ziemba has a knack for distilling the essential insights into straight-
forward rules of thumb, as evidenced by his closing list of 10 points to
remember. Feel free to skip the math if is not to your taste, but I encourage
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you to pay close attention to the essential insights of this important mono-
graph. The complexities of the real world demand a new set of tools, many of
which are contained herein.

The Research Foundation is especially pleased to present The Stochastic
Programming Approach to Asset, Liability, and Wealth Management.

Mark Kritzman, CFA
Research Director

The Research Foundation of the
Association for Investment Management and Research
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Preface

All individuals and institutions face asset/liability management problems on
a continuous basis. The assets must be invested over time to achieve sufficient
returns to cover liabilities and achieve goals subject to various uncertainties,
policy and legal constraints, taxes, and other requirements. Investors,
whether individuals or institutions, typically do not properly diversify their
asset holdings across markets and time, especially in relation to their certain
and uncertain liability commitments. 

This Research Foundation of AIMR monograph presents an easily read-
able, up-to-date treatment of asset and wealth management in the presence of
liabilities and other portfolio complexities, such as transaction costs, liquidity,
taxes, investor preferences (including downside risk control, policy con-
straints, and other constraints), uncertain returns, and the timing of returns
and commitments. The monograph addresses the issues involved in the
management of investment portfolios for both large financial institutions
(such as pension funds, insurance companies, and hedge funds) and individ-
uals concerned with life-cycle planning. 

The approach discussed and recommended here is discrete-time, multi-
period stochastic programming. For most practical purposes, such models
provide a superior alternative to other approaches, such as mean–variance,
simulation, control theory, and continuous-time finance. Stochastic program-
ming leads to models that take into account investor preferences in a simple,
understandable way. 

The use of scenario-based, stochastic programming optimization models
in discrete time provides an approach to asset/liability modeling over time.
The models provide a way to think about, organize, and do calculations based
on how one should choose asset mixes over time to achieve goals and cover
liabilities. Risk and return are balanced to achieve period-by-period goals and
targets and long-run objectives. The models force diversification and the
consideration of extreme scenarios to protect investors from the effects of
extreme outcomes and also do well in normal times. They simply will not let
individuals or institutions get into situations in which extreme, but plausible,
scenarios would lead to truly disastrous consequences, such as losing half or
more of one’s assets. Because these models force consideration of all relevant
scenarios, the common practice of assuming that low-probability scenarios
will not occur is avoided. Hence, the disasters that frequently follow from this
error can be avoided.

In discrete-time, multiperiod stochastic programming models, one typi-
cally maximizes a concave, risk-averse utility function composed of the
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discounted expected wealth in the final period less a risk measure composed
of a risk-aversion index times the sum of convex penalties for target violations
relating to investor goals of various types in various periods. The convexity
means that the larger the target violation, the larger the penalty cost. Hence,
risk is measured as the nonattainment of investor goals, and this risk is traded
off against expected returns. This approach is similar to a mean–variance
preference structure, except it is based on final wealth and the risks are
downside risks that are measured across several periods and by several
investor goals. Discrete scenarios that represent the possible returns and
other random parameter outcomes in various periods are generated from
econometric and other models, such as those related to market dangers with
increasing risk and from expert modeling. Mean-return estimation and inclu-
sion of extreme events are important for model success. The scenario
approach has a number of advantages:
• Normality or lognormality, which is used in other approaches but is not

an accurate representation of actual asset prices, especially for losses,
need not be assumed.

• Tail events can be easily included; studies show that downside
probabilities estimated from actual option prices are 10 to 100 to 1,000
times fatter than lognormal.

• Scenario-dependent correlations between assets can be modeled and
used in the decision-making process so that “normal” and “crisis”
economic times (with higher and differing signed correlations) can be
considered separately.

• The exact scenario that will occur and the probabilities and values of all
the scenarios do not need to be accurately determined to provide model
performance that is superior to that of other models and strategies, such
as mean–variance or portfolio insurance.

• The best decisions are determined in light of relevant constraints,
uncertainties, and preferences of the decision maker.

• Most of the natural, practical aspects of asset/liability applications can be
modeled well in the multiperiod stochastic programming approach.
Methods to solve such models are now highly developed and can be
implemented on high-performance personal computers. Model output is
easy to understand and interpret if good graphical interfaces are used that
are user friendly and easily understood by such nonoptimization experts
as pension fund trustees. The models can be tested via simulation and
statistical methods and considerable independent evidence demonstrates
their superiority to other standard approaches and strategies.
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• The approach tends to protect investors from large market losses by
considering the effects of extreme scenarios while accounting for other
key aspects of the problem. The world today is very dangerous with many
extreme scenarios. For example, the use of derivatives worldwide has
grown into a US$142 trillion industry. Although much of this trade is for
hedging and reduces risk, the sheer volume adds new risks.

• Determining whether investment positions are truly diversified and of the
right size across time is crucial to protect against extreme scenarios and
ensure that the results will be good in normal times and avoid disasters.
Chapter 1 of this monograph reviews static mean–variance and expected-

utility-based portfolio theory and provides the principles of utility theory and
measurement, preferences, risk measurement, and the effect of estimation
errors used later in the multiperiod models.

Chapter 2 discusses extreme events, scenario estimation, and a stock–
bond return crash danger model that would have been useful in predicting
the 1987 (U.S. and worldwide), 1990 (Japanese), and 2000 (U.S. and world-
wide) stock market crashes. In this chapter, stochastic programming models
are introduced and compared with fixed-mix portfolio models; also, the main
points regarding their use are discussed.

Chapter 3 deals with insurance industry models, namely, the Russell–
Yasuda Kasai model and models for the management of policies with guaran-
tees.

Chapter 4 discusses pension plans, as well as the increased risk of
investing heavily in one’s own-company stock. I develop a case study for an
Austrian pension fund and compare a continuous-time approach with the
discrete-time, scenario-based stochastic programming approach.

Chapter 5 discusses individual asset/liability management for wealthy
individuals and institutions, particularly for retirement and endowments of
universities and other foundations for which spending never decreases.

Chapter 6 discusses hedge fund strategies—including typical trades,
performance, risk control, and the Kelly or capital growth theory of investment
over time.

Although the basic ideas are fairly simple and, I hope, explained well here,
some of the technical complexities I do not cover are available online at my
website, homepage.mac.com/wtzimi/index.htm, and can be downloaded with-
out cost. Those interested in making stochastic programming models can e-mail
me at wtzimi@mac.com or check my website or www.numerikaalm.com.
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In this monograph, I have tried to explain my ideas at a graduate level, as
I have in institutional lectures around the world and in MBA classes at the
universities of British Columbia, Chicago, Cambridge, Oxford, Warwick,
Reading, Helsinki, Tsukuba, and Zurich, Imperial College, London, and the
London School of Economics. 

W.T.Z.
Vancouver, British Columbia, Canada

Oxford, United Kingdom
May 2003
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1. The Fundamentals of 
Asset Allocation

This chapter provides an introduction to mean–variance analysis, utility the-
ory and practice, and other aspects of static portfolio allocation. The concepts
presented here will be useful in later chapters on multiperiod models with
liabilities.

Mean–Variance Analysis and Its Limitations
The Markowitz (1952) mean–variance model is a useful paradigm that ush-
ered in the modern approach to quantitative asset management. The idea is
to trade off mean return, which is desirable, with variance, which is a measure
of risk and is undesirable. Other useful sources of information related to
material in this chapter are Michaud (1998) and Ziemba and Mulvey (1998).

Suppose there are n assets, i = 1,⋅ ⋅ ⋅, n, with random returns ξ1, . . ., ξn .
The return on asset i, namely ξi, is the capital appreciation plus dividends in
the next investment period, which could be monthly, quarterly, yearly, or
some other time period. The n assets have the distribution F (ξ1, . . ., ξn), with
mean vector  and nxn variance–covariance matrix ∑, with
typical covariance σij for i ≠ j and variance  for i = j.

A mean–variance model is

φ(δ) =

subject to x ′Σx ≤ δ

e′x = w0
x ≥ o,

where φ represents maximum expected wealth for a given variance level δ, x
= (x1, . . .,xn) are the asset weights, e is a vector of 1’s, and w0 is the investor’s
initial wealth.

When variance is parameterized, it yields a concave curve, as shown in
Panel A of Figure 1.1. This curve is a Markowitz mean–variance-efficient
frontier that optimally trades off mean, which is desirable, with variance, which
is undesirable. Tobin (1958) extended the Markowitz model to include a risk-
free asset with mean, rf , and no variance, in which case the efficient frontier
curve becomes the straight line shown in Panel B of Figure 1.1. To make the
line straight, the standard deviation, rather than the variance, is plotted. 

ξ ξ1, . . . ,ξn( ),=
σi

2

maxξ′x,
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An investor selects an optimal portfolio in the Markowitz model using a
utility function that trades off mean for variance, or, equivalently, standard
deviation, to yield portfolio A, as shown in Panel A of Figure 1.1. For the Tobin
model, a simpler calculation can be used to find the optimal portfolio—the line
in Panel B of Figure 1.1 between the risk-free asset and the market index.
Here, the investor picks a portfolio B that is about half cash/risk-free asset

Figure 1.1. Two Efficient Frontiers

A. Markowitz Mean−Variance-Efficient Frontier

Variance

Expected Return

Optimal Portfolio A for
Given Utility Function

Efficient Frontier

B. Tobin's Risk-Free Asset and Separation Theorem

Standard Deviation

Expected Return

rf

Optimal Portfolio B for
Given Utility Function

Market Index

Efficient Frontier
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and half market index. The market index may be proxied by the S&P 500 or
Wilshire 5000 value-weighted indexes. Because all investors choose between
cash and the market index, this separation of the investor’s problem into
finding the market index and then figuring out where to be on the line is called
“Tobin’s separation theorem.” Ziemba, Parkan, and Brooks-Hill (1974) dis-
cussed how to compute the market index and optimal weights of cash and the
market index for various utility functions and constraints.

I will now investigate the effect of errors in the estimates of the mean
returns, variances, and covariances  and σij , respectively, on the op-
timal asset weights  and overall portfolio mean and variance. This analysis
will be easier using the general expected utility model:

max z(x) =

subject to e′x = 1
x ≥ 0
x ∈ K ,

where z(x) is the expected utility for a given x, u is a concave risk-averse utility
function, the convex set K is additional constraints, and the w0 is put into the
objective so the x ’s are asset weight fractions or percentages that sum to 1.
By risk averse, I mean that the investor would not prefer a fair gamble to the
status quo. Hence risk aversion is identical to the definition of concavity
u(w0) ≥ λu(wu) + (1 – λ)u(wl), where λ is a number between zero and 1 and
w0 = λwu + (1 – λ)wl. 

Consider two risk-aversion indexes:
1) The Arrow (1965)–Pratt (1964) absolute risk-aversion index

whose average value

allows for an accurate approximation of any concave u with the quadratic
 The key is the choice of  For relative investments,

I use wRA(w), the Arrow–Pratt relative risk-aversion index; and
2) the very useful, from a theoretical point of view, Rubinstein (1973) relative

risk-aversion measure

ξi σi
2,,

xi
∗

Eξu w0ξ′x( ),

RA w( )
u″ w( )–
u′ w( )

------------------ ,=

RA Ew
u″ w( )–
u′ w( )

------------------ ,=

ξ′x RA/2( )x′Σx.– RA.

RR
EW wu″ w( )[ ]

EW u′ w( )[ ]
--------------------------------- ,–=

x≥0
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which completely characterizes optimal portfolio behavior if the asset
returns are normally or symmetrically distributed.
If two investors have the same Rubinstein risk-aversion measure, then

they have the same optimal portfolio weights, even if they have different
concave utility functions and initial wealth.1

Under the normality assumptions, RR is exact, but how to estimate it is
not obvious. Also, Samuelson (1970) showed that in the choice between a risky
and a risk-free asset, as σ2 → 0, then RR → RA and

Hence, the amount invested in the risky asset is inversely proportional to the
investor’s risk aversion.

Several interesting questions arise:
• How accurate is RA when σ2 > 0?
• What are some guidelines for its use?
• How robust is RA?
• Is a change in RA from 1 → 2 different from a change from 10 → 11 or

10→ 20?
As I will now discuss, Kallberg and Ziemba (1983) provided answers to these
questions.

In Figure 1.2, Panel A and Panel B show typical monthly output for the
quadratic and exponential utility functions. The asset weights sum to 1. More
interesting are Panel C and Panel D of Figure 1.2. Special exponential and
negative power have different functional forms, but with similar risk-aversion
indexes, they have similar asset weights versus parameter values. Negative
power is a useful utility function for many applications.

The errors are usually less than 10–4 percent, and the largest is less than
1 percent, which is below the accuracy of the data. Actual portfolio weights,
means, and variances are close. In general, these values are closer for monthly
data and lower RA because one then has lower variance and less curvature of
U. Table 1.1, Table 1.2, and Table 1.3 show a sample calculation for yearly
data with 10 securities for RA = 4. The cash-equivalent errors are always less
than 1 percent, and for the quadratic function, which is the most convenient
utility function to use in practice, the errors are less than 10–4 percent. 

Figure 1.3 shows that changes in RA from 1 to 2 are much more important
than those from 4 to 5, 4 to 8, or 10 to 20. This finding and the related results

1For further discussion, see Theorem 1 in Appendix A (p. 1), which is available online in the
Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixA.pdf.

xrisky
∗

σ
2 0→

lim Constant
RA

----------------------- .=
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of Kallberg and Ziemba (1983) provide another simple, but extremely power-
ful and useful, method to estimate individual utility functions. We can simply
assess a person’s aversion to risk through interviews and then assign numer-
ical values to that person’s risk-aversion index. Because these results imply

Figure 1.2. Functional Form Asset Weights

Note: Numbers beside lines are the numbers of the individual stocks.
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that any concave utility function can be estimated well with any other concave
utility function, we can use as our approximating function the quadratic

Then, we simply supply RA values. For example, RA = 4, which corresponds
approximately to the risk of a portfolio with 60 percent in stocks and 40 percent
in bonds, represents a moderately conservative investment style, similar to
many pension plans; RA = 6 to 8 represents a very conservative style, and RA = 1
to 2 represents a much more aggressive style.

Comments on Utility Functions. Special exponential and negative
power yield very risk-averse portfolios. Negative power has many attractive
properties for conservative investors. Positive power (usually) yields highly
risky portfolios and moderately risk-averse portfolios for different parameter

Table 1.1. Security Means and Variances

Security Mean Variance

1 Cunningham Drug Stores 1.2852 0.3276
2 National Cash Register 1.2549 0.2152
3 Metro-Goldwyn-Mayer 1.1819 0.7111
4 Gillette Co. 1.1694 0.0666
5 Household Finance Corp. 1.1484 0.0517
6 H.J. Heinz Co. 1.1608 0.1413
7 Anaconda Co. 1.1711 0.1865
8 Kaiser Aluminum & Chemical 1.0861 0.0324
9 Maytag Co. 1.1292 0.1676

10 Firestone Tire and Rubber 1.0626 0.0155

Table 1.2. Correlation Matrix 

1 2 3 4 5 6 7 8 9 10

1  0.3276  0.0755  0.0311  0.0451 0.0226  0.0746  0.1126  0.0313  0.0991  0.0201
2  0.2152  0.0256  0.0462  –0.0011  0.0407  0.0361  0.0347  0.0509  0.0077
3  0.1711  0.0318 0.0118  0.0504  0.0531  0.0150  0.0298  0.0066
4  0.0666 0.0121  0.0267  0.0458  0.0165  0.0221  0.0084
5 0.0517  0.0243  0.0271  0.0109  0.0235  0.0090
6  0.1413  0.0492  0.0085  0.0489  0.0117
7  0.1865  0.0354  0.0609  0.0162
8  0.0324  0.0245  0.0044
9  0.1674  0.0097

10  0.0135

u w( ) w
RA
2

-------w2.–=
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Table 1.3. Optimal Portfolio Weights for Alternative Utility Functions 
and  Values

Security/
Statistic Exponential (4.0)

Quadratic 
(0.351447)

Log
 (–0.832954)

Special 
Exponential 
(2.884400)

Negative 
Power

(1.443557)

1 0.088239  0.082991 0.046975 0.021224  0.047611
2 0.169455  0.165982 0.116220 0.185274  0.112794
3 0.106894  0.106663 0.080160 0.104064  0.079600
4 0.194026  0.198830 0.161247 0.048522  0.154474
5 0.441385  0.445533 0.343318 0.441182  0.328958
6
7
8
9

10 0.252077 0.199733  0.258232

Mean 1.186170  1.185175 1.151634 1.158397  1.149527
Variance 0.037743  0.037247 0.024382 0.027802  0.023756
Expected utility 0.988236  0.988236 0.987863 0.987589  0.987821
Percent error — 0 0.703000 0.709900  0.782700

Note: Parameter values are in parentheses. Zeros and blanks indicate values less than 10–4.

Figure 1.3. Riskiness as a Percentage of 
Maximum Variance vs. RA
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values. Arctan (usually) yields highly risky portfolios and has RA ≤ 1. Qua-
dratic, exponential, and log span the whole range of absolute risk aversion
from zero to infinity. Other useful utility functions are the double exponential
and that proposed by Bell (1995)—u(w) = w – ae–bw, for constants a and b,
where e refers to exponentiation (see also papers in Ziemba and Vickson
1975).

Estimation of Utility Functions
Figure 1.4 and Figure 1.5 show the utility of wealth function and the
absolute and relative risk-aversion functions for Donald Hausch. These func-
tions were estimated using the double exponential utility function

u(w) = –e–aw – be–cw, 

where a, b, and c are constants. This function is strictly concave and strictly
increases with decreasing absolute risk aversion when one uses the certainty-

Figure 1.4. Utility of Wealth Function for Donald 
Hausch

u(w)

Status Quo

−2
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−3

20,000 40,000 60,000−20,000−40,000
∆(w)

Certainty-Equivalent Method

u2(w) = −e−0.0000202w − 1.90 × 10−3e−0.000145w

Gain-and-Loss Equivalent Method
u1(w) = −e−0.0000194w − 9.75 × 10−10e−0.00059w
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Figure 1.5. Risk-Aversion Functions for Donald 
Hausch

Note: Both risk-aversion functions are estimated by the certainty-equivalent
method (1) and the gain-and-loss equivalent method (2).
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equivalent and gain-and-loss equivalent methods.2 Hausch’s utility function
was fit by least squares, and both methods provide similar curves. His absolute
risk aversion is decreasing and roughly constant in his investment range when
initial wealth w0 changes by ±10,000, corresponding to RA between 2.0 and
2.5. His relative risk aversion, –w[u″(w)/u′(w)], is increasing and linear in his
investment range. 

The Importance of Means
Means are by far the most important part of any return distribution for actual
portfolio results. To have good results with any portfolio problem, good mean
estimates for future returns are necessary, as Hanoch and Levy (1969) dis-
cuss:

If asset X has cumulative distribution F(·) and asset Y has G(·) and these cumulative
distribution functions cross only once, then asset X dominates asset Y for all increas-
ing concave utility functions, that is, has higher expected utility, if and only if the
mean of X exceeds the mean of Y.

This means that the variance and other moments are unimportant for single-
crossing distributions. Only the means count. With normal distributions, X
and Y will cross only once if and only if the standard deviation of asset X is
less then the standard deviation of asset Y. This is the basic equivalence of
mean–variance analysis and expected utility analysis via second order (con-
cave, nondecreasing) stochastic dominance, as shown in Figure 1.6; Panel
A depicts the second degree and mean–variance dominance, but no domi-
nance exists in Panel B because there are two crosses. This F has a higher
mean but also higher variance than G. The densities f and g are plotted for
convenience and yield the same results as those for the cumulative distribu-
tion functions F and G. There is a similar theory for infinite variance stable
distributions; see Ziemba (1974) and Rachev (2003). 

Errors in inputs can lead to significant losses (Figure 1.7) and high
turnover (Figure 1.8). Additional calculations appear in Kallberg and Ziemba
(1981, 1984) and in Michaud (1989). 

The error depends on the risk tolerance. Errors in means, variances, and
covariances, however, are roughly 20:2:1 times as important, respectively (see
Table 1.4). Therefore, good estimates are by far the most crucial aspect of
successfully applying a mean–variance analysis, and we will see that in all
other stochastic modeling approaches. 

Conclusion: Spend your money getting good mean estimates and use
historical variances and covariances.

2These methods are described in Appendix A (p. 2), which is available online in the Supple-
mentary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixA.pdf.
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Capital-Asset-Pricing-Based Performance Analysis
The 1964 Sharpe–Lintner–Mossin capital asset pricing model (CAPM) implies
that the mean return,  of an individual asset, j, is related to the mean of the
market index,  through the covariance of asset j with the market. The
expected return is

where

Figure 1.6. Mean–Variance and Second-Order 
Stochastic Dominance
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Figure 1.7. Mean Percentage Cash-Equivalent 
Loss because of Errors in Inputs

Source: Based on data from Chopra and Ziemba (1993).

Figure 1.8. Average Turnover for Different Percentage Changes in Means, 
Variances, and Covariances

Source: Based on data from Chopra (1993).
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and rf is the risk-free return.
Superior investment performance (i.e., the search for alpha) is

This analysis is all derived in a mean–variance normal distribution or
quadratic utility world. As the theory behind the explosive growth in index
funds and various aspects of portfolio management, the CAPM has been useful
in many diverse settings, such as regulatory hearings. But we live in a fat-tailed
investment world, especially over short periods of time, such as a week,
month, or quarter. For yearly time horizons, normality is usually a reasonable
assumption for many equity and other investment markets, but a serious
problem with normality and mean–variance analyses arises when investment
portfolios contain options. For example, the two distributions in Figure 1.9
have the same mean and variance. 

How do we deal with a CAPM-type analysis if the tails are fatter than
normal? Also, we know that, empirically, investors prefer positive skewness
and distinguish between downside and upside risk.

The CAPM analysis penalizes strategies that buy options and biases them
toward negative alphas. Conversely, the CAPM analysis rewards strategies
that sell options and biases them toward positive alphas. In both cases, the
alpha is incorrectly measured.

Leland (1999) shows how to correct for these biases in a simple way:
Instead of using beta, one can use a modified beta, B. Theoretical studies by
Rubinstein, Constantinides (1982), and He and Leland (1993) argued that if

Table 1.4. Average Ratio of Certainty Equivalent Loss for Errors in Means, 
Variances, and Covariances

t-Risk Tolerance
Errors in Means vs. 

Covariances
Errors in Means vs. 

Variances
Errors in Variances vs. 

Covariances

25 5.38 3.22 1.67
50 22.50 10.98 2.05
75 56.84 21.42 2.68

↓ ↓ ↓

20 10 2

Error mean 20
Error variance 2
Error covariance 1

βj
cov Rj, RM( )

σM
2

-------------------------------=

αj Rj rf– βj RM rf–( ).–=
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the market rate of return is independent and identically distributed, then by
the central limit theorem, returns are lognormally distributed. If markets are
dynamically complete, Harrison and Kreps (1979) showed that an aggregate
investor exists with a negative power utility function:

where

Figure 1.9. Two Distributions with Identical 
Means and Variances but Different 
Skewness

Probability
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and absolute risk aversion, γ/w, and constant relative risk aversion γ. This u
is positively skewed because its third derivative is positive with respect to
wealth w. Then, instead of using

use

Table 1.5 illustrates the idea for rebalancing (or value) strategies that
are long the market and short one call and momentum (or portfolio insurance)
strategies that are long the market and long one put or follow a dynamic
tactical asset allocation strategy. The use of B corrects the bias in the third
column to the correct zero value in the last column. Then, one can compute
the mean, µj and βj, of a portfolio; if it lies above the market line (that is, A is

Table 1.5. CAPM-Based � and � versus B and A

Strike Price E(r) β α B A

A. Long the market, short one call at S = 100
90 5.51% 0.038 0.24% 0.073 0

100 6.76 0.163 0.62 0.251 0
110 8.61 0.394 0.85 0.515 0
120 10.27 0.650 0.72 0.753 0
130 11.30 0.838 0.57 0.900 0
140 11.77 0.939 0.20 0.967 0

B. Long the market, long one call at S = 100
90 11.60% 0.962 –0.24% 0.927 0

100 10.24 0.832 –0.62 0.749 0
110 8.40 0.606 –0.84 0.485 0
120 6.73 0.351 –0.72 0.247 0
130 5.70 0.163 –0.44 0.101 0
140 5.24 0.062 –0.19 0.034 0

γ
RM rf–( )

σM
2

----------------------- 0,>=

βj
cov rj, rm( )

cov rm, rm( )
------------------------------ ,=

βj

cov rj 1 rM+( )
γ–

cov rm 1 rM+( )
γ–
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positive), then it has a true positive alpha, which implies superior perfor-
mance. 

This example assumes a lognormal market portfolio with  = 12 per-
cent, with = 15 percent, and γ is computed to be 3.63. This result corre-
sponds to a portfolio blend of

in the log optimal portfolio, and

in cash.
This analysis is for the case with lognormally distributed asset returns.

Studies at Barra show minor differences in stock β’s and B’s over one-month
to one-year time horizons. Table 1.6 shows these differences for various
portfolio standard deviations and covariances with the market. Of course, with
options, the differences will be much greater. 

Sharpe and Generalized Sharpe Ratios
The Sharpe (1994) ratio

where  is the mean portfolio return with standard deviation σR and risk-free
asset return rF, is a useful measure of portfolio performance. For example,
based on 101 yearly observations in Dimson, Marsh, and Staunton (2002) from
1900 to 2000, U.S. stocks had a geometric mean return of 10.1 percent with a

Table 1.6. Values of �j (for Bj in parentheses) for 
Lognormally Distributed Assets

ρjM 0.25 0.50 0.75

0.15 0.256 0.508 0.756
(0.248) (0.498) (0.748)

0.25 0.415 0.819 1.213
(0.405) (0.813) (1.224)

0.35 0.561 1.103 1.625
(0.551) (1.108) (1.670)

RM
σM

2

1
γ
--- 28%=

γ 1–
γ

----------- 72%=

S
R rF–

σR
--------------- ,=

R
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yearly standard deviation of 19.9 percent, with T-bills returning 4.1 percent,
giving S = (10.1 – 4.1/19.9) = 0.30. U.S. bonds returned 4.8 percent with a
standard deviation of 8.3 percent, so S = 0.08. Outstanding hedge funds have
S at 3 or higher.

The Sharpe ratio is based on normal distribution mean–variance analysis.
When distributions are nonnormal or have fat tails, the performance rankings
are not accurate.3 Consider Asset A and Asset B, which are identical, except
that Asset A has a 1 percent chance of returning 35 percent and Asset B has
a 1 percent chance of returning 45 percent (see Table 1.7). Clearly, Asset B
is preferred to Asset A by first-degree stochastic dominance, so it will have
higher expected utility for any monotone increasing utility function. Asset A,
however, has a larger Sharpe ratio. 

3Sharpe ratios can also be manipulated to obtain funds under management based on
consistently high Sharpe values using option positions that smooth returns (with option-selling
strategies) and minimize tail effects (with option-buying strategies); see Bernardo and Ledoit
(2000), Goetzmann, Ingersoll, Spiegel, and Welch (2002), and Spurgin (2000). Dugan, Burton,
and Mollenkamp (2002) discussed how such manipulation led to a US$43 million loss for the
Chicago Art Institute because the real risk of selling puts in a Dallas-based hedge fund run by
Conrad Seghers was neither measured nor investigated properly. Put selling can be a
dangerous strategy that can lead to many disasters for those who overbet. Properly controlled,
with a very small number of positions, such strategies can yield good, steady, and not very risky
returns.

Table 1.7. Sharpe Ratios for Two Investment 
Strategies (corrected)

Distribution A Distribution B

Return Probability Return Probability

–25 0.01 –25 0.01
–15 0.04 –15 0.04

–5 0.25 –5 0.25
+5 0.40 +5 0.40

+15 0.25  +15 0.25
+25 0.04  +25 0.04
+35 0.01  +45 0.01

Mean 5.00 5.10
Standard 

deviation
10.00 10.34

Sharpe ratio 0.50 0.49

Source: Based on data from Hodges (1998).
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The shift from 35 to 45 percent for the 1 percent outlier increases the
standard deviation by a larger percentage than the mean, so the Sharpe ratio
falls from 0.500 with Asset A to 0.493 with Asset B. Hodges (1998) introduced
and resolved this paradox by using an exponential utility function u(w) =

 for λ > 0, the Arrow–Pratt risk-aversion index, which is constant for
exponential utility independent of wealth.

When returns are normally or symmetrically distributed, Hodges’ gener-
alized Sharpe ratio measure

where T is the investment horizon in years and U∗ is the optimal expected
utility, reduces to the Sharpe ratio.4 Using this generalized Sharpe ratio
resolves the paradox because GSA = 0.498 < 0.500 = GSB.

One of Hodges’ reasons for choosing exponential utility is that having
exponential utility along with a normal distribution is equivalent to quadratic
utility and mean–variance analysis. He is also able to work with distributions
on the whole real line (such as normal distributions or others that may have
losses), not simply those with positive returns (such as the lognormal). The
risk-aversion parameter is of no significance because the GS measure does
not depend on it. Exponential utility may be less well suited to other applica-
tions, such as when wealth levels are bounded below because of option
positions or other investment strategies.

Because ex post return distributions differ from ex ante returns, no single
formula will provide a fully satisfactory performance measure. This general-
ized Sharpe ratio resolves some paradoxes, as with Assets A and B above.
Exponential utility with constant risk aversion is not a good theoretical utility
function.

The family of negative power utility functions, also called constant relative
risk aversion, which is theoretically more desirable, is

When γ approaches 1, Uγ(w) = log w.
Janacek (1998) showed that if wealth follows standard Brownian motion

with instantaneous mean µ and variance σ2, then the optimal betting fraction
for given γ is

4The derivation is in Appendix A (p. 3), which is available online in the Supplementary Material
area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixA.pdf.

e λw––
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and the optimal expected utility at time T is

Then, solving for µ/σ gives the generalized Sharpe ratio for negative power
or log utility, namely,

for γ > 0, and

for γ = 1,

where the log utility case 2.2 is 2.1 when γ approaches 1. This generalized
Sharpe ratio is a strictly increasing function of utility Uγ , so paradoxes such
as those associated with Asset A and Asset B will be avoided. Nonetheless,
GSγ depends on the risk-aversion parameter γ and the initial wealth, so it does
not have a unique value, as does the Sharpe ratio or Hodges’ generalized
Sharpe ratio. It reduces to the ordinary Sharpe ratio when assets follow
geometric Brownian motion.

Another performance measure, which I call the symmetric downside risk
Sharpe measure, is

where σSD = 

and 

where only are counted in the summation, is the downside risk (Ziemba
and Schwartz 1991). This measure makes the returns symmetric so that a
superior investor, such as Warren Buffett, is not penalized for good perfor-
mance. The idea is to find the downside standard deviation and forget about
the upside variation and then create a symmetric total variation by multiplying
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σD by ; the total variance is twice the downside variance and the standard
deviation is the square root of the variance. If one thinks of a mirror, both sides
are the same.

Mean–Variance in Practice
I close this chapter with some practical tips regarding the use of mean–
variance analysis for real portfolio management. My colleagues at the Frank
Russell Company and I devised these ideas and have used them in portfolio
applications.

Figures 1.3, 1.7, 1.8, and 1.9 provide insight into the practical use of mean–
variance analysis. To minimize the impact of forecast errors and improve
portfolio performance, we should do as follows:
1. Modify the output and put minimum and maximum constraints on asset

weights to prevent the optimization from jumping on estimation errors;
2. Modify the input to adjust for short-term momentum (over the next year)

and long-term (over the past 5–10 years) mean reversion of asset mean
returns. Adjustments that have worked well are (a) to shrink individual
country estimates toward global estimates using James–Stein, Bayes–
Stein, or truncated estimators (see MacLean, Foster, and Ziemba 2002;
Hensel and Turner 1998; and Jorion 1985) and (b) to assume that assets
that are similar should have similar mean returns over long-term horizons.
The latter comes from Turner and Hensel (1993), who found no statistical
differences in the returns of major countries in the 1980s; and

3. Use transaction costs for a more accurate representation of reality. Mov-
ing to or staying at a near-optimal portfolio may be preferable to incurring
the transaction costs of moving to the optimal portfolio. High-turnover
strategies are justified only by dramatically different forecasts. There will
be a large number of near-optimal portfolios. Portfolios with similar risk
and return characteristics can differ in composition.
Using data from 1980–1990 on stocks (S&P 500 Index), bonds (Lehman

Brothers Long-Term Government Bond Index), and cash (Ibbotson Associ-
ates’ Index), Turner and Hensel obtained the results shown in Table 1.8 for
performance over time of constrained and unconstrained optimal portfolios.
They used 60-month rolling windows to estimate inputs and compute optimal
portfolios. The new portfolio was formed and held for the 61st month. Then,
they rolled the data forward one month, dropping the earliest month and
adding the latest month, and computed portfolio return for each month for an
out-of-sample test. The results indicate that constrained portfolios dominated
unconstrained portfolios with higher mean returns, lower standard deviation

2
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risk, and lower turnover. The fixed-mix 60/40 stock/bond portfolio dominated
in this period of low stock returns. 

Table 1.9 depicts six near-optimal portfolios reported in Chopra (1993).
Although they have quite different weights, they all have a risk tolerance of
50 (risk-aversion index of 4), which is typical for pension plans. 

As an example of the equal future parameter estimates for similar asset
classes, consider three levels of shrinkage:
1) assume that the mean returns for all stocks (or stock classes or countries)

are equal and the same for bonds;
2) as in 1 but with all stock–stock and bond–bond correlations equal to the

within group averages; and
3) equal expected returns, correlations, and variances within asset classes;

thus, stock is stock, bonds are bonds, and cash is cash, independent of
the country. 

Table 1.8. Constrained and Unconstrained Portfolio Performance, 1985–90

Portfolio Type
Mean 
Return

Standard 
Deviation

Minimum 
Return

Maximum 
Return

Average 
Turnover

Constrained
10 percent  1.21%  3.78%  –13.2% 9.5% 2.2%
20 percent 1.14 3.86 –16.0 9.9 4.3
30 percent 1.08 3.99 –18.8 10.0 6.2

Unconstrained 0.97 4.18 –21.5 10.0 9.6
60/40 Benchmark 1.29 3.76 –10.4 9.2

Source: Based on data from Turner and Hensel.

Table 1.9. Six Near-Optimal Portfolios, 1985–90

Weight 

Portfolio No. Stocks Bonds Cash Return Risk Turnover 

1 9%  83%  8%  1.03%  3.48% 60%
2 73 2  25 1.17 3.52 21
3 73 0  27 1.16 3.50 23
4 9 84  7 1.03 3.52 61
5 27 72  1 1.10 3.53 49
6 61 0  39 1.09 2.92 23
Base 58 23  19 1.14 3.21 —

Source: Based on data from Chopra.
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In this experiment, Chopra used 16 international asset classes (six equi-
ties, five bonds, and five cash) during the 1980–90 period. He used 60-month
rolling windows to estimate parameters and make subsequent allocations. The
tests are out of sample for 1985–1990, with a risk tolerance of 50, and the
benchmark portfolio is the mean–variance optimal portfolio based on
unadjusted historical inputs. As Table 1.10 shows, the portfolios with
adjusted inputs dominated portfolios based on historical inputs in terms of
higher mean returns and lower standard deviations. The passive 60/40 fixed-
mix portfolio also dominated the active portfolio benchmark. 

The conclusions are that despite its shortcomings, mean–variance analy-
sis is still widely used for asset-only portfolio management, when options are
not part of the asset mix. Simple techniques, such as using appropriate
constraints on asset weights and/or adjusting the inputs, can improve the
performance of mean–variance portfolios. Experience, judgment, and past
behavior of asset classes determine the appropriate constraints.

The results in this chapter will be useful in the models developed in
Chapters 3–6. In Chapter 2, I will compare fixed-mix and multiperiod stochas-
tic programming models with scenarios. In addition to handling scenarios, fat
tails, and more realistic constraints, the stochastic programming approach can
handle uncertain parameters, as opposed to fixed parameters, in mean–
variance models. 

Table 1.10. Portfolio with Different Inputs, 1980–90 

Type of Input
Monthly Mean 

Return
Standard 
Deviation

Minimum 
Return

Maximum 
Return Turnover

Active benchmark 0.82% 5.93% –20.6% 14.5% 10.1%
Equal expected returns 1.04 4.46 –23.3 9.1 9.3
Equal returns and correlations 1.05 4.35 –23.3 9.3 9.3
Stock/bond/cash 1.01 4.25 –24.5 8.3 8.1
Passive benchmark 0.99 3.05 –12.3 7.4 1.4



©2003, The Research Foundation of AIMR™ 23

2. The Stochastic Programming 
Approach to Asset/Liability 
Management

A banker is a fellow who lends you his umbrella when the sun is
shining and wants it back the minute it begins to rain.

Mark Twain

What investors want is true diversification and protection from extreme
scenarios when it is needed and to be able to plan in advance what they need
to do in such situations.

Discrete Scenarios/Fat Tails
The basic theory of modern finance uses normality as the key assumption in
static or discrete-time models and lognormality in continuous-time models.

Sums of random variables converge to normal distributions by the central
limit theorem, and sums of normal distributions are normal. Similarly, prod-
ucts of lognormal random variables are lognormal. Hence, these two assump-
tions are versions of a similar view of the world. These assumptions allow for
a clean, elegant theory that is useful as a benchmark and to derive qualitative
results. Real asset prices, however, have much fatter tails, especially for short
intervals.

Table 2.1 provides insight into how market participants who buy and sell
put and call options view the probability distribution of returns for the S&P
500 Index. The column of standard deviations corresponds to returns below
the mean, and the standardized lognormal distribution values reflect this
distribution. The next three columns represent implied probability distribu-
tions from bid–ask prices of traded put and call options on the S&P 500 during
one period before and two periods after the October 1987 stock market crash.
These probabilities are not the true chances of these events occurring (which
is unknown) but, rather, reflect the probabilities that the options market prices
indicate. Before the crash, the 1–3 standard deviation tail event probabilities
from the options were about the same as those from the lognormal model
underlying the Black–Scholes options’ fair prices. The implied probabilities
were 10 to 100 or more times fatter for 4–6 standard deviation moves. This
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finding is consistent with the behavioral economics finding that small proba-
bilities are overestimated (see Kahneman and Tversky 1979). After the 1987
crash, the effect was even stronger because investors were willing to pay much
more for deep out-of-the-money puts for portfolio insurance or other types of
protection. The last two columns show tail probabilities 10 to 100 times fatter
than the precrash levels.

An interesting question is: What is the return, on average, to investors
who buy puts and calls at different strike prices on the S&P 500? Tompkins,
Ziemba, and Hodges (2003) have studied this question. Ali (1979), Snyder
(1978) and others going back to the 1940s have documented a favorite long-
shot bias in racetrack betting. The data show that bets on high-probability,
low-payoff gambles have high expected value and those on low-probability,
high-payoff gambles have low expected value. For example, a 1–10 horse,
having more than a 90 percent chance of winning, has an expected value of
about US$1.03 (for every US$1 bet), whereas a 100–1 horse has an expected
value of only about 14 cents for each dollar invested. Hence, for this bet, the
fair odds are about 700–1. The favorite long-shot bias exists in other sports-
betting markets. (See Hausch, Lo, and Ziemba 1994, and for a survey of results
and references, see Hausch and Ziemba forthcoming 2004.)

Ziemba and Hausch (1986) studied the expected return per dollar bet
versus the odds levels for more than 300,000 horse races. The North American
public underbets favorites and overbets long shots. This bias has appeared in

Table 2.1. Cumulative Probabilities of S&P 500 Returns Computed from 
Daily Bid–Ask Prices of Puts and Calls

Standard 
Deviation Standard Lognormal Distribution

Implied Probability Distributions

4/86–10/87 11/87–12/88 1/91–12/91

10 0.000000000000000000000000078 0.0000083 0.0000018
9 0.00000000000000000011 0.000021 0.0000056
8 0.00000000000000063 0.000049 0.000017
7 0.0000000000013 0.00011 0.000049
6 0.000000001 0.00000016 0.00026 0.00015
5 0.00000029 0.000014 0.00076 0.00055
4 0.000032 0.00025 0.0029 0.0029
3 0.0013 0.0014 0.011 0.015
2 0.023 0.026 0.045 0.051
1 0.16 0.19 0.16 0.15
0 0.50 0.52 0.47 0.45

Source: Based on data from Jackwerth and Rubinstein (1996).
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many years and in all sizes of racetrack betting pools.1 The expected return
varies with the odds level (see Figure 2.1). The expected return is positive
for bets on extreme favorites, but for all other bets, the expected return is
negative. The favorite long-shot bias is monotone across odds, and the drop
in expected value is very large for the lower-probability horses. The effect of
differing track take—transaction costs—can be seen in the California versus
New York lines, which show expected returns versus odds or probabilities for
pari-mutuel pooled bets; for fixed-odds bookie wagers, the result is about the
same.2 The bookies create odds to clear the market and equilibrate bettor
demand knowing bettor biases. 

Thaler and Ziemba (1988) suggested some reasons for this bias; bettors,
for example, might overestimate the chances that long-shot bets will win, or,
as shown in Kahneman and Tversky, bettors might overweight small proba-
bilities of winning when the potential payout is large (in calculating their
utility). Bettors may also derive utility simply from the hope associated with
holding a ticket on a long shot; not only is it more fun to pick a long shot to
win over a favorite, it has more bragging rights. I have used this idea in
consulting on the design of lotteries for the British Columbia Lottery Corpo-
ration, Singapore Pools, and British Lotto. Transaction costs related to the
time cost of cashing tickets also play a role because bettors prefer collecting
large payoffs rather than small payoffs. Also, some bettors may choose horses
for irrational reasons, such as the name of the horse or its number. This
behavior occurs in Hong Kong and the Kentucky Derby (see Ziemba and
Hausch 1987) and tends to flatten the favorite long-shot bias curve.

Are the buyers of puts and calls on the S&P 500 futures similar in behavior
to the racetrack bettors? The demand for options comes from hedging and
speculative investing. The primary use of put options is for hedging. Some
demand also exists for speculative investing. The hedging demand for puts
implies that the expected return is negative, and more so for deep out-of-the-
money options. The main hedging demand for call options is for those selling
them in covered-call strategies, which depresses their price. If this strategy
were the sole mechanism for dealing in call options, it should result in an
increase in the expected return for out-of-the-money call options, which
Tompkins, Ziemba, and Hodges did not observe. The expected loss from the
purchase of deep out-of-the-money call options more likely results from
speculative activity similar to that for the favorite long-shot bias.

1While the horseracing favorite long-shot bias is quite stable and pervasive, exceptions exist
in Asian racetrack markets (see Busche and Hall 1988 and Busche 1994, reprinted in Hausch,
Lo, and Ziemba).
2Figgis (1974), Lord Rothschild (1978), and Ziemba and Hausch (1986) provide British data.
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Tompkins, Ziemba, and Hodges collected a large sample of independent
events, namely, the prices of the put and call options on S&P 500 futures from
the Chicago Mercantile Exchange from March 1985 to September 2002.
Table 2.2 and Figure 2.2 show their results for three-month options. They
also investigated the Financial Times Stock Exchange (FTSE) 100 and one-
month options for the S&P 500 and FTSE. With some minor changes, the
results are broadly similar to those of the three-month options. A comparison
of the racing and S&P 500 results shows that the probabilities equal the
reciprocal of the odds +1.  

Figure 2.1. Effective Track Payback Less 
Breakage for Various Odds Levels 
in California and New York for 
300,000+ Races over Various 
Years and Tracks

Note: Breakage is the rounding down of payoffs to round numbers
(e.g., 6.87 to 6.80).

Source: Based on data from Ziemba and Hausch (1986).
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In Table 2.2, the first column is the odds of finishing in the money, as
measured by N(d2) or N(–d2) from the Black–Scholes (1973) formula. The
next column is the number of options that fall into various 5 percent bands.
The average payoff for a US$1 investment in that option band appears next,
followed by the standard deviation of the option payoffs in that band. The final
column is a one-sided t-test of the hypothesis that the mean return is equal to
the initial investment of US$1.

Table 2.2. Expected Return per $1 Bet vs. Odds Levels: Three-Month 
Options on S&P 500 Futures, March 1985–September 2002

Call Options Put Options

Odds
(%)

# 
Obs.

Average 
Payoff

Std. Dev. 
of Payoff

t-Test 
vs. $1

Odds
(%)

# 
Obs.

Average 
Payoff

Std. Dev.
of Payoff

t-Test 
vs. $1

0.95–1.00  47 1.0010  0.3204 0.02 0.95–1.00 37 0.8998 0.4493  –1.35*

0.90–0.95  60 1.0561  0.4605 0.95 0.90–0.95 44 0.8662 0.5872  –1.50*

0.85–0.90  66 1.1231  0.5704  1.76** 0.85–0.90 50 0.8426 0.7265  –1.53*

0.80–0.85  67 1.1407  0.6990  1.66** 0.80–0.85 54 0.7937 0.8120  –1.86**

0.75–0.80  63 1.0938  0.5953 1.25 0.75–0.80 53 0.8137 0.8950  –1.51*

0.70–0.75  64 1.1366  0.7732 1.41* 0.70–0.75 51 0.7879 0.9979  –1.51*

0.65–0.70  62 1.1461  0.8648 1.33* 0.65–0.70 53 0.7702 0.9648  –1.73**

0.60–0.65  59 1.1311  0.9972 1.01 0.60–0.65 54 0.6215 1.0258  –2.70***

0.55–0.60  58 1.1727  1.1154 1.18 0.55–0.60 50 0.8225 1.2458  –1.01
0.50–0.55  54 0.9890  1.0410 –0.08 0.50–0.55 56 0.5807 1.1377  –2.76***

0.45–0.50  56 1.1365  1.3925 0.73 0.45–0.50 51 0.7344 1.4487  –1.31*

0.40–0.45  58 1.2063  1.6012 0.98 0.40–0.45 56 0.6785 1.5367  –1.57*

0.35–0.40  51 0.9770  1.7015 –0.10 0.35–0.40 56 0.4744 1.2383  –3.19***

0.30–0.35  54 0.9559  1.6041 –0.20 0.30–0.35 62 0.6257 1.6791  –1.76**

0.25–0.30  59 1.2923  2.7539 0.81 0.25–0.30 64 0.6316 1.8231  –1.62*

0.20–0.25  53 1.1261  2.5378 0.36 0.20–0.25 65 0.6426 1.9854  –1.45*

0.15–0.20  55 0.8651  2.0742 –0.48 0.15–0.20 64 0.6696 2.2441  –1.18
0.10–0.15  56 1.2262  3.6982 0.46 0.10–0.15 66 0.6602 2.6359  –1.05
0.05–0.10  53 1.5085  5.3370 0.69 0.05–0.10 66 0.6432 3.4256  –0.85
0.00–0.05  39 0.0123  0.1345  –44.89*** 0.00–0.05 57 0.7525 5.6025  –0.33
All options  69 1.1935  2.4124 0.67 All options 69 0.6212 2.5247  –1.25

Note: When the hypothesis is rejected at a 90 percent level or above, the t-statistic appears in bold. # Obs.
= number of observations; std. dev. = standard deviation.

*Significant at the 10 percent level.
**Significant at the 5 percent level.

***Significant at the 1 percent level.

Source: Based on data from Tompkins, Ziemba, and Hodges.
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For the three-month call options on S&P 500 futures, there is a favorite
long-shot bias, as in horseracing. The in-the-money call options return more
than the US$1 investment, on average. The at-the-money and out-of-the-money
calls return about the US$1 investment. At the lowest level of 0–5 percent, a
t-statistic could not be estimated because no call option in this range paid off
during the March 1985–September 2002 period. This result confirms the
hypothesis of Figlewski (1989) that investors see out-of-the-money call options
in the same way they see lottery tickets; they overpay for deep out-of-the-
money call options on S&P 500 futures.

No put options (on average) pay more than the US$1 initial investment.
The average payoff decreases as the probabilities decrease, which is analogous
to the horseracing favorite long-shot bias. This result is consistent with the
contention of Jackwerth and Rubinstein (1996) and Dumas, Fleming, and
Whaley (1998) that investors view put options as insurance policies and are
willing to accept an expected loss to protect their stockholdings.

Figure 2.2. Expected Return per $1 Bet vs. Odds Levels: Three-Month Calls 
and Puts on S&P 500 Futures, March 1985–September 2002

Source: Based on data from Tompkins, Ziemba, and Hodges.
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Extreme Scenario Examples
Here is a short little quiz. The damage from earthquakes in California from
1971 to 1993 is shown in Table 2.3 and Figure 2.3. In these data, some years
have zero damage, some have 5, and so on. The highest loss ratio is 129. The
question is: How much earthquake damage occurred in California in the next
year? Can we forecast the 1994 value? When I present this question in lectures,
most people answer 10 or less. The 1989 peak of 129 and the 47 in 1990 are
not considered in most observers’ calculations. They look like outliers
because the main probability mass is from 1972–1986, when the maximum
damage was less than 10.  

The answer for 1994 is 2,272.7. And the peak shown in Panel A of Figure
2.3 that was so high became relatively small in the next year. Hence, as shown
in Panel B of Figure 2.3, extreme events can occur that are beyond the range
of all previous events. There may have been earthquakes in California 400
years ago that were bigger than Northridge’s (greater Los Angeles) in 1994,
but few people and buildings were around then and the earthquakes could not
destroy much. In Figure 2.3, the years 1989 and 1990 appear as similar to the
1972–86 years, and all the 1971–93 years appear to have similar values. What
we have is an outcome way beyond the range of all past data. Thirty-two
insurance companies in the United States declared bankruptcy in 1998, and
2001 (post-9/11), 2002, and 2003 (through May) were also difficult years. 

The number of such extreme events is increasing. Below is a list of events
that occurred in 1998 that were beyond the range of the previous data. These
rare, beyond-previous-data events are not so rare. Highly levered speculative
investing has occurred for hundreds of years. But recently, more and more

Table 2.3. Earthquake Loss Ratios per Year

Year Loss Ratio Year Loss Ratio Year Loss Ratio

1971  17.4 1979 2.2 1987 22.8
1972 0.0 1980 9.2 1988 11.5
1973 0.6 1981 0.9 1989  129.0
1974 3.4 1982 0.0 1990 47.0
1975 0.0 1983 2.9 1991 17.2
1976 0.0 1984 5.0 1992 3.2
1977 0.7 1985 1.3 1993 3.2
1978 1.5 1986 9.3 1994 —

Source: Based on data from Embrechts, Resnick, and Samovod-
mitsky (1998).
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Figure 2.3. Earthquake Losses per Year in 
California
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complex derivative instruments have become available, helping to cause the
growth of these rare events. The New York risk management consultants at
Capital Markets Risk have a list of “first-time” market events—events that
conventional (not stochastic programming) risk-control models cannot fore-
see because the events have occurrences way beyond the range of previous
historical occurrences. Normally, 4 or 5 such events occur each year; 77
occurred in 1998! Here are 17 of them:
• 18 May: Indonesia’s rupiah collapsed to 17,000 to the U.S. dollar.
• 17 Aug: Russia defaulted on ruble-denominated debt; the ruble collapsed

by two-thirds.
• 31 Aug: The DJIA plunged 512.61 points or 6.37 percent (on –1 day, the

strongest trading day of the month).
• Jul/Sep: U.S. banks suffered the worst derivatives losses ever—US$445

million.
• 24 Sep: Hedge fund Long-Term Capital Management was bailed out with

US$3.6 billion.
• 27 Sep: Japan Leasing Association filed for bankruptcy with US$17.9

billion in liabilities, the biggest financial failure since World War II.
• 5 Oct: 30-year U.S. Treasury yields hit a record 4.74 percent low.
• 7 Oct: The U.S. dollar plunged 7.8 percent against the yen, the largest

one-day loss in 12 years.
• 8 Oct: China’s yuan soared to an all-time high of 8.2777 to the U.S. dollar.
• 9 Oct: Japan’s Nikkei Index sank to 11,542, the lowest since 1984.
• 13 Oct: London’s FTSE 100 soared a record 214.2 points.
• 2 Nov: The U.S. savings rate sank to 0.2 percent.
• 5 Nov: Some leading western banks cut yen deposit rates to negative

values.
• 11 Nov: Shares of theglobe.com skyrocketed more than tenfold in the

first day of trading.
• 30 Nov: U.S. mortgage rates fell to 6.64 percent, the lowest since 1967.
• 3 Dec: Eleven European countries cut interest rates simultaneously.
• 10 Dec: World oil prices slid below US$10 a barrel, the lowest since 1986.

A Bond–Stock Return Crash Danger Model
In May 1988, I was invited by Yamaichi Securities to interview to be the first
Yamaichi visiting professor of finance at the University of Tsukuba, a Japanese
national university. Yamaichi wished to try to establish the study of finance,
especially investments, in Japanese universities, which was not generally
taught. They established a five-year program with five such visiting professors
in succession. The teaching at the university (I taught investments, security
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market anomalies, futures, and options) was supplemented with a two-day-a-
week consulting position in Tokyo, around 60 kilometers southwest of Tsukuba,
at the Yamaichi Research Institute associated with Yamaichi Securities, then
the fourth largest securities firm in Japan and one of the 10 largest in the world.

In my interview, I asked whether I could study market imperfections
(anomalies) and stock-market crashes in two study groups with some of the
young Yamaichi Research Institute employees who also came up to Tsukuba
for my classes. My proposal was accepted, and each study group (with about
10 eager young students in each group) proceeded with my lectures on the
U.S. experience and their helping me to investigate the Japanese situation.
We focused on the postwar 1948–88 period.3 We had a good idea right away
that the Japanese policies that had led to astronomically high land and stock
prices and massive trade surpluses would lead to disaster and Japan would
eventually lose most of the money it had received from selling cars, stereos,
and the like. We made a list of prestigious buildings that the Japanese had
overpaid for in the 1987–89 era; even at the height of Japan’s economic power
in 1989, only 3 percent of Japanese assets were invested abroad (see Ziemba
and Schwartz 1992).

My study groups started in August 1988 and ended a year later. I was
asked to remain as a consultant for the fall of 1988 to complete a factor model,
which is discussed in Schwartz and Ziemba (2000) and was originally pre-
sented at a Berkeley Program in Finance meeting in Santa Barbara in Septem-
ber 1990. The factor model used anomaly ideas, such as mean reversion,
momentum, and value, embedded in 30 variables to separate and rank stocks
by their future mean performance from best to worst for all the stocks on the
Tokyo Stock Exchange (TSE) first section, which was about 86 percent of the
total capitalization. The model performed well out of sample and hence was
useful for hedge fund long–short trading as well as long-only investing. The
hedge fund Buchanan Partners in London discovered the model and hired me
to help them in their warrant trading, which was largely long underpriced
warrants and short overpriced stocks. The firm’s trading was successful, and
the model, which was estimated using data during a stock market rise, still
worked when the decline came because variables, such as earnings, were the
key drivers of the returns.4

In the study group, I came up with a simple model in 1988 with only a
single variable—the difference between stock and bond rates of return. The
idea was that stocks and bonds compete for investment dollars, and when

3 Much of what I learned appears in Ziemba and Schwartz (1991, 1992) and Stone and
Ziemba (1993).
4An update of Japanese anomalies to 1994 appears in Comolli and Ziemba (2000).
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interest rates are low, stocks are favored, and when interest rates are high,
bonds are favored. The main thing that I wished to focus on was that when
the measure—the difference between these two rates, the long bond yield
minus the earnings yield (the reciprocal of the P/E ratio)—was very large,
then there was a high chance of a stock market crash. A crash is a 10 percent
fall in the index within one year. The model explains the October 1987 crash.
That application is how this idea came to me. Table 2.4 shows this relation-
ship for the U.S. market. The bold numbers in Table 2.4 indicate the existence
of extreme danger in the stock market; 30-year government bond yields were
much higher than usual stock market yields, as measured by the reciprocal
of the last year’s reported P/E. These high interest rates invariably lead to a
stock market crash. Here, the danger indicator moved across a statistical 95
percent confidence line in April. The market ignored this signal and eventually
crashed in October 1987. Most investors ignored a similar signal in the S&P
500 in 1999, and then a crash began in August 2000 and a weak stock market
ensued in 2001–2002, which is discussed below.5

In 1988–1989, I asked one of my colleagues in the study group, Sugheri
Iishi, to check this measure for Japan, as shown in Figure 2.4 from 1980 to
mid-1990. Twenty 10+ percent crashes occurred during the 1949–89 period.
We found that whenever this measure was in the danger zone (that is, outside
a 95 percent confidence band), within one year, a crash of 10 percent or more
from the current level would occur. Not all crashes had the measure in the
danger zone, but whenever it was, there was a crash with no misses.

So, the measure was successful at predicting future crashes—but there
was no precise way to know when they would occur or how deep they would
be. Long-run mean reversion, however, suggests that the longer the bull run
and the more overpriced the measure, the longer and deeper the decline.
Thus, one can use the measure as part of an econometric system to estimate
future scenarios.

Each time the spread exceeded the 4.23 percent cutoff (which was higher
than 95 percent confidence), a crash would occur. The measure was way in
the danger zone in late 1989, and the decline (the 21st crash) began on the
first trading day of 1990, with the Nikkei Stock Average (NSA) peaking at
38,916 (see Figure 2.4). Unfortunately, Yamaichi’s top management did not
listen to Iishi when I sent him up to explain our results in Japanese; there was
much greater danger in the market than they thought in 1989. By 1995,
Yamaichi Securities had declared bankruptcy and ceased to exist.  

5 For a study of this measure from 1970 to 2003 in five major markets, see Berge and
Ziemba (2003).
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Table 2.4. S&P 500, P/E, Government Bond Yield, 
and the Yield Premium over Stocks, 
January 1984–August 1988

Month S&P 500 P/E

30-Year 
Govt. Bond

(a)
1/(P/E)

(b) (a) – (b)

1986
Jan  208.19  14.63 9.32  6.84% 2.48
Feb  219.37  15.67 8.28 6.38 1.90
Mar  232.33  16.50 7.59 6.06 1.53
Apr  237.98  16.27 7.58 6.15 1.43
May  238.46  17.03 7.76 5.87 1.89
Jun  245.30  17.32 7.27 5.77 1.50
Jul  240.18  16.31 7.42 6.13 1.29
Aug  245.00  17.47 7.26 5.72 1.54
Sep  238.27  15.98 7.64 6.26 1.38
Oct  237.36  16.85 7.61 5.93 1.68
Nov  245.09  16.99 7.40 5.89 1.51
Dec  248.60  16.72 7.33 5.98 1.35

1987
Jan  264.51  15.42 7.47 6.49 0.98
Feb  280.93  15.98 7.46 6.26 1.20
Mar  292.47  16.41 7.65 6.09 1.56
Apr  289.32  16.22 9.56 6.17 3.39

May  289.12  16.32 8.63 6.13 2.50

Jun  301.38  17.10 8.40 5.85 2.55

Jul  310.09  17.92 8.89 5.58 3.31

Aug  329.36  18.55 9.17 5.39 3.78

Sep  318.66  18.10 9.66 5.52 4.14

Oct  280.16  14.16 9.03 7.06 1.97
Nov  245.01  13.78 8.90 7.26 1.64
Dec  240.96  13.55 9.10 7.38 1.72

1988
Jan  250.48  12.81 8.40 7.81 0.59
Feb  258.10  13.02 8.33 7.68 0.65
Mar  265.74  13.42 8.74 7.45 1.29
Apr  262.61  13.24 9.10 7.55 1.55
May  256.20  12.92 9.24 7.74 1.50
Jun  270.68  13.65 8.85 7.33 1.52
Jul  269.44  13.59 9.18 7.36 1.82
Aug  263.73  13.30 9.30 7.52 1.78

Source: Based on data from Ziemba and Schwartz (1991).
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The model also indicates that the valuation was still high as of 29 May
1990, at 4.88 percent. Not much later, the 22nd crash began. Interestingly, at
the bottom of the 22nd crash on 1 October 1990, the NSA was at 20,222, which
was almost exactly the mean. Meanwhile, the same calculation on 29 May 1990
for the S&P 500, as shown in Figure 2.5, shows that the U.S. market was
cheap—that is, below the mean—following the September 1987 peak of 4.42

Figure 2.4. Bond–Stock Yield Differential Model for the Nikkei Stock 
Average, 1980–90

Note: Data through 29 May 1990. Shaded lines in Panel B denote upper limit, mean, and lower limit.
Source: Based on data from Ziemba and Schwartz (1991).
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percent. The 29 May 1990 value of 1.11 percent, however, was slightly above
the mean level and the highest since the late fall of 1987. 

Japan has had weak stock and land markets since the beginning of 1990,
but the future looks better in May 2003. This situation has been caused by
many factors, political as well as economic. But rising interest rates for eight

Figure 2.5. Bond–Stock Yield Differential Model for the S&P 500, 1980–90

Note: Data through 29 May 1990. Shaded lines in Panel B denote upper limit, mean, and lower limit.

Source: Based on data from Ziemba and Schwartz (1991).
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full months leading up to August 1990 (see Figure 2.6) were a major factor.
The extreme tightening of an overlevered economy was too much. Cheap and
easily available money, which caused the big run-up in asset prices in the
1980s, turned into expensive and unavailable money in the 1990s.  

The 2002–03 Crash in the S&P 500
The S&P 500 was at 470.42 at the end of January 1995. It was at about 750 in
late 1996, at the time of Alan Greenspan’s famous speech on irrational exuber-
ance in the U.S. stock market. It peaked at 1,527.46 on 24 March 2000, fell to
1,356.56 on 4 April 2000, and then rose close to its peak, reaching 1,520 on 1
September 2000, the Friday before Labor Day. The bond–stock return crash
danger model was in the danger zone for much of 1999, and it got deeper in
danger as the year progressed and the S&P 500 rose from 1,229.23 at the end
of December 1998 to 1,469.25 at the end of December 1999. Meanwhile, the

Figure 2.6. Short-Term Interest Rates in Japan, June 1984–June 1995
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P/E ratio was flat, increasing only from 32.34 to 33.29, and long-bond yields
rose from 5.47 to 6.69 percent.6

Table 2.5 and Figure 2.7 detail this progression from January 1995 to
December 1999. The spread reached 3 percent, which was well in the 95
percent confidence danger band in April, and rose to 3.69 percent in Decem-
ber 1999. The stage was set for a crash, which did occur, as shown in Panel
A of Figure 2.8.7 Meanwhile, Hong Kong’s Hang Seng Index, as shown in
Figure 2.9, was also in the danger zone. The model for Japan was hard to
interpret because of high P/E ratios and interest rates that were close to zero.
One had a close to 0–0 situation, so the model did not seem to apply to Japan
in 1999. With return differences close to zero, the model was not in the danger
zone (see Figure 2.10). 

We witnessed a dramatic fall in the S&P 500 from its peak of 1,527 in
March 2000 to its September 2000 low of 1,085. Further declines occurred in
2001 and 2002 (see Panel A and Panel B of Figure 2.8). The lowest close as of
May 2003 was 768.63, on 10 October 2002. This decline was similar to previous
crashes. There were other signals, as noted by Bagnell (1999):

History shows that a period of shrinking breadth is usually followed by a sharp
decline in stock values of the small group of leaders. Then the broader market takes
a more modest tumble. (Business, p. 1)

Figure 2.11 shows the rise in Canada’s Toronto Stock Exchange
(TSE300) during 1999 and 2000 and the subsequent fall in 2001 and 2002.
During 1999, the TSE300 gained 31 percent, but the gain was only 3 percent
without three very high P/E, large-cap stocks. The largest gainer in market
value, Nortel Networks, peaked at US$120 and was at about US$1.70 at the
end of 2002 and US$3 at the end of May 2003.8

The concentration of stock market gains into very few stocks, with
momentum and size being the key variables predicting performance, had
increased before 1997 in Europe and North America. Table 2.6 shows that
in 1998, the largest-cap stocks had the highest return in North America and
Europe, but small-cap stocks outperformed in Asia and Japan. The situation
was similar in 1995–1999, particularly in 1998 and 1999. 

6The S&P 500 fell to 1,085 on 17 September 2000, prior to 9/11. Panel B of Figure 2.8 shows
the decline following 9/11.
7Long-term mean reversion indicates that the 1996–2000 S&P 500 values were too high
relative to 1991–1995, and a linear interpolation of the latter period gives a value close to that
in May 2003.
8This occurrence is shown in Figure 1 in Appendix B (p. 5), which is available online in the
Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixB.pdf.
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Table 2.5. Bond–Stock Yield Differential Model for the S&P 500, 1995–99

Year/Month S&P 500 
P/E
(a)

30-Yr. Govt. Bond
(b)

Return on Stocks
(c = 1/a)

Crash Signal
(b – c)

1995
Jan  470.42 17.10  8.02%  5.85% 2.17
Feb  487.39 17.75 7.81 5.63 2.18
Mar  500.71 16.42 7.68 6.09 1.59
Apr  514.71 16.73 7.48 5.98 1.50
May  533.40 16.39 7.29 6.10 1.19
Jun  544.75 16.68 6.66 6.00 0.66
Jul  562.06 17.23 6.90 5.80 1.10
Aug  561.88 16.20 7.00 6.17 0.83
Sep  584.41 16.88 6.74 5.92 0.82
Oct  581.50 16.92 6.55 5.91 0.64
Nov  605.37 17.29 6.36 5.78 0.58
Dec  615.93 17.47 6.25 5.72 0.53

1996
Jan  636.02 18.09  6.18%  5.53% 0.65
Feb  640.43 18.86 6.46 5.30 1.16
Mar  645.50 19.09 6.82 5.24 1.58
Apr  654.17 19.15 7.07 5.22 1.85
May  669.12 19.62 7.21 5.10 2.11
Jun  670.63 19.52 7.30 5.12 2.18
Jul  639.96 18.80 7.23 5.32 1.91
Aug  651.99 19.08 7.17 5.24 1.93
Sep  687.31 19.65 7.26 5.09 2.17
Oct  705.27 20.08 6.95 4.98 1.97
Nov  757.02 20.92 6.79 4.78 2.01
Dec  740.74 20.86 6.73 4.79 1.94

1997
Jan  786.16 21.46  6.95%  4.66% 2.29
Feb  790.82 20.51 6.85 4.88 1.97
Mar  757.12 20.45 7.11 4.89 2.22
Apr  801.34 20.69 7.23 4.83 2.40
May  848.28 21.25 7.08 4.71 2.37
Jun  885.14 22.09 6.93 4.53 2.40
Jul  954.29 23.67 6.78 4.22 2.56
Aug  899.47 22.53 6.71 4.44 2.27
Sep  947.28 23.29 6.70 4.29 2.41
Oct  914.62 22.67 6.46 4.41 2.05
Nov  955.40 23.45 6.27 4.26 2.01
Dec  970.43 23.88 6.15 4.19 1.96
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The influential book Irrational Exuberance by Robert Shiller (2000), a
behavioral finance economist at Yale University, hit the market in April 2000.
It was a monumental success in market timing, with an especially bearish view
that is consistent with Figure 2.7 and Table 2.5. Shiller’s data, as shown in
Figure 2.12, document very high P/Es in relation to earnings in 2000, with
most of the rise occurring in the 1995–2000 period, which is similar to the data
shown in Table 2.5 for the S&P 500. Clearly, in 1996–2000, the stock market
was overpriced relative to historical norms. 

Table 2.5. Bond–Stock Yield Differential Model for the S&P 500, 1995–99 
(continued)

Year/Month S&P 500 
P/E
(a)

30-Yr. Govt. Bond
(b)

Return on Stocks
(c = 1/a)

Crash Signal
(b – c)

1998
Jan  980.28 24.05  6.01%  4.16% 1.85
Feb  1,049.34 25.09 6.00 3.99 2.01
Mar  1,101.75 27.71 6.11 3.61 2.50
Apr  1,111.75 27.56 6.03 3.63 2.40
May  1,090.82 27.62 6.10 3.62 2.48
Jun  1,133.84 28.65 5.89 3.49 2.40
Jul  1,120.67 28.46 5.83 3.51 2.32
Aug 97.28 27.42 5.74 3.65 2.09
Sep  1,017.01 26.10 5.47 3.83 1.64
Oct  1,098.67 27.41 5.42 3.65 1.77
Nov  1,163.63 31.15 5.54 3.21 2.33
Dec  1,229.23 32.34 5.47 3.09 2.38

1999
Jan  1,279.64 32.64  5.49%  3.06% 2.43
Feb  1,238.33 32.91 5.66 3.04 2.62
Mar  1,286.37 34.11 5.87 2.93 2.94
Apr  1,335.18 35.82 5.82 2.79 3.03
May  1,301.84 34.60 6.08 2.89 3.19
Jun  1,372.71 35.77 6.36 2.80 3.56
Jul  1,328.72 35.58 6.34 2.81 3.53
Aug  1,320.41 36.00 6.35 2.78 3.57
Sep  1,282.70 30.92 6.50 3.23 3.27
Oct  1,362.92 31.61 6.66 3.16 3.50
Nov  1,388.91 32.24 6.48 3.10 3.38
Dec  1,469.25 33.29 6.69 3.00 3.69

Source: Based on data from Berge and Ziemba (2003).
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Shiller had been predicting a crash since 1996, as reported by Campbell
and Shiller (1998). He has remained defiantly bearish, as in Campbell and
Shiller (2001), which is an update of the 1998 paper, and in recent interviews
(up to May 2003). His case has been helped by three largely unpredictable
bad scenarios: the 9/11 attacks on the United States, the June/July 2002 crises
of accounting confidence in the United States, and the 2003 U.S./British war
with Iraq. One could argue that the second bad scenario was a direct

Figure 2.7. Bond–Stock Yield Differential Model for the S&P 500, 
January 1990–December 1999 

Note: Shaded lines in Panel B denote upper and lower limit.

Source: Based on data from Berge and Ziemba (2003).
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Figure 2.8. The S&P 500

Source: Based on data from Bloomberg.
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consequence of the 1996–99 bubble period, as did the Economist (2002) and
Warren Buffett and Peter Drucker in interviews in 2002. The latter two sages
saw this scenario coming a long time ago. Also, the third bad scenario was a
consequence of the first.

This monograph is about the stochastic programming approach to asset,
liability, and wealth management, so the main points most relevant for my
analysis are:
1. We should be able to use such measures as the bond–stock yield differ-

ential and such data as those provided by Shiller to create better scenarios.
In this monograph, I argue that the mean is by far the most important
aspect of return distributions. Figure 2.13, depicting the S&P 500 in
2000–2002, serves as a reminder of this finding. 

Figure 2.9. Hang Seng Bond–Stock Yield Differential Model Using Five-
Year Government Bonds, January 1995–December 1999

Note: Shaded lines in Panel B denote upper limit, mean, and lower limit. Bond–stock yield differential mean
and standard deviation calculated for October 1994–December 1999.

Source: Based on data from Berge and Ziemba (2003).

Index Value
A. Index Value

18,000

14,000

10,000

6,000
1/95 12/997/95 1/96 7/96 1/97 7/97 1/98 7/98 1/99 7/99

Spread (%)
B. Spread

4

2
3

0
1

−2
−1

−3
1/95 12/997/95 1/96 7/96 1/97 7/97 1/98 7/98 1/99 7/99



The Stochastic Programming Approach to Asset, Liability, and Wealth Management

44 ©2003, The Research Foundation of AIMR™

2. The extent of such danger measures also suggests that the entire distri-
bution from which scenarios are drawn should be shifted left toward lower
and more volatile returns. We know that volatility increases as markets
decline. Koivu, Pennanan, and Ziemba (2003) showed one way to create
better scenarios.

3. The evidence is high that stocks outperform bonds, T-bills, and most other
financial assets in the long run (see Siegel 2002; Dimson, Marsh, and
Staunton 2002; and Table 2.7, Figure 2.14, and Figure 2.15). Stocks
generally outperform in times of inflation and bonds outperform in times

Figure 2.10. Nikkei Stock Average and Bond–Stock Yield Differential Model 
for 10-Year Government Bonds, January 1990–April 1998

Note: Shaded lines in Panel B denote upper limit, mean, and lower limit. Bond–stock yield differential mean
and standard deviation calculated for October 1994–August 1998.

Source: Based on data from Berge and Ziemba (2003).
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of deflation (see, for example, Smith 1924). Why do stocks generally
outperform bonds? As has been said, a major reason is that businesses
retain earnings, which go on to create more earnings and dividends too.9
In times of growth, firms borrow at fixed cost with the expectation of
earning positive economic profit, so in the long term, equities, as a reflec-
tion of this positive income creation, should grow at the rate of productivity.

4. Occasionally, stocks underperform alternative asset classes for long peri-
ods. Figure 2.15 shows this phenomenon for the DJIA from 1885 to 2001
in 2001 dollars, and Figure 2.13 shows the 2000–02 period for the S&P 500
and U.S. Government bonds. When bonds outperform stocks, as in this
latter period, they are usually negatively correlated with stocks as well;
see Figure 2.16, which has rolling correlations. Between 1982 and 1999,
the return of equities over bonds was more than 10 percent a year in
European Union countries. The question is whether we are moving back
to a period during which the two asset classes move against each other
or whether the phenomenon will prove to be temporary. Moreover, the
historical evidence, since 1802 for the United States and since 1700 for the
United Kingdom, indicates that the longer the period, the more likely this
dominance. Siegel showed that in all 20-year periods from 1926 to 2001,
U.S. equities outperformed bonds, and for 30-year horizons, based on the
past data, it is optimal (with a mean–variance model) to be more than 100
percent in stocks and have a short position in bonds. Siegel used various
risk tolerance measures, such as ultraconservative and risk taking. These

Figure 2.11. The Toronto Stock Exchange, 
February 1998–January 2003

9From the review of Smith by J.M. Keynes in 1925, quoted in Buffett (2001).
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Table 2.6. MSCI Indexes Grouped into Quintiles by 31 December 1997 P/E, 31 December 1998

Quintile

World North America Europe Latin America Asia ex Japan Japan

Total Return Total Return Total Return Total Return Total Return Total Return

P/E Equity
Market

Cap P/E Equity
Market

Cap P/E Equity
Market

Cap P/E Equity
Market 

Cap P/E Equity
Market 

Cap P/E Equity
Market 

Cap

1 Highest  57  13%  48%  48  20%  63%  55  25%  53%  31  –38%  –31%  36  –6% 7%  134  8%  –5%
2  25 13 45  26  16 43  24 24  25  19  –32  –21  18 10 10 39 16 16
3  18 9 30  20 7 24  19 16  32  14  –38  –28  13 15 11 29 15 12
4  14 –1 17  17 1 30  15  –0.4  35  9  –34  –37  8 –2 13 22 28 24
5 Lowest  8  3  17  13  –1  11  10  –3  13  5  –27  –25  5  19  35 14  38  32
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Figure 2.12. Stock Prices, Earnings. and PE, 
January 1871–January 2000

Source: Based on data from Shiller.
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Figure 2.13. S&P 500 and U.S. Government Bonds, 2000–02 

Source: Based on data from Schroder Investment Management Ltd.

Table 2.7. Equities’ Superior Returns, 
December 1925–December 1998

Asset Class Multiple

Inflation 9 times
T-bills 15 times
T-bonds 44 times
Corporate bonds 61 times
Large-cap stocks 2,351 times
Small-cap stocks 5,117 times

Source: Based on data from Ibbotson (1999), in Swenson (2000).
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measures are easy to devise using the Kallberg–Ziemba (1983) results;
just assign Arrow–Pratt risk-aversion values, as I have done in the second
column of Table 2.8. Values over 100 percent mean more than 100
percent stocks or a levered long position, which would be a short position
in bonds or cash. 

5. For stochastic programming asset/liability models, we need scenarios
over long periods. So, a major issue is how long the trouble might last.

6. Stochastic programming models handle extreme event scenarios in a
natural way. There is little chance of anyone predicting such events as the
9/11 attacks, but scenarios that represent the effect of such events in
terms of their impact on market returns can be included. If such events
have never occurred before, scenarios can be devised from similar events
in other markets and their possible outcomes.

Figure 2.14. Total Nominal Return Indexes, 1801–2001

Note: CPI = Consumer Price Index.

Source: Based on data from Siegel.
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Figure 2.15. The DJIA

Note: In 2001 U.S. dollars.

Source: Based on data from Siegel.
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7. Successful models will generate scenarios in many ways. The next section
discusses some of the ways scenarios can be generated. Figure 2.13,
Figure 2.16, and Figure 2.17 are useful in this regard. A clear pattern
emerges; the position of stocks as over or under fair value has signaled
market swings. 

Figure 2.16. The Correlation Between U.S. Equity and Government Bond 
Returns, 1930–00

Source: Based on data from Schroder Investment Management Ltd.

Table 2.8. Portfolio Allocation: Percentage of 
Portfolio Recommended in Stocks 
Based on All Historical Data

Holding Period

Risk Tolerance RA 1 Year 5 Years 10 Years 30 Years

Ultraconservative 10 8.1% 23.3% 39.5% 71.4%

Conservative 6 25.0 40.6 60.1 89.7
Moderate 4 50.0 63.1 87.2 114.9
Risk taking 2 75.0 79.8 108.3 136.5

Note: RA = risk-aversion index.

Source: Based on data from Siegel.
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Figure 2.17 shows the late 2002 values for the crash indicator with the Fed
(U.S. Federal Reserve) model. The model uses 10-year bond yields and com-
putes the ratio of the bond and stock yields in terms of percentage over- or
undervalued. This measure is close to that of the stock–bond return crash
danger model. Figure 2.17 indicates that since 1980, very undervalued markets
have historically had high returns. When the measure is above 15 percent,
mean S&P returns average a loss of 6.7 percent; from 5–15 percent, the return
is 4.9 percent; and below –5 percent, the return is 31.7 percent. In late 2002 and
early 2003, the market was at one of its steepest discounts to fair value. Figure
2.18 provides my calculations, which mirror those in Figure 2.17. The length
and depth of the 2000–03 decline is seen in the jagged parts of Figure 2.17 and
Figure 2.18. One sees the initial danger zone for the measure in 1999, but then
the market returned to the danger zone in late 2001 because stock prices fell
but earnings fell even more. Consensus future earnings forecasts were invari-
ably far too optimistic during this period. The S&P 500 fell 37 percent, from
1,460.25 at the end of December 1999 to 885.76 on 31 October 2002.

Another valuation measure, thanks to Warren Buffett, is the market value
of all publicly traded stocks relative to GNP. Buffett suggests that if the
measure is 70 or 80 percent, it is a buy, and if it is over 200 percent, as in 1999,
it is a sell. The measure was 133 percent in late 2001 and was lower in early

Figure 2.17. Race to the Bottom: Percentage of S&P 500 over or under Fair 
Value, 1980–2002 

Source: Based on data from Ned Davis Research.
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2003 because the stock market fell more than GNP fell. This measure, like
that in Figure 2.17, signals a recovery in stock prices in 2003.10

Nonetheless, 41 percent of the stocks in the S&P 500 did not fall or actually
rose during this period, and an additional 19 percent declined by 10 percent
or less annualized.11 The fall in the S&P 500 was mainly in three areas—
information technology, telecommunications, and large-cap stocks. From 1
January to 31 October 2002, information technology stocks in the S&P 500 fell
64 percent and telecommunications stocks fell 60 percent. The largest-cap
stocks (with market caps of US$50 billion plus) lost 37 percent. But most other
stocks either lost only a little or actually gained. Materials fell 10 percent, but
consumer discretionary gained 4.5 percent, consumer staples gained 21 per-
cent, energy gained 12 percent, financial services gained 19 percent, health
care gained 29 percent, industrials gained 7 percent, and utilities gained 2
percent. Equally weighted, the S&P 500 index lost only 3 percent. These

Figure 2.18.  The Fed Model, 1980–May 2003

Source: Based on data from Koivu, Pennanen, and Ziemba (2003).

10The crash and evaluation measures discussed in this monograph are based on economic
evaluations combined with sentiment. Another interesting approach is through chaos models;
a survey of this area and presentation of results are in Corcos, Eckmann, Malaspinas, and
Malevergne (2002) and Sornette and Zhou (2002). 
11These were small-cap stocks with market values of US$10 billion or less. See Figures 2 and 3
in Appendix B (pp. 6 and 7), which is available online in the Supplementary Material area at
www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixB.pdf.
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values include dividends. The stocks that gained were the very small-cap
stocks with market caps below US$10 billion. Some 138 companies with
market caps between US$5–10 billion gained 4 percent, on average, and 157
companies with market caps below US$5 billion gained 23 percent, on average.

Procedures for Scenario Generation
One of the things capital markets do is consider possible worlds. The level and
direction of prices reflect the markets’ assessment of the probabilities of possible
worlds becoming actual. . . .There are advocates for many of these views. Investors
consider the risks and rewards and allocate their money accordingly.

So wrote Bill Miller—the famed manager of the Legg Mason Value Trust
mutual fund (who has consistently beaten the S&P 500 year after year since
1990)—in a report in early 2003. He described scenarios in this way in reference
to a book by David Lewis, a philosophy professor, on the plurality of worlds
that argues that all possible worlds exist in the same sense that this world does.

There are many methods to estimate scenarios, and in this section, I
discuss the main ideas of some of them. Scenarios are a means to describe
and approximate possible future economic environments. In my modeling
applications, scenarios are represented as discrete probabilities of specific
events. Together, all the scenarios represent the possible evolution of the
future world. The basic idea is to have a set of T period scenarios of the form
ST = (S1, S2, . . . , ST), where st ∈ St are the possible outcomes of all random
problem elements and where st occurs in period t with probability pt(st). 

A typical scenario tree is shown in Figure 2.19. S1 has three possible
outcomes, S2 has three, and S3 has two. There are 18 separate economic

Figure 2.19. Typical Scenario Tree
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futures, usually with different chances/probabilities of occurrence. Each can
occur, and together, they approximate the possible future evolution of the
economic environment relevant to the problem at hand. For asset/liability
modeling, the most important parts of the distribution are the mean and the
left tail. The mean drives the returns, and the left tail, the losses. I cannot
include all possible scenarios; instead, I focus on a discrete set that well
approximates the possible important events that could happen. Because I have
ST total scenarios, I can include those I want. Once a scenario is included, the
problem must react to the consequences of that scenario. This important and
flexible feature of stochastic programming modeling is not usually available
in other approaches.12 I frequently aggregate scenarios to pick the best N out
of the ST so that the modeling effort is manageable.

The generation of good scenarios that well represent the future evolution
of the key parameters is crucial to the success of the modeling effort. Scenario
generation, sampling, and aggregation are complex subjects, and I will discuss
them by describing key elements and providing various developed and imple-
mented models.13

Scenarios should consider the following, among other things:
• mean reversion of asset prices;
• volatility clumping, in which a period of high volatility is followed by

another period of high volatility;
• volatility increases when prices fall and decreases when they rise;
• trending of currency, interest rates, and bond prices;
• ways to estimate mean returns;
• ways to estimate fat tails; and
• ways to eliminate arbitrage opportunities or minimize their effects.

The true distribution P is approximated by a finite number of points (w1,
. . . , wS) with positive probability ps for each scenario s. The sum of all scenario
probabilities is 1.

Scenarios come from diverse sources and are used in many applications.
They can come from a known discrete probability distribution or as the
approximation of a continuous or other probability distribution that is estimated
from past data, economic forecasting models, or comparison with similar past

12 The inclusion of such extreme scenarios means that the model must react to the possibility
of that scenario occurring. This inclusion is one of the ways a stochastic programming overall
model would have helped mitigate the 1998 losses and the collapse of LTCM. The model would
not have let LTCM hold such large positions (see the discussion in Chapter 6).
13Some more technical aspects of scenario generation appear in Appendix B , which is available
online in the Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/
AppendixB.pdf.
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events. The latter is especially useful for situations that have never occurred—
for example, if there is a potential crisis in Brazil whose effects must be
estimated and no data or models are available, but similar crises have occurred
in Russia, where the effects have been well estimated. These data are useful
for scenario estimation, especially for disastrous scenarios.

Economic variables and actuarial predictions drive the liability side,
whereas economic variables and sentiment drive financial markets and secu-
rity prices. Hence, estimating scenarios for liabilities may be easier than
estimating them for assets because of the presence of mortality tables, actu-
arial risks, and legal requirements, such as pension or social security rules,
well-established policies, and so on. (See Embrechts 2000). Such scenarios
may come from simulation models embedded in the optimization models that
attempt to model the complex interaction between the economy, financial
markets, and liability values. Examples include Kingsland (1982), Winklevoss
(1982), and Boender (1997).

Abaffy, Bertocchi, Dupačovà, and Moriggia (2000) and Dupačovà, Consigli
and Wallace (2000) surveyed scenario estimation and aggregation methods
that represent a larger number of scenarios by a smaller number. We can use
the following classifications:14

1. There can be full knowledge of the exact probability distribution. This
knowledge usually comes from a theoretical model, but it is possible to
use historical data or an expert’s experience.

2. There can be a known parametric family based on a theoretical model
whose parameters are estimated from available and possibly forecasted
data. For example, much literature exists for scenario generations using
the 1977 Vasicek, the 1990 Heath–Jarrow–Morton, and the 1990 Black–
Derman–Toy and other interest rate models for interest rate, fixed-
income, and bond portfolio management. For example, the prices of
T-bonds can be computed on a lattice subject to the initial yield curve.
Then, the prices of other relevant interest-rate-dependent securities can
be estimated. Also, stochastic differential equation modeling can be used
to generate scenarios for asset returns and liability commitments by
using a cascade of models that feed one into another.15 Methods used to

14For technical details, see Appendix B (p. 4), which is available online in the Supplementary
Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixB.pdf.
15See, for example, Jamshidian and Zhu (1996); Chan, Karolyi, Longstaff, and Sanders (1992);
the Towers Perrin scenario-generation system based on Mulvey (1996); and Mulvey and
Thorlacius (1998), discussed in Appendix B (p. 7), which is available online in the Supplemen-
tary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixB.pdf.
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evaluate value at risk can also be used to create scenarios because they
estimate probability distributions.16

3. Scenarios can be formed by sample-moment information that aggregates
large numbers of scenarios into a smaller, easier set or generates scenar-
ios from assumed probability distributions.

4. The simplest idea is to use past data that reflect comparable circumstances
and then assign them equal probabilities. This idea can be implemented
by using the raw data or through procedures, such as vector autoregres-
sive modeling or bootstrapping, that sample from the past data.

5. When no reliable data exist, one can use an expert’s forecasts (e.g.,
Markowitz and Perold 1981) or governmental regulations. Abaffy et al.
pointed out that to test the surplus adequacy of an insurer, New York
State Regulation 126 suggests seven interest rate scenarios to simulate
the performance of the surplus. Liability commitments are frequently
easier to estimate than assets because of demographic data, regulations,
and so on.

The list of inputs depicted in Exhibit 2.1 is typical. Whatever method is used
to generate the scenarios, in relying on the meshing of decision-maker
subjective estimates, expert judgment, and empirical estimation, it is crucial
to validate the estimated distributions and to make sure that the decision
maker has not defined the range too narrowly. Perhaps reflecting on the
distribution by asking what would make the value be outside the range and
then assessing the probability would help expand the range and make the
probability assessment more realistic. 

16Examples include Jorion (2000b) and Jamshidian and Zhu (1996), who estimated market and
currency risk. See also Jobst and Zenios (2003) and Duffie and Singleton (2003), who estimated
market and credit risk.

Exhibit 2.1. Summary of Inputs for  Scenario 
Analysis 

Historical data
Macroeconomic factors, such as yield curves, credit spreads, 

divident yields (and their growth and earnings forecasts), and 
currency-exchange values

Expert judgment
Sentiment and extraneous factors
Mean and tail factors
Asset class forecasts, such as cash, equities in various sectors and 

countries, and interest and bond yields
Scenarios
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Fixed-Mix and Strategic Asset Allocation
Fixed-mix strategies, in which the asset allocation weights are fixed and the
assets are rebalanced to the initial weights at each decision point, are common
and yield good results. An attractive feature is an effective form of volatility
pumping because the strategies rebalance by selling assets high and buying
them low. Fixed-mix strategies compare well with buy-and-hold strategies.
See, for example, Figure 2.20, which shows the 1982–94 risk–return perfor-
mance of a number of asset categories, such as mixtures of the Europe,
Australasia, and Far East (EAFE) Index, S&P 500, bonds, the Russell 2000
Small-Cap Index, and cash. 

The theoretical properties of fixed-mix strategies are discussed by Demp-
ster, Evstigneev, and Schenk-Hoppé (2003) and Merton (1990), who show their
advantages in stationary markets, in which the return distributions are the
same each year. The long-run growth of wealth is exponential with a probability

Figure 2.20. Historical Performance of Some Asset Categories, 
1 January 1982–31 December 1994

Source: Based on data from Ziemba and Mulvey (1998).
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of 1. I argue in this monograph that the stationary assumption is fine for long-
run behavior, but for short time horizons, even up to 10 to 30 years, using
scenarios to represent the future generally gives better results.

Hensel, Ezra, and Ilkiow (1991) showed the value of strategic asset
allocation. They evaluated the results of seven representative Frank Russell
Company U.S. clients who were having their assets managed by approved
professional managers (who are supposed to beat their benchmarks with
lower risk). The study was conducted for 16 quarters from January 1985 to
December 1988. A fixed-mix naive benchmark was U.S. equity (50 percent),
non-U.S. equity (5 percent), U.S. fixed income (30 percent), real estate (5
percent), and cash (10 percent). Table 2.9 shows the mean quarterly return
and the variation explained. Most of the volatility (94.35 percent of the total)
is explained by the naive policy allocation, similar to the 93.6 percent in
Brinson, Hood, and Beebower (1986) and in Brinson, Singer, and Beebower
(1991). Also, T-bill returns (1.62 percent) and the fixed-mix strategy (2.13
percent) explain most of the mean returns. The managers returned 3.86
percent versus 3.75 percent for T-bills plus fixed mix, so they added value.
This added value was from their superior strategic asset allocation into stocks,
bonds, and cash. The managers were unable to market time or to pick
securities better than the fixed-mix strategy. 

Further evidence that strategic asset allocation accounts for most of the
time-series variation in portfolio returns and that market timing and asset
selection are far less important has been provided by Blake, Lehmann, and
Timmermann (1999). They used a nine-year (1986–94) monthly dataset on

Table 2.9. Average Return and Return 
Variation Explained
(quarterly by the seven clients)

Decision Level
Average 

Contribution
Additional Variation 
Explained (volatility)

Minimum risk (T-bills) 1.62% 2.66%
Naive allocation (fixed mix) 2.13 94.35
Specific policy allocation 0.49 0.50
Market timing (0.10) 0.14
Security selection (0.23) 0.40
Interaction and activity (0.005) 1.95

Total 3.86% 100.00%
T-bills and fixed mix 3.75

Source: Based on data from Hensel et al.
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306 U.K. pension funds having eight asset classes. They also found a slow
mean reversion in the funds’ portfolio weights toward a common, time-varying
strategic asset allocation.

The U.K. pension industry is concentrated in very few management
companies. Indeed, four companies control 80 percent of the market. In
contrast, in the United States, the largest company in 1992 had a 3.7 percent
share of the market, according to Lakonishok, Shleifer, and Vishny (1994).
During the 1980s, the pensions were about 50 percent overfunded. Fees are
related to performance, usually relative to a benchmark or peer group. Blake
et al. concluded that:
1. U.K. pension fund managers have a weak incentive to add value and face

constraints on how they try to do it. Although strategic asset allocation
may be set by the trustees, these strategies are flexible, have a wide
tolerance for short-run deviations, and can be renegotiated.

2. Fund managers know that relative, rather than absolute, performance
determines their long-term survival in the industry.

3. Fund managers earn fees related to the value of assets under management,
not to their relative performance against a benchmark or their peers, with
no specific penalty for underperforming or reward for outperforming.

4. The concentration in the industry leads to portfolios being dominated by
a small number of similar house positions for asset allocation to reduce
the risk of relative underperformance.
The asset classes from WM Company data were U.K. equities, interna-

tional equities, U.K. bonds, international bonds, cash, U.K. property, and
international property. U.K. portfolios are heavily equity weighted. For exam-
ple, the 1994 weights for these eight asset classes for the 306 pension funds
were 53.6, 22.5, 5.3, 2.8, 3.6, 4.2, 7.6, and 0.4 percent, respectively. In contrast,
U.S. pension funds had 44.8, 8.3, 34.2, 2.0, 0.0, 7.5, 3.2, and 0.0 percent,
respectively.

Most of the 306 funds had similar returns year by year. The semi-
interquartile range was 11.47 to 12.59 percent, and the 5th and 95th percentiles
were less than 3 percent apart.

The returns on different asset classes were not great, except for interna-
tional property. The eight classes averaged value weighted 12.97, 11.23, 10.76,
10.03, 8.12, 9.01, 9.52, and –8.13 percent (for the international property), and
overall, 11.73 percent a year. Bonds and cash kept up with equities quite well
in this period. Similar to previous studies, Blake et al. found that for U.K.
equities, a high percentage (91.13 percent) of the variance in differential
returns across funds occurred because of strategic asset allocation. For the
other asset classes, this variance was lower—60.31 percent (international
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equities), 39.82 percent (U.K. bonds), 16.10 percent (international bonds),
40.06 percent (U.K. index bonds), 15.18 percent (cash), 76.31 percent (U.K.
property), and 50.91 percent (international property). For these other asset
classes, variations in net cash flow differentials and covariance relationships
explain the rest of the variation.

Stochastic Programming versus Fixed Mix
Despite these good results, fixed-mix and buy-and-hold strategies do not use
new information from return occurrences in their construction. As Cariño and
Turner (1998) illustrated, by making the strategy scenario dependent and using
a multiperiod stochastic programming model, a better outcome is possible.

Consider a three-period model with periods of one, two, and two years. The
investor starts at Year 0 and ends at Year 5, with the goal of maximizing
expected final wealth, net of risk. Risk is measured as one-sided downside risk
based on nonachievement of a target wealth goal at Year 5. The target is 4
percent return a year, or 21.7 percent at Year 5. Figure 2.21 shows the shortfall
cost function. The penalty for not achieving the target becomes steeper and
steeper as the nonachievement grows larger. For example, at 100 percent of
the target or more, there is no penalty; at 95–100 percent, it is a steeper, more
expensive penalty; and at 90–95 percent, it is steeper still. This shape preserves
the convexity of the risk-penalty function, and the piecewise linear function
means that the stochastic programming model remains linear. 

Figure 2.21. A Shortfall Cost Function: Target 
4 percent a Year

Shortfall Cost

Percent Return
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The concave objective function is 

where the risk tolerance equals the reciprocal of the Arrow–Pratt absolute
risk-aversion index and balances risk and return.

Assume the six asset classes have the means, variances, and covariances
shown in Table 2.10. I can use scenarios to represent possible future
outcomes. In this situation, that is all the possible paths of returns that can
occur over the three periods. The goal is to make 4 percent each period, so
cash that returns 5.7 percent will always achieve this goal. Bonds return 7.0
percent, on average, and usually return at least 4 percent, although at times,
they have returns below 4 percent. Equities return 11 percent and also beat
the 4 percent hurdle most of the time but fail to achieve 4 percent some of the
time. Assuming that the returns are independent and identically distributed
with lognormal distributions, by sampling 4 × 3 × 2, I get 24 scenarios for cash,
bonds, and equities, which are roughly shown in Figure 2.22; in each panel,
the heavy line is the 4 percent threshold, or 121.7 percent at Year 5.

To simplify, the scenarios can be visualized over two periods. The scenario
tree has nine nodes with six distinct scenarios. Three outcomes are possible
in Period 1 and two are possible in Period 2, for six in total, as shown in Figure
2.23 and in Table 2.11. For example, with one-third probability, U.S. equity
large caps will return 0.90754, U.S. equity small cap, 0.534592, and so on; in
Period 2, these two return either 0.119713 or 0.461739 and –0.130465 or
0.392537, with equal probability. 

The strategy layout is 

Period 1
1 Year

Period 2
2 Years

Period 3
2 Years .

Table 2.10. Means, Variances, and Covariances of Six Asset Classes 

Asset Class
Expected 

Return
Std. 
Dev.

U.S. 
Large-Cap 

Equity

U.S.
Small-Cap 

Equity

Non-U.S. 
Equity 

Unhedged

Emerging 
Markets 

Unhedged
U.S. 

Bonds
U.S. 
Cash

U.S. large-cap equity  11.0%  17.0%  1.0
U.S. small-cap equity  11.0  25.0  0.8  1.0
Non-U.S. equity 

unhedged  11.0  21.0  0.5  0.3 1.0
Emerging markets 

unhedged  11.0  25.0  0.3  0.3 0.3 1.0
U.S. bonds  7.0  7.0  0.4  0.3 0.2 0.0 1.0
U.S. cash  5.7  1.0  0.0  0.0 0.0 0.0 0.3  1.0

Maximize E Final wealth – 
Accumulated penalized shortfalls

Risk tolerance
-------------------------------------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

,
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I then compare the following two strategies:
1. the dynamic stochastic programming strategy, which is the full optimiza-

tion of the multiperiod model; and
2. the fixed-mix strategy, in which the portfolios from the mean–variance

frontier have allocations rebalanced back to that mix at each stage—buy
when low and sell when high. This strategy resembles covered calls,
which is the opposite of portfolio insurance.  

Figure 2.22. Scenarios
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Consider Fixed-Mix Strategy A (64/36 percent stock/bond mix) and Fixed-
Mix Strategy B (46/54 percent stock/bond mix). The optimal stochastic
programming strategy dominates, as shown in Figure 2.24.

How does the dynamic strategy achieve lower shortfall cost or higher
expected wealth? For any given fixed-mix strategy, there is a dynamic strategy
that has either the same expected wealth and lower shortfall cost or the same
shortfall cost and higher expected wealth. The portfolio allocation for the
optimal strategy starts out in a similar way to the Fixed-Mix Strategy A, with
the same expected return. The split between equities and fixed-income assets

Figure 2.23. Scenarios in Three Periods

Table 2.11. Example Scenario Outcomes Listed by Node

Node
Conditional 
Probability

U.S. Large-Cap 
Equity

U.S. Small-Cap 
Equity

Non-U.S. 
Equity

Emerging 
Markets U.S. Bonds U.S. Cash

1 0.3333 0.032955 0.341701 0.041221 0.279216 0.027300 –0.014084
2 0.3333 –0.091184 0.049939 0.109955 0.082171 –0.128904 0.024156
3 0.3333 0.090754 0.534592 0.120825 0.204917 0.162770 0.132663
4 0.5000 0.035930 0.056592 –0.000627 –0.304342 0.061070 0.000830
5 0.5000 0.119713 –0.130465 0.193180 0.519016 0.069383 0.028540
6 0.5000 0.461739 0.392537 0.116938 0.360205 0.089025 0.050224
7 0.5000 0.245134 0.122433 0.568656 0.180286 0.110467 0.092815
8 0.5000 –0.090453 –0.292077 –0.292757 0.001132 0.129944 0.121655
9 0.5000 0.041096 0.054468 0.118764 –0.048986 0.065222 0.088793

0

1

2

3

9

8

7

6

5

4



The Stochastic Programming Approach to Asset/Liability Management

©2003, The Research Foundation of AIMR™ 65

is about 60/40 percent. The Fixed-Mix Strategy B, having the same risk, has
a much lower allocation to equities (see Panel A of Figure 2.25).

The allocations at the end of Year 1 provide insight into the dynamic
strategy (see Panel B of Figure 2.25). The allocations depend on the outcome
of the first year’s returns. The optimal allocations are related to the outcomes.
The allocations shift to lower-return, less volatile assets as the excess over the
wealth target is reduced. When the return is high, the strategy moves to a
high-return riskier asset.

The model suggests that by taking advantage of the opportunities to adapt
the asset mix given the current wealth level, the chances of exceeding the
hurdle are increased (see Figure 2.26).

More Evidence Regarding the Performance of Stochastic
Dynamic versus Fixed-Mix Models
A further study of the performance of stochastic dynamic and fixed-mix
portfolio models was made by Fleten, Høyland, and Wallace (2002). They
compared two alternative versions of a portfolio model for the Norwegian life
insurance company Gjensidige NOR, namely, multistage stochastic linear
programming and fixed-mix constant rebalancing. They found that the multi-
period stochastic programming model dominated the fixed-mix approach, but
the degree of dominance was much smaller out of sample than in sample (see

Figure 2.24. Optimal Stochastic Strategy vs. 
Fixed-Mix Strategy
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Figure 2.25. Example Portfolios
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Figure 2.26. Optimal Strategy versus Fixed-Mix Strategies
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Panel A and Panel B of Figure 2.27); out of sample, the random input data
are structurally different from those in sample, so the stochastic programming
model loses its advantage in optimally adapting to the information available in
the scenario tree. Also, the performance of the fixed-mix approach improves
because the asset mix is updated at each stage.

Figure 2.27. Advantage of Stochastic 
Programming over Fixed-Mix Model 

Source: Based on data from Fleten, Høyland, and Wallace.

Expected Maximum Tree Point

4.59

13.6, 20.2

27.5, 34.6

37.5, 49.4

A. In-Sample Results

0.22

Expected Maximum Tree Point

0.12

0.14

0.16

0.18

0.20

0.10
0 122 4 6 8 10

B. Out-of-Sample Results

0.22

DS 2

DS 3

FM 2

FM B

0.14

0.16

0.18

0.20

0.12

0.10
0 2.50.5 1.0 1.5 2.0

Dynamic Stochastic Programming Fixed Mix

Dynamic Stochastic Programming Fixed Mix

Standard Deviation

Standard Deviation



The Stochastic Programming Approach to Asset/Liability Management

©2003, The Research Foundation of AIMR™ 69

How to Make Good Multiperiod Stochastic Programming
Models
The philosophy is as follows. Markets are understandable most (95+ percent)
of the time, but real asset prices have fat tails because extreme events occur
much more than lognormal or normal distributions indicate.

According to Keim and Ziemba (2000), much about asset returns is not
predictable. Hence, we must have ways to combine conventional models,
options pricing, and so on, that are accurate most of the time and include the
irrational, unexplainable aspects that occur once in a while. Whether the
extreme events are predictable or not is not the key issue—what is crucial is
that we consider that they can happen in various levels with various chances.

Even apart from the instability due to speculation, there is the instability due to the
characteristic of human nature that a large proportion of our positive activities
depend on spontaneous optimism rather than mathematical expectations, whether
moral or hedonistic or economic. Most, probably, of our decision to do something
positive, the full consequences of which will be drawn out over many days to come,
can only be taken as the result of animal spirits, a spontaneous urge to action rather
than inaction, and not as the outcome of a weighted average of quantitative benefits
multiplied by quantitative probabilities. (Keynes 1938).
Human behavior is a main factor in how markets act. Indeed, sometimes markets act
quickly, violently with little warning. Ultimately, history tells us that there will be a
correction of some significant dimension. I have no doubt that human nature being
what it is, that it is going to happen again and again. (Greenspan 1998) 

An integrative asset/liability management strategy needs alternative mod-
eling tools, such as stochastic programming, to capture the effects of costly
lower-tail outcomes, as asked in Stulz (1996), Lo (1999, 2001), and Merton
(2000a, 2000b).

Dynamic and Liability Aspects. The display in Figure 2.28 shows the
time flow of assets arriving and liability commitments leaving for institutions,
such as insurance companies, banks, pension funds, and savings and loans,
and for individuals. These problems are enormously complex. Is it possible to
implement such models that will really be successful? This monograph dis-
cusses a number of successful implementations and, I hope, will convince the
reader that it is possible. The models will sell themselves as more are built
and used successfully. 

We have the following risk ladder (see the introduction to Ziemba and
Mulvey 1998) with various levels of details, aggregation, and model decisions.
• Rung 5. Total integrated risk management.
• Rung 4. Dynamic asset and liability management.
• Rung 3. Dynamic asset-only portfolios.
• Rung 2. Static asset-only portfolios.
• Rung 1. Pricing single securities.  
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This monograph concerns mostly Rung 3 and, especially, Rung 4. Rung 5
represents overall companywide models that involve all aspects of a business—
aggregated, of course.17

The stochastic programming approach, which considers the following
aspects, is ideally suited to analyzing such problems:
• Multiple time periods; possible use of end effects—steady state after the

decision horizon adds one more decision period to the model; the trade-
off is an end-effects period or a larger model with one less period.

• Consistency with economic and financial theory for interest rates, bond
prices, and so on.

• Discrete scenarios for random elements—returns, liabilities, and
currencies.

• Scenario-dependent correlation matrixes so that correlations change for
extreme scenarios.

• Use of various forecasting models that can handle fat tails.
• Institutional, legal, and policy constraints.
• Model derivatives and illiquid assets.
• Transaction costs.
• Expressions of risk in terms understandable to decision makers.
• Simple, easy-to-understand risk-averse utility functions that maximize

long-run expected profits, net of expected discounted penalty costs for
shortfalls; pay more and more penalty for shortfalls as they increase
(highly preferable to VAR).

• Model as constraints or penalty costs for target violations in the objective
function.

• Maintain adequate reserves, cash levels, and regularity requirements.

Figure 2.28. Time Flow of Assets

17See Zenios and Ziemba (2004) for more on this topic.
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• Can now solve realistic multiperiod problems on modern workstations
and personal computers by using large-scale linear programming and
stochastic programming algorithms.

• Model makes you diversify—the key for keeping out of trouble.
Some possible approaches to modeling situations with such events are as

follows:
• Simulation models have too much output to understand but are useful as

a check.
• Mean–variance models are static in nature and useful for such

applications, but they are not useful with liquidity or other constraints, for
multiperiod problems, or with liabilities, and so on.

• Expected log models yield very risky strategies that do not diversify well;
fractional Kelly strategies with downside constraints are excellent for
risky investment betting (see Chapter 6).

• Stochastic control models, although theoretically interesting, give hair-
trigger and bang-bang policies in which one is 100 percent stocks and then
zero percent stocks one second later (see, for example, the Brennan–
Schwartz paper in Ziemba and Mulvey and the discussion of the Rudolf–
Ziemba model in Chapter 4). The question is how to constrain the asset
weight changes to be practical. Possibly, the best work on this approach has
been done by Campbell and Viciera (2002), who successfully analyzed long-
term asset-only allocation decisions in which the power of the technique
dominates the limitations of the model (which they acknowledged). Using
a theoretically sound framework, they provided useful rules of thumb for
many investors. My goal is to tailor the asset allocation mix for individual
investors, given their consumption and other goals, taxes, preferences,
uncertainties, transactions costs, liquidity, and so on.

Among other conclusions, Campbell and Viciera showed that: 
1) The riskless asset for a long-term investor is not T-bills but rather

Treasury Inflation-Indexed Securities (TIPS), which deliver a predictable
stream of real income.

2) A safe labor income stream is equivalent to a large position in the risk-
free asset because it allows the investor to hold much more in risky assets.
Fixed commitments are negative income.

3) Risky investments are extremely attractive to young households
because they have a large amount of relatively safe human wealth relative to
their financial wealth.

4) Business owners should have less equity exposure because their
income stream is correlated with the stock market.
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5) Wealthy investors should be more risk averse because their level of
consumption depends on their financial success.

6) Because stocks are mean reverting (i.e., they have lower risk over
longer time horizons), investors can time the market over long horizons;
because the equity risk premium is time varying, the optimal strategic asset
allocation mix changes over time.
• Stochastic programming models with decision rules have policy

prescriptions, such as fixed mix or buy and hold; the decision rules are
intuitively appealing but are suboptimal and usually lead to nonconvex
difficult optimization modeling.

• Stochastic programming models provide a good approach, as discussed
in this monograph, starting with insurance applications in Chapter 3. 
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3. Insurance Company 
Applications

Why Lloyd’s can’t sleep easy. Famous insurance syndicate unpre-
pared for 11 September 2001.

In early 2003, Europe’s embattled insurance industry was hit by
another setback. Germany’s Allianz was forced to provide over
US$750 million to Fireman’s Fund, an American subsidiary, to cover
the cost of asbestos-related claims. Meanwhile, tumbling stock mar-
kets put added strain on capital bases.

Elements of the Insurance Business
Insurance businesses have two basic sides—the collection of premiums for
bearing risks for others and the investment of those premiums. Hence, they
are classic asset/liability enterprises. The investment side is similar to that of
other financial institutions. The idea is to invest the premiums and previous
investments to yield good returns over time and provide resources for insur-
ance claims. This investment can take many risk–return profiles. The essence
is to have enough capital to weather storms from bad scenario outcomes from
both the investment business and insurance claims.

In some insurance businesses, the claims have little aggregated risk, as
in life insurance, if properly diversified. But in many insurance businesses,
claim risk is substantial.

The insurance side generates premiums that, on average, cover future
claims. These claims have distributions of losses, as with typical liabilities.
The danger is in the tails. Insurance companies are frequently insuring against
rare events for which the loss is many times the premium paid. A typical
strategy is to diversify across such events and to pass on some of this tail risk
to reinsurers.

Insurance companies have been in business for hundreds of years and
have developed sophisticated mathematical analyses of claims. Still, disasters
can easily occur. For example, 32 U.S. insurance companies declared bank-
ruptcy in 1998. The danger is that the insurance policies written may not be
as diversified as the calculations and experience indicate. Then, if overbetting
and a disastrous scenario occurs, serious trouble may ensue.
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My approach will be to model insurance company assets and liabilities,
use scenario-dependent correlation matrixes, and determine a level of insur-
ance coverage that provides good returns that are as safe as possible. I have
illustrated some examples of extreme events in Chapter 2.

The Russell–Yasuda Kasai Model
The Russell–Yasuda Kasai model was the first large-scale multiperiod stochas-
tic programming model implemented for a major financial institution (see
Henriques 1991). I designed the model while working as a consultant to the
Frank Russell Company from 1989–1991. Under the direction of Research
Head Andy Turner, the team of David Cariño, Taka Eguchi, David Myers,
Celine Stacy, and Mike Sylvanus at Russell in Tacoma, Washington, imple-
mented the model for the Yasuda Fire and Marine Insurance Company in
Tokyo. Roger Wets and Chanaka Edirishinghe served as consultants in
Tacoma, and Kats Sawaki was a consultant to Yasuda Kasai in Japan. Kats, a
member of my 1974 University of British Columbia (UBC) class in stochastic
programming in which we started to work on asset/liability models (ALMs),
was then a professor at Nanzan University in Nagoya and acted independently
of the Tacoma group. Kouji Watanabe headed the group in Tokyo, which
included Y. Tayama, Y. Yazawa, Y. Ohtani, T. Amaki, I. Harada, M. Harima,
T. Morozumi, and N. Ueda.

In 1990–1991, computations were a major focus of concern. We had a
pretty good idea of how to formulate the model, an outgrowth of the Kusy and
Ziemba (1986) model for the Vancouver Savings and Credit Union and Kall-
berg, White, and Ziemba (1982). David Cariño formulated most of the details.
Originally, we had 10 periods and 2,048 scenarios. The model was too big to
solve at that time and became an intellectual challenge for the stochastic
programming community. Bob Entriken, D. Jensen, R. Clark, and Alan King
of IBM Research worked on a solution but never quite cracked it. We quickly
realized that 10 periods made the model far too difficult to solve; it was also
too cumbersome to collect the data and interpret the results because, at the
time, 2,048 scenarios were a large number to deal with. About two years later,
Hercules Vladimirou, working with Alan King at IBM Research and using
parallel processing on several workstations, solved the original model.

The Russell–Yasuda Kasai model was designed to satisfy the following
need, as articulated by Kunihiko Sasamoto, director and deputy president of
Yasuda Kasai:

The liability structure of the property and casualty insurance business has become
very complex, and the insurance industry has various restrictions in terms of asset
management. We concluded that existing models, such as Markowitz mean–
variance, would not function well and that we needed to develop a new asset/liability
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management model. . . . The Russell–Yasuda Kasai model is now at the core of all
asset/liability work for the firm. We can define our risks in concrete terms, rather
than through an abstract, in business terms, measure like standard deviation. The
model has provided an important side benefit by pushing the technology and effi-
ciency of other models in Yasuda forward to complement it. The model has assisted
Yasuda in determining when and how human judgment is best used in the asset/
liability process.
(Cariño, Kent, Myers, Stacy, Sylvanus, Turner, Watanabe, and Ziemba 1994, p. 49)

The model was a big success and was of great interest to both the academic
and institutional investment asset/liability communities. The team won sec-
ond prize in the Franz Edelmann Practice of Management Science competi-
tion in Chicago in May 1993, and the work was summarized in the January
1994 issue of Interfaces, in which all six finalists had their papers published
(see Cariño et al. 1994). The full model is described in Cariño and Ziemba
(1998) and Cariño, Myers, and Ziemba (1998). The main points are summa-
rized here.

The success of the Russell–Yasuda Kasai model led to the formation of a
new business unit called Russell Business Engineering. That group built three
other large custom models for insurance and pension funds in Japan and
Switzerland, an ALM planning system for individuals in Italy, and an assets-
only system for use in consulting for Russell’s large pension fund clients (see
Table 3.1 for general details of these models). This development helped
spawn the field of stochastic programming in finance in relation to asset/
liability modeling. In May 1995, I was asked to organize a two-week seminar
at the Isaac Newton Institute, Cambridge University, as part of a six-month
program on financial mathematics. The week on ALMs led to the book by
Ziemba and Mulvey (1998), and the week on security market anomalies led

Table 3.1. Russell Business Engineering Models

Model Type of Application
Year 

Delivered
Number of 
Scenarios

Computer 
Hardware

Russell–Yasuda (Tokyo)
Property and casualty 

insurance 1991  256 IBM RISC 6000

Mitsubishi Trust (Tokyo) Pension consulting 1994  2,000
IBM RISC 6000 

with Parallel Processors
Swiss Bank Corp. (Basle) Pension consulting 1996  8,000 IBM UNIX2
Daido Life Insurance 

Company (Tokyo) Life insurance 1997  25,600 IBM PC
Banca Fideuram (Rome) Assets only (personal) 1997  10,000 IBM UNIX2 and PC
Consulting Clients Assets only (institutional) 1998 Various IBM UNIX2 and PC



The Stochastic Programming Approach to Asset, Liability, and Wealth Management

76 ©2003, The Research Foundation of AIMR™

to the book by Keim and Ziemba (2000). A listing over time of model origins,
early models, and modern models in the introduction to Ziemba and Mulvey
shows how much the field grew in the 1990s, and it has grown even more
since, a part of which is described in this monograph.

The Yasuda Fire and Marine Insurance Company (Yasuda Kasai, meaning
fire) is based in Tokyo. It began operations in 1888 and was the second largest
Japanese property and casualty insurer and seventh largest in the world by
revenue. Its main business was voluntary automobile (43.0 percent), personal
accident (14.4 percent), compulsory automobile (13.7 percent), fire and allied
(14.4 percent), and other (14.5 percent). The firm had assets of ¥3.47 trillion
(US$26.2 billion) at the end of fiscal 1991 (31 March 1992). In 1988, Yasuda
Kasai and Russell signed an agreement to deliver a dynamic stochastic asset
allocation model by 1 April 1991. Work began in September 1989. The goal
was to implement a model of Yasuda Kasai’s financial planning process to
improve its investment and liability payment decisions and its overall risk
management.

The business goals were to 1) maximize long-run expected wealth; 2) pay
enough on the insurance policies to be competitive in current yield;
3) maintain adequate current and future reserves and cash levels; and 4) meet
regulatory requirements, especially with the increasing number of savings-
oriented policies being sold that were generating new types of liabilities. The
model needed to have more-realistic definitions of operational risks and
business constraints than the return variance of previous mean–variance
models used at Yasuda Kasai. The implemented model determines an optimal
multiperiod investment strategy that enables decision makers to define risks
in tangible operational terms, such as cash shortfalls. The risk measure used
is convex and penalizes target violations more and more as the violations of
various kinds and in various periods increase. The objective is to maximize
the discounted expected wealth at the horizon, net of expected discounted
penalty costs incurred during the five periods of the model.

This objective is similar to that of a mean–variance model, except it is for
five periods and counts only downside risk through target violations. I greatly
prefer this approach to value at risk (VAR) or conditional value at risk (CVAR)
and its variants for ALM applications because, for most people and organiza-
tions, the nonattainment of goals is more and more damaging as the nonat-
tainment increases. The loss is not linear in the nonattainment (as in CVAR)
and VAR does not consider the size of the nonattainment at all. An excellent
reference on VAR and CVAR as risk measures is Artzner, Delbaen, Eber, and
Heath (1999). Krokhmal, Uryasev, and Zrazhevsky (2003) applied these
measures to hedge fund performance. My risk measure is coherent in their
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sense, and its theoretical properties from an axiomatic point of view are
discussed in Rockafellar and Ziemba (2000). Figure 3.1 shows this measure.
The piecewise linear function is used to maintain the model as a large
stochastic linear program. 

The model formulates and meets the complex set of regulations imposed
by Japanese insurance laws and practices. The most important of the
intermediate-horizon commitments is the need to produce income sufficiently
high to pay the required annual interest in the savings-type insurance policies
without sacrificing the goal of maximizing long-run expected wealth. During
the first two years of use, fiscal 1991 and 1992, the investment strategy
recommended by the model yielded a superior income return of 42 bps
(US$79 million) over what a mean–variance model would have produced.
Simulation tests also demonstrated the superiority of the stochastic program-
ming scenario-based model over a mean–variance approach. In addition to the
revenue gains, considerable organizational and informational benefits were
evident. 

The model equations are shown in block form in Figure 3.2, where a ξt
means there is uncertainty in that block.1 The model has 256 scenarios over
four periods plus a fifth end-effects period. The model is flexible regarding the
time horizon and length of decision periods, which are multiples of quarters.
A typical application has initialization plus Period 1 to the end of Quarter 1;
Period 2, the remainder of Fiscal Year 1; Period 3, the entire Fiscal Year 2;
Period 4, Fiscal Year 3, 4, and 5; and Period 5, the End-Effects Year 6 on to
forever. Figure 3.3 shows the decision-making process. 

1A simplified form appears in Appendix C (p. 20), which is available online in the Supplementary
Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixC.pdf.

Figure 3.1. Convex Piecewise Linear Risk Measure 

Note: S = slope.
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Figure 3.2. Multistage Stochastic Linear Programming Structure of the 
Russell–Yasuda Kasai Model

Note: C = cost coefficient.

Figure 3.3. Yasuda Kasai’s Asset/Liability Decision-Making Process

Note: UB = upper bound; LB = lower bound; CG = company growth.
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Yasuda Kasai faced the following situation:
• An increasing number of savings-oriented policies were being sold that

had new types of liabilities.
• The Japanese Ministry of Finance imposed many restrictions through

insurance laws, which led to complex constraints.
• The firm’s goals included both current yield and long-run total return, so

risks and objectives were multidimensional. 
The insurance policies were complex, both part actual insurance and part

an investment with a fixed guaranteed amount plus a bonus, dependent on
general business conditions in the industry. The insurance contracts were of
varying length—maturing, being renewed, or starting in various time
periods—and were subject to random returns on assets managed, insurance
claims paid, and bonus payments made. Table 3.2 shows the insurance
company’s balance sheet with various special savings accounts. 

Many regulations on assets exist, including restrictions on equity, loans,
real estate, foreign investment by account, foreign subsidiaries, and tokkin
funds (pooled accounts). Table 3.3 depicts some of the regulations on

Table 3.2. Yasuda Kasai’s Balance Sheet 

Assets Liabilities

Cash General account
Loans Savings account
Fixed income Special savings 1
Equities Special savings 2
Foreign fixed income Special savings 3
Foreign equities Special savings 4
Other Net worth

Table 3.3. Example of Regulations on Foreign Investments

Account 1 Account 2

Direct Tokkin Foreign Subsidiaries Direct Tokkin Foreign Subsidiaries

Cash x x
Fixed income x x
Equities x x x x x x
Foreign fixed 

income x x x x x x

Foreign 
equities x x x x x x

Note: x means the investment is allowed, and a blank means it is not.
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investing in foreign investments. How should one manage investment assets
in such an environment? The goal was to implement a model of Yasuda Kasai’s
financial planning process to improve the investment decisions and overall
risk management. Yasuda Fire and Marine staff would operate the software
model independently. The model was set up to run on an IBM RS/6000
workstation and had a computing time of three hours or less. All significant
input was parameterized. Risks were defined in operational terms as the
difference between actual and targeted income, cash flow shortages, or capital
losses. The asset classes are shown in Table 3.4. 

Dividing the universe of available investments into a manageable number
of asset classes involves a trade-off between detail and complexity. A large
number of asset classes would increase detail at the cost of increasing size.
Therefore, the model allows the number and definition of asset classes to be
specified by the user. There can be different asset classes in different periods.
For example, asset classes in earlier periods can be collapsed into aggregate
classes in later periods.

Exhibit 3.1 presents a typical asset class list. Investment in asset classes
may be done either directly or indirectly through tokkin funds, capital owner-
ship of foreign subsidiaries, or loans to foreign subsidiaries. The regulatory
rules that apply to indirect investments yield the investment types shown in
Exhibit 3.2. 

The model chooses an asset allocation, and variables represent the market
values chosen for each class. Even though the number of allocation variables
can potentially equal the product of the number of asset classes, the number

Table 3.4. Asset Classes for the Russell–Yasuda Kasai  Model

Asset Associated Index

Cash bonds Nomura Bond Performance Index
Convertible bonds Nikko Research Convertible Bond Index
Domestic equities Tokyo Stock Price Index (TOPIX)
Hedged foreign bonds Salomon Brothers World Bond Index (or hedged equivalent)
Hedged foreign equities Morgan Stanley World Equity Index (or hedged equivalent)
Unhedged foreign bonds Salomon Brothers World Bond Index
Unhedged foreign equities Morgan Stanley World Equity Index
Loans Average lending rates (trust/long-term credit or long-term prime rates)
Money trusts and so on Call rates (overnight with collateral)

Note: Life insurance company general accounts are an asset class but have no associated index. 
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of investment types, the number of accounts, and some asset class investment-
type account combinations are disallowed either by regulations or by company
policy. An input table controls the available allocation classes of the model,
and the user can specify fewer available allocation classes in later periods. A
typical number of allocation variables by stage is shown in Table 3.5.

The primary recommendations provided by the model are as follows:
• a market value allocation for each asset class in each period,
• a book value allocation for each asset class in each time period,
• amount of asset purchases and sales in each time period,

Exhibit 3.1. Typical Asset Class List

Identifier Description Identifier Description

CJ Cash BF Bonds (foreign)
LL Loans (floating rate) EU Equity (U.S.)
LF Loans (fixed rate) EN Equity (Non-U.S. foreign)
LO Loans EF Equity (foreign)
BJ Bonds (domestic) FO Foreign assets
EJ Equity (domestic) RE Real estate
BU Bonds (U.S. and Canada) OT Other
BA Bonds (U.K. and Australia) GE Generic assets
BE Bonds (European continent)

Exhibit 3.2. Investment Types

Identifier Description

D Direct
T Tokkin
C Capital to foreign subsidiaries
L Loans to foreign subsidiaries

Table 3.5. Allocation Variables by Stage

t
Stage 
Name

Account

TotalS 1 2 G E

0 INI  15 13 15 15 1 59
1 Q01  15 13 15 15 1 59
2 Y01  15 13 15 15 1 59
3 Y02 7 7 7 7 1 29
4 Y05 7 7 7 7 1 29
5 YFF 5 5 5 5 1 21

Note: S = a savings product; G = general; and E = exogenous.
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• expected wealth at model horizon points, and
• shortfalls versus model targets in each time period. 
The model had the 256 scenarios shown in Figure 3.4. The end-effects period
is Year 6 to forever and is a steady-state period in insurance policy growth. All
scenario trees have one scenario in the last stage. 

The scenarios were generated using three models: (1) independent
across periods; (2) a VAR factor model that uses interest rates measured by
the long-term government bond yields, returns measured by the first section
of the Tokyo Stock Exchange (Tokyo Stock Price Index [TOPIX]), and
currency measured by the yen versus U.S. dollar return; and (3) a general
model in which the user can specify the scenarios.

The model has the following elements: (1) a matrix generator, which
creates a base linear program plus a set of random coefficient specifications
for each period; (2) a scenario generator, which builds the decision-tree
structure and generates the random returns for each asset class; (3) a liability
generator, which, in sync with the asset scenarios, projects the random
liabilities for each decision node; (4) a coefficient generator, which combines
the random coefficient specifications with the random variables to generate
random coefficients; and (5) a solver, which generates the optimal solution.

A major part of the information from the model is in the terms of the
reports, which consist of tables and figures of model output. Actual asset
allocation results from the model are confidential. But Table 3.6 shows the
expected allocations in the initialization and Table 3.7 shows them for the
end-effects period. 

When one builds and implements a model, the question is: How good is
it? The first test is: Is it better than the previous model (which was a mean–
variance model)? The comparison is in the spirit of Kusy–Ziemba’s (1986)
comparison of their multiperiod stochastic linear programming model (solved

Figure 3.4. Scenario Tree

Note: Total number of scenarios was 256. Each node represents a
joint outcome of all the asset class returns.
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via two-period technology) and the dynamic decision-tree approach of Bradley
and Crane (1973). The idea was to set up plausible situations, let each model
compute optimal solutions, and then compare, by simulation, how good the
solutions were by using statistical tests. They found that the stochastic linear
programming model was greatly superior to the decision-tree dynamic pro-
gramming approach. The flexibility of stochastic programming was one rea-
son for this superiority.

For the Russell–Yasuda Kasai application, after one year, the mean–
variance model gives extremely poor solutions. This finding is shown by the
effect of the number of periods that are fixed with the mean–variance alloca-
tions versus having the stochastic programming solution. Figure 3.5 shows
the optimal multiperiod stochastic programming solution. This is compared

Table 3.6. Expected Allocations for Initialization 
Period: INI

Total
(100 million) Percentage

Cash  2,053 9%
Loans (floating rate)  5,598 26
Loans (fixed rate)  5,674 26
Bonds  2,898 13
Equity  1,426 7
Foreign bonds  3,277 15
Foreign equity  875 4

Total  21,800  100%

Note: Total book value 1 = 22,510 (¥100 million). Total book value 2 = 34,875
(¥100 million).

Table 3.7. Expected Allocations in the End-Effects Period 
(¥100 million)

General Savings
Special 

Savings 1
Special 

Savings 2 Exogenous Total Percentage

Cash  0 44 0 36 0 80 0.1%
Bonds  5,945 17  14,846  1,311 0  22,119 40.1
Equity  0 0 4 0  18,588  18,592 33.7
Foreign bonds  2,837  1,094 0 0 0  3,931 7.1
Foreign equity 0 4,650 6,022  562 0 11,234 20.4
Total  8,782  5,804  20,072  1,908  18,588  55,154

Note: Total book value 1 = 28,566. Total book value 2 = 50,547.
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to the suboptimal policies of using the mean variance approximation for more
and more periods. Extensive use of the mean variance approximation leads to
poor performance relative to the optimal solution.

Another test is: How did the model allocations do in actual use with real
money in fiscal 1991 and 1992 (1 April–31 March)? From Russia with Love fans
will remember the phrase, “we use live targets as well”; out-of-sample tests,
especially with real money, are the ultimate test of a model’s success. The
results are as follows: In fiscal 1991, the positive comparison versus the
previous mean–variance fixed-mix strategy yielded +15 bps (US$25 million)
in income yield; in fiscal 1991–1992, it yielded a combined +42 bp improvement
(US$79 million) in income yield.

In fiscal 1991, both the actual income return and total return were more
than 7 percent. During the same period, the Nikkei Stock Average lost 1.84
percent. Total return in 1991–1992 combined was +5 bps better (US$9 million).
Also, risk management was greatly improved. In summary:
• The 1991 Russell–Yasuda Kasai model was then the largest application of

stochastic programming in financial services.

Figure 3.5. The Effect of Mean–Variance Approximations on the Optimal 
Stochastic Programming Solution
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• There was a significant ongoing contribution to Yasuda Kasai’s financial
performance—US$79 million and US$9 million in income and total return,
respectively, over fiscal 1991–1992—and the model has been in use since
then.

• The basic structure is portable to other applications because of flexible
model generation.

• The model will have a substantial potential impact on the performance of
financial services companies.

• The top 200 insurers worldwide have in excess of US$10 trillion in assets.
• Worldwide pension assets are also about US$7.5 trillion, with a US$2.5

trillion deficit.
• The industry is also moving toward more complex products and liabilities

and risk-based capital requirements.

Insurance Products with Guarantees

Selling guarantees is like smoking Cuban cigars while driving a
dynamite truck; you better do it carefully.

These products are interesting and popular, but they are dangerous if the
guarantees are set too high.

Many insurance companies in Japan, the United States, Europe, and
elsewhere write insurance policies in which a certain investment return is
guaranteed over time. This practice is risky and dangerous and frequently
leads to disaster. The Russell–Yasuda Kasai model was designed to analyze
such situations to evaluate their risk and determine good investment strategies.

Consiglio, Cocco, and Zenios (2001, forthcoming 2004) discussed a model
for managing such insurance policies with guarantees that Prometeia has
used for Italian insurers. In these policies, there are guarantees on the
minimum rate of return, bonus provisions, and surrender options. These
features are attractive for investors who want to combine insurance with an
investment in a single product. In Italy, institutional investment and pension
fund portfolios are primarily in bonds (see Table 3.8). From 1997 to 2002,
however, the trend for individuals has been toward mutual funds, equities,
and life and general insurance at the expense of liquid assets and bonds. In
2002, some 44.8 percent of Italian households’ traded financial assets were in
mutual funds and 19.9 percent were in insurance.

Financial products with minimum rate of return guarantees can be matu-
rity or multiperiod guarantees. In the former case, the guarantee applies only
at maturity of the contract and returns above the guarantee in periods before
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maturity offset shortfalls at other periods. In the latter case, the time to
maturity is divided into subperiods—quarterly or biannually—and the guar-
antee applies at the end of each period. Hence, excess returns in one subperiod
cannot be used to finance shortfalls in other subperiods. Such products appear
in insurance policies, guaranteed investment contracts, and some pension
plans (see, for example, Hansen and Miltersen 2002). 

Policyholders participate in the firm’s profits; they receive a bonus when
the return of the firm’s portfolio exceeds the guarantee, thus creating a
surplus. Bonuses are distributed at maturity, at multiple periods until maturity,
or using a combination of distribution plans. Some products distribute
bonuses using a smoothing formula, and others distribute a prespecified
fraction of the portfolio return or portfolio value, net of liabilities. The earlier

Table 3.8. Pension Fund Assets: Total, as a Percentage of GDP, 
and Allocation, 1997

Countries

Assets
(US$ 

billions)

GDP
(US$ 

billions)
Percentage 

of GDP

Allocation of Assets

Equity 
Fixed 

Income
Real 

Estate Cash Other

Austria  20.9  181.8  11.5% 4.1%  82.4%  1.8%  1.6%  10.0%
Belgium  10.3  213.8 4.8 47.3  41.3 5.2 5.6 0.6
Denmark  29.3  143.7 20.4 23.2  58.6 5.3 1.8  11.1
Finland  8.9  103.6 8.6 13.8  55.0  13.0  18.2 0.0
France  84.4  1,229.1 6.9 12.6  43.1 7.9 6.5  29.9
Germany  270.7  1,865.4 14.5 9.0  75.0  13.0 3.0 0.0
Greece  4.6  105.0 4.4 7.0  62.9 8.3  21.8 0.0
Ireland  34.5  64.1 53.8 58.6  27.1 6.0 8.0 0.4
Italy  21.6  1,010.7 2.1 4.8  76.4  16.7 2.0 0.0
Luxembourg  0.03  13.7 0.2 23.7  59.0 0.0 6.4  11.0
Netherlands  361.7  320.0  113.0 36.8  51.3 5.2 1.5 5.2
Portugal  9.4  86.0 10.9 28.1  55.8 4.6 8.8 2.7
Spain  18.7  470.4 4.0 11.3  60.0 3.7  11.5  13.5
Sweden  96.2  202.4 47.5 40.3  53.5 5.4 0.8 0.1
United 

Kingdom  891.2  1,127.3 79.1 72.9  15.1 5.0 7.0 0.0
Total 

European 
Union  1,862.4  7,137.0 26.1 53.6  32.8 5.8 5.2 2.7

United States 52 36 4 8 na
Japan 29 63 3 5 na

na = not applicable.

Source: Based on data from the 1996 report of the European Federation for Retirement Provision.
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unit-linked policies would pay a benefit upon death or maturity whichever was
the greater of the guaranteed amount and the value of the insurer’s reference
portfolio. These were simple maturity guarantees with a bonus paid at matu-
rity. U.K. insurance policies declare at each subperiod a fraction of the surplus,
estimated using a smoothing function, as a reversionary bonus, which is then
guaranteed. The remaining surplus is managed as an investment reserve and
is returned to customers as a terminal bonus if it is positive at maturity or upon
death; this issue is discussed in Ross (1989), Chadburn (1997), and Kat (2001).
These policies are multiperiod guarantees with bonuses paid in part at inter-
mediate times and in part at maturity.

The Prometeia model has multiperiod guarantees with bonuses paid at
each subperiod that are subsequently guaranteed. The bonus is a fraction of
the portfolio’s excess return above the guaranteed rate during each subperiod.
Figure 3.6 shows the growth of a liability with a participation rate of 85
percent and a portfolio that guarantees a yearly return of at least 3 percent.
When bonuses are paid, the liability is lifted, and the minimum guarantee
applies to the increased liability. This result creates a nonlinear interaction
between the rate of return of the portfolio and the total return of the liability.
The asset portfolio had losses in Period 7, and the liability grew at the 3 percent

Figure 3.6. Sample Returns Assuming Guarantee of 3 Percent and 
Participation Rate of 85 Percent

Source: Based on data from Consiglio et al. (forthcoming 2004).
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guaranteed rate. Nonetheless, asset returns allowed the firm to recoup its
losses by the 10th period and achieve a positive net return at maturity. 

The trend is also to higher levels of autonomy rather than delegation of
asset management by wealthy investors. This trend has led to an increase in
the purchase of innovative instruments. The percentage of Italian households
classified as “innovators” grew from 6.7 percent in 1991 to 22.6 percent in 2001,
to some 4.3 million households. Meanwhile, the Italian insurance industry has
lagged in its share of these funds. It has responded with innovative policies
that offer traditional insurance and participation in the company’s profits, such
as the guaranteed products. These policies have minimum guaranteed rates
of return, plus bonus provisions when asset returns exceed the minimum
guarantee and the right, in some policies, to surrender the product at any time.
Various policies are offered, and others can be designed subject to competitive
pressures and regulatory restrictions. Policies can have the sum insured being
payable if the event occurs before the policy horizon. Otherwise, the insured
sum may be capitalized based on the returns from an asset portfolio. The
policies can contain bonuses, minimum guaranteed rates of return, and lapse
options to surrender policies before maturity. These policies face regulation,
which must also be modeled.

With the historically low interest rates in 2002–2003, managing such
policies is challenging, and fixed-income assets may not be able to yield the
guaranteed rate of return. For instance, the Italian guaranteed rate since 1998
has been 3 percent, so the difference between the guaranteed rate and the
10-year yield is only 1 percent, which is inadequate for covering a firm’s costs.
In Germany, the guaranteed rate since 1998 has been 3.5 percent, which is
only 0.5 percent below the 10-year yield. Danish products had guarantees of
3 percent until 1999, when they were reduced to 2 percent. In Japan, Nissan
Mutual Life Insurance Company failed on a US$2.56 billion liability arising
from a 4.7 percent guaranteed policy. The loss occurred because Nissan failed
to properly account for the value of options, which were a part of the policy.

The basic stochastic programming model contains various elements: the
guarantee, usually from a bond; the bonus, which is a European type of option;
and the surrender feature, which is an American type of option.2 The policies
must satisfy regulatory requirements regarding leverage, equity-to-liability
ratios, and other features. The options-pricing problem is embedded in the
stochastic programming asset allocation problem by using discrete scenarios
that allow one to analyze different policies. Portfolios must be designed to

2The basic stochastic programming model is shown in Appendix C (p. 22), which is available
online in the Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/
AppendixC.pdf.
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react to the uncertainty over time. This requirement involves the minimization
of shortfalls from portfolio returns in various periods that are below the
guaranteed amount. Scenarios are generated by sampling from a discrete
approximation of continuous-time models of the interest rate, bond pricing,
and other models involved.

An example from Consiglio et al. (forthcoming 2004) for the Italian insur-
ance industry follows. They used 23 stock indexes of the major industrial
sectors traded on the Milan Stock Exchange and indexes of short-, medium-,
and long-term Italian government debt. The Markowitz mean–variance efficient
frontier of these assets and the capital market line are shown in Figure 3.7. 

The efficient portfolios are not efficient at all when a minimum guarantee
exists. Portfolios A, G, and B are on the mean–variance-efficient frontier in
Panel A of Figure 3.7. However, they are not efficient in the certainty-equivalent
excess return to shareholders, or CEexROE (shareholders’ reward versus cost
of guarantee space), as shown in Panel B of Figure 3.7. Consiglio et al.
(forthcoming 2004) concluded that a more aggressive portfolio strategy would
be needed to achieve the minimum guaranteed return and provide excess
shareholder return. This increasing appetite for high but risky returns is not
monotonic. When moving from Portfolio G toward the most risky Portfolio B,
at first, the cost of the guarantee declines and CEexROE increases. But as we
approach Portfolio B, shareholder value erodes. For these volatile portfolios,
the embedded option is deep in the money, and shareholders’ money is used
to compensate for the shortfalls without realizing any excess returns.

The management of minimum-guarantee products requires striking a
balance between too much reliance on bonds without meeting the guarantee
and too much reliance on stocks, which destroys shareholder value. As in
most asset/liability models, the mean–variance approach considers only
assets and thus does not perform well for assets and liabilities. The liabilities
are endogenous to the portfolio-selection model, and the guarantee floor
exists. Thus, nonlinearities exist in the model, as do highly asymmetric
returns that are not conducive to mean–variance modeling.

Figure 3.8 and Figure 3.9 show results from the model using logarith-
mic utility and an 80 percent (α) participation rate. The probabilities of
actuarial events are from Italian mortality tables. Probabilities of policy sur-
render were ignored. The allocation that provides the highest return to
shareholders net of downside risk is shown for each level of the minimum
guarantee. Even Portfolio H is dominated by the portfolios obtained from the
stochastic programming model. Optimal bond–stock portfolio compositions
for different levels of the minimum guarantee (5–10 percent of portfolio value)
improve only over Italian stocks and bonds, as shown in Figure 3.10. For
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low levels of minimum guarantee, the large equity content of the portfolio
increases shareholder value. The higher mean returns of the equities pass
mostly to shareholders. For very large values of the minimum guarantee, the
equity content is also large but shareholder value is reduced. Equity is the

Figure 3.7. Example for the Italian Insurance Industry

Source: Based on data from Consiglio et al. (2004).

A. Mean−Variance-Efficient Portfolios of Italian Stocks and Bonds and the Capital Market Line

B. Corresponding Certainty-Equivalent Excess Return to Shareholders
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only way to back very large guarantees, but shareholder value declines as the
firm’s equity is used to fund shortfalls. Such guarantees are risky, especially
if equity mean-return forecasts fail to materialize or are volatile. The optimized
portfolios show that the Italian insurers should shift their portfolios toward
20–25 percent in equities for 3 percent guarantees. The stochastic program-
ming model is useful for the design of competitive policies, prices of policies,
and levels of minimum guarantees.

Figure 3.8. Annualized CEexROE to Shareholders vs. Cost of the 
Minimum Guarantee for the Integrated Portfolios at Different 
Levels of Minimum Guarantee and for the Mean–Variance 
Efficient Portfolios

Note: m.g. = minimum guarantee.

Source: Based on data from Consiglio et al. (forthcoming 2004).
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Figure 3.9. Results from the Prometeia Model Using  Logarithmic Utility 
and an 80 Percent (�) Participation  Rate

Source: Based on data from Consiglio et al. (2004).
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Figure 3.10. Trade-Off of CEexROE against Cost of the Guarantee for 
Internationally Diversified Portfolios and Portfolios with 
Exposure to the Corporate Bond Markets

Source: Based on data from Consiglio et al. (2004).
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4. Pension Fund Applications

Most people spend more time planning for their vacation than for
their retirement.

Citigroup

Half of the investors who hold company stock in their retirement
accounts thought it carried the same or less risk than money market
funds.

Boston Research Group

The brokerage firm Schwab is no longer making matching contribu-
tions to its employees’ 401(k) accounts.

Various U.S. airlines want to delay contributions to underfunded
pension plans for five years, until 2008. A bill in Congress would allow
companies to assume that blue-collar workers will, on average, die
sooner than pension plans now assume to lower their current contri-
bution rates.

In January 2003, the pension fund consultants at Watson Wyatt Worldwide
estimated that global pension funds had balance sheets of –US$2.5 trillion
(assets minus liabilities). Assets totaled US$10.7 trillion, the same as in 1997.
Liabilities are growing because people are living longer, and assets are falling
because of the equity declines in 2000–2002.

Aging of the World’s Populations
Pensions around the world and those who manage and guarantee them will
need to deal with the serious problem that the world’s populations are aging
rapidly. Also, an enormous group of retirees will be needing to cash out of
pension and other portfolios at the same time. In Europe, the percentage of
people in the 65 and older group will roughly double from 1990–2030, from 20
percent to 40 percent (see Table 4.1). By 2030, two workers will have to
support each pensioner, compared with four workers in 1990. Better living
conditions, more-effective medical systems, declining fertility rates, and low
immigration have all contributed to this aging phenomenon. 

The European, Japanese, British, Irish, American, and Canadian pension
fund situations are quite different. In Europe, the bulk of pension payments
are paid by the state. These state pensions, called “Pillar 1,” amount to about
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88 percent of total pension costs. Without changes, the pension payouts in
much of the European Union (EU) will grow from about 10 percent of GDP
in 1997 to more than 15 percent in 2030. Contribution rates will have to be
raised significantly to enable the public social security system to remain
solvent. Also, effective private pension plans will need to play a more major
role, given the demand for health care and other social services in addition to
pensions. For some countries, however, such as the United Kingdom and
Ireland, where pension schemes linked to employment (second pillar) and
individual pensions (third pillar) are more prevalent, the pension costs will
remain stable over the projection period (see Table 4.1).

How much in assets do these countries have in reserve? Table 3.8 shows
that, except for the United Kingdom, the Netherlands, and to a lesser extent
Ireland and Sweden, pension fund assets as a percentage of GDP are very low.
Burtless (2003), using data from 1927 to 2001, showed that in five major

Table 4.1. Elderly Dependence Ratio Projections in Europe and OECD 
Projections of Pension  Cost as a Percentage of GDP, 1990–2030

Dependency Ratio Pension Cost as Percentage of GDP

Country 1990 2010 2030 1995 2000 2010 2020 2030 2040

Austria  22.4  27.7  44.0 NA NA NA NA NA NA
Belgium  22.4  25.6  41.1  10.4%  9.7%  8.7%  10.7%  13.9%  15.0%
Denmark  22.7  24.9  37.7 6.8 6.4 7.6  9.3 10.9  11.6
Finland  19.7  24.3  41.1  10.1 9.5  10.7  15.2 17.8  18.0
France  20.8  24.6  39.1  10.6 9.8 9.7  11.6 13.5  14.3
Germany  21.7  30.3  49.2  11.1  11.5  11.8  12.3 16.5  18.4
Ireland  18.4  18.0  25.3 3.6 2.9 2.6  2.7 2.8 2.9
Italy  21.6  31.2  48.3  13.3  12.6  13.2  15.3 20.3  21.4
Netherlands  19.1  24.2  45.1 6.0 5.7 6.1  8.4 11.2  12.1
Portugal  19.5  22.0  33.5 7.1 6.9 8.1  9.6 13.0  15.2
Spain  19.8  25.9  41.0  10.0 9.8  10.0  11.3 14.1  16.8
Sweden  27.6  29.1  39.4  11.8  11.1  12.4  13.9 15.0  14.9
United 

Kingdom  24.0  25.8  38.7 4.5 4.5 5.2  5.1 5.5 5.0
European 

Union
average

 21.4  25.9  40.3

NA = not available.

Note: Ratio is for those 65 and over as a percentage of population. OECD = Organization for Economic
Cooperation and Development.

Source: Based on data from Bos, Vu, Massiah, and Bulatao (1994) and Roseveare, Leibfritz, Fore, and Wurzel
(1996). 
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industrial countries (France, Germany, Japan, the United Kingdom, and the
United States), individual savings accounts are not sufficient for a safe retire-
ment. Hence, retirees need additional resources.

One way to deal with the problem of large pension payments is to have
good risk-adjusted returns, and the models in this monograph are an attempt
to provide such results by taking into account various problem elements and
uncertainties. Not surprisingly, the countries with the more aggressive pen-
sion fund managers—Ireland, the United Kingdom, and the United States—
have had higher returns than other European countries (see Table 4.2). 

These superior results are related to the asset allocation weights; the
advanced countries have more equities, whereas most of the EU countries
listed in Table 3.8 have the bulk of their capital invested in bonds. In the
models developed here, these weights will be scenario and time dependent.

Why Do European Pension Fund Managers Invest So Much
in Bonds?
European pension plans have a strong preference for bondholdings, as shown
in Table 3.8. More “mature’’ Pillar 2 countries, such as the United Kingdom
and Ireland, which have managed portfolios for foreign as well as domestic

Table 4.2. Average Real Annualized Pension 
Fund Net Returns, 1984–93 

Country Return

Restrictive
Belgium 8.8%
Denmark 6.3
Germany 7.1
Netherlands 7.7
Spain 7.0

Average 7.4%

Aggressive
Ireland 10.3%
United Kingdom 10.2
United States 9.7

Average 10.1%

Source: Based on data from the European Commission (1997).
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investors for a long time, have a higher equity exposure, which may better
reflect the long-term aspect of pension obligations. In countries such as
Austria, Germany, Italy, Spain, and France where equity markets were not
developed until recently, pension plans are invested more heavily in local
government bonds. 

In addition, such asset structures also reflect the attitude toward equities
in various countries. With the introduction of the euro in 1999, a first important
step toward a more integrated capital market, especially for equities, was
made. In Austria, pension funds are now starting to increase their equity
positions, but it will take some time to reach a structure similar to that in the
well-established U.S., U.K., and Irish pension industries. Strict regulations,
the availability of investment products, a fear of foreign investment, a short-
term outlook, and tradition have led to this situation. The regulations, espe-
cially the perception of them, are still not flexible enough to allow pension
managers to diversify their portfolios across asset classes, currencies, and
worldwide markets.

Some changes, however, are on the horizon from the European Commis-
sion. The new proposals would allow European pensions to have more free-
dom to invest in equities and foreign assets and currencies. In EU countries,
the limit for worldwide equities would rise to 70 percent versus the current
average of about 35 percent.

The high percentage of bond allocations in European pension funds,
shown in Table 3.8, has had a substantial effect on actual performance. Table
4.2 shows annualized real pension fund returns for a subset of five EU
countries versus those for the United States, the United Kingdom, and Ireland.
Not surprisingly, the more advanced, more aggressive investment styles of
the United States, the United Kingdom, and Ireland led to returns that were
about 3 percent higher a year.

Using measures such as the Sharpe ratio or the capital asset pricing
model, studies, such as Dimson, March, and Staunton (2002), Keim and
Ziemba (2000), and Jorion and Goetzmann (1999), indicate that over long
periods, equity returns outperform bond returns in risk-adjusted terms. More-
over, the historical evidence, since 1802 for the United States and since 1700
for the United Kingdom, indicates that the longer the period, the more likely
the dominance by equities. Recall the calculations in Table 2.8 from Siegel
(2002); for all 20-year periods from 1926–2001, U.S. equities outperformed
bonds, and for 30-year horizons, based on the past, it has been optimal (with
a mean–variance model) to be more than 100 percent in stocks and to have a
short position in bonds.



The Stochastic Programming Approach to Asset, Liability, and Wealth Management

98 ©2003, The Research Foundation of AIMR™

Hensel and Ziemba (2000b) showed how the slow but steady outperfor-
mance of assets can lead to dramatically higher total wealth levels over long
periods. For example, for the United States, during the 1942–97 period, a
strategy that was 100 percent in U.S. small-cap stocks with Democratic
administrations and 100 percent in large-cap stocks in Republican administra-
tions had, in 1997, 24.5 times as much wealth as the typical 60/40 percent
stock/bond mix used in most U.S. pension funds. How much to invest in cash,
stocks, and bonds over time is a deep and complex issue. For a theoretical
analysis in which the uncertainty of mean reversion is part of the model, see
Barbaris (2000). One thing is clear: Equities have had an enormous advantage
over cash and bonds during most periods in most countries, so the optimal
blend is to have much more equity than 5 percent.

The case for equities, however, is not as clear-cut as Figure 2.14 might
indicate. Figure 2.15 shows how bumpy the gains have been for the DJIA in
real terms. Hence, investors who need funds for liability commitments, such
as pensioners, may well have much poorer results. Indeed, despite the near
linearity of the growth of equity values in Figure 2.14, there were three long
subperiods of essentially zero nominal equity growth, not counting dividends,
in the 20th century: 1900–1920, 1929–1954, and 1964–1981.

For example, the DJIA was at 66.08 on 31 December 1899 and at 71.95 on
31 December 1920, a rise of 0.4 percent a year. By September 1929, the DJIA
was at 381, a 430 percent increase in less than nine years. But then it fell to
177 in 1946, half its 1929 level. Then, on 31 December 1964, the DJIA was at
874.12, and it was essentially the same, at 875.00, on 31 December 1981, 17
years later. But 17 years later on 31 December 1998, it was more than 10 times
higher, at 9181.43. Interest rates were crucial because long-term U.S. govern-
ment bonds were yielding 4.20 percent on 31 December 1964, 13.65 percent
on 31 December 1981, and 5.09 percent on 31 December 1998.

So, the conclusion, to paraphrase Warren Buffett (2001), is that equity
prices have risen dramatically since 1900 in the United States, but during three
long periods of 20, 25, and 17 years, stocks had essentially zero gains, or even
losses, in nominal terms.

In the United States, notable examples of institutions close to pension
funds that have had very high risk-adjusted returns from a variety of private
placement hedge fund and other investments without high equity exposures
are the endowments of Harvard and Yale universities and the Ford Foundation
(see Swensen 2000 and Clifford, Kroner, and Siegel 2001). A higher equity
proportion or other way to increase real returns would have resulted in better-
funded pension plans, higher pension payments, or lower contribution rates
for companies. Of course, this outperformance is predicated on a continuing
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high equity risk premium and is volatility dependent. Between 1982 and 1999,
the return of equities over bonds was more than 10 percent a year in EU
countries. These high equity returns of the distant past and the bull market
of the late 1990s, however, led to valuations of P/E and other measures that
were at historically high levels in Europe, the United States, and elsewhere.
Studies by Campbell and Shiller (1998, 2001), Siegel, Shiller (2000), and Berge
and Ziemba (2003) have suggested that this outperformance is unsustainable,
and the weak equity returns of 2000–2003 are consistent with this view. The
long-run results indicate equity outperformance, however, and in the future,
this historical result may well be continued and thus needs to be reflected in
the scenarios. (See the discussion in Chapter 2.)

Pension fund managers that have been mostly invested in bonds face a
dilemma. Should they move more into assets that have historically had higher
mean returns and higher variance or stick with what has worked satisfactorily,
if not spectacularly, in the past? Of course, what other pension funds do is a
factor in evaluating fund performance, especially in the use of specified
benchmark performance evaluation levels. The specification of the type of
benchmark (a linear combination of assets) around which the fund is to be
evaluated greatly influences pension investment behavior. InnoALM, the
Innovest Austrian pension fund financial planning model described below,
was designed to help pension fund managers prudently make these choices
by taking essentially all aspects of the problem into account.

For example, Austrian pension fund managers have had considerably
more flexibility in their asset allocation decisions than the investment rules
shown in Exhibit 4.1 might indicate. For example, if an investment vehicle
is more than 50 percent invested in bonds, then that vehicle is considered to
be a bond fund. So, investment in 45 percent stocks and 55 percent in bond
funds (whose average bond and stock weightings are 60/40 percent) yields

Exhibit 4.1. National Investment Restrictions on Pension Plans

Country Investment Restrictions

Germany Maximum: 30% equities/5% foreign bonds
Austria Maximum: 40% equities/45% foreign securities; minimum: 40% Eurobonds
France Minimum: 50% Eurobonds
Portugal Maximum: 35% equities
Sweden Maximum: 25% equities
United Kingdom Prudent man rule
United States Prudent man rule

Source: Based on data from the European Commission (1997).
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an average equity of the portfolio of 67 percent, which is similar to that of the
higher-performing U.K. managers. Moreover, currency hedged assets are
considered to be euro denominated. Hence, the minimum of 40 percent in
Eurobonds is effectively a 40 percent limit on worldwide bonds, but because
of the above rules on the weighting of assets, this limit is not really binding.
In addition, the 5 percent rule on option premiums means that managers have
had effectively full freedom for worldwide asset allocations. Such use of the
rules, however, has not been typical of actual pension fund managers. In some
scenarios, such allocations away from the asset allocation typical in other
Austrian pension funds could have led to disaster. So, without being armed
with a model such as InnoALM that can calculate the possible consequences
of asset weight decisions, it has been safest for managers to go with the crowd.

The European Commission (1999) stressed the importance of a relaxation
of restrictive quantitative rules on pension fund investing. The diversification
of investments is more important than the rules on different investments. It
recommends the use of modern asset/liability management techniques to
achieve this diversification goal.

The following section describes a model for the effective operation of
private pension funds in Austria. These funds usually work on a funded basis,
whereby the pension benefits depend on an employment contract or the
pursuit of a particular profession. Schemes are administered by private insti-
tutions, and benefits are not guaranteed by the state. These occupational
pension schemes are widespread throughout Europe. Normally, contribu-
tions to such systems are made by the employer and on an optional basis for
additional benefits by employees. The contribution level may depend on the
wage level or the position within a company. Defined-contribution plans
(DCPs) have fixed contributions, and the payout depends on the capital
accumulation of the plan. Defined-benefit plans (DBPs) have payouts guaran-
teed by the company, and the contribution is variable, depending on the capital
accumulation over time.

An important difference between these two methods is the risk-bearer
position. In DBPs, the employer guarantees the pension payment, which is
usually tied to some wage at or near retirement. Hence, the company has to
inject money into the pension plan if asset returns do not cover pension
liabilities; however, the company gains or, equivalently, reduces future con-
tributions if the asset returns of the plan are higher than required to fund the
liabilities. For DCPs, which have become more popular, the employees and
pensioners bear the risk of low asset returns. Their pensions are not fixed and
depend on the asset returns. High returns will increase pensions and vice
versa. No direct financial risk for the employer is incurred, although with poor
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returns, the employer could suffer from a negative image, if, for example, the
following headline appeared: “Pensions for the Siemens Pensioners Have to
be Reduced by 3 Percent in the Next Year.” The Siemens pension plan for
Austria is a DCP, but InnoALM was designed to handle either pension system.

The steep fall in worldwide equity prices in 2000–2003, especially in 2002,
has caused a major crisis for insurance companies and pension funds and
many others that have considerable long equity positions. Particularly in
trouble are DBPs, which guarantee fixed payments until the death of the
pensioners and their spouses. In England, this issue is already causing many
discussions of rule changes, such as changing the age at which someone can
receive retirement benefits to 70 instead of the current 65, and asset allocation
decisions, such as shifting into bonds from equities at very depressed prices,
thereby locking in large losses. The U.K. company Boots Group has moved
completely into bonds, a move that has had good success in the short term
but appears to be suboptimal in the long term. The University of Toronto
pension fund lost US$484 million in the year ending April 2003 by using similar
suboptimal strategies. At least Boots did the bond allocation before equities
fell and bonds rose and matched liabilities to these assets.

The case for bond-only pension funds was made by Bodie (2001). The
theoretical idea is to eliminate liabilities with a series of bonds of varying
durations held to maturity; thus, the liabilities are taken care of and the interest
rate risk is eliminated. TIPS (U.S. Treasury inflation-indexed securities) that
return 3.4 percent plus inflation over a 30-year cycle can be used to mitigate
the effects of inflation. The view in this monograph is to consider all assets in
relation to the future scenarios in one’s asset allocation mix, including TIPS.
A policy that uses only one asset class must be suboptimal. Nonetheless, the
idea is of interest to those who cannot predict scenarios, such as strict efficient
market proponents. Oxford, Cambridge, Stanford, Princeton, Columbia, and
other universities have successfully used a similar idea to buy land and
housing to subsidize students and faculty.

InnoALM, the Innovest Austrian Pension Fund Financial
Planning Model
Siemens Oesterreich, part of the global Siemens Corporation, is the largest
privately owned industrial company in Austria. Its businesses, which had
revenues of €2.4 billion in 1999, include information and communication
networks, information and communication products, business services,
energy and traveling technology, and medical equipment. Its pension fund,
established in 1998, is the largest corporate pension plan in Austria and is a
DCP. More than 15,000 employees and 5,000 pensioners are members of the
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pension plan, which had €510 million in assets under management as of
December 1999.

Innovest Finanzdienstleistungs, founded in 1998, is the investment man-
ager for Siemens Oesterreich, the Siemens pension plan, and other institu-
tional investors in Austria. With €2.2 billion in assets under management,
Innovest focuses on asset management for institutional money and pension
funds. Of 17 plans analyzed in the 1999–2000 period, it was rated as the best
plan in Austria. The motivation to build InnoALM, as described in Geyer,
Herold, Kontriner, and Ziemba (2003), was based on the desire to have
superior performance and good decision aids to help achieve this ranking.

Various uncertain factors—possible future economic scenarios; stocks,
bonds, and other investments; transaction costs; liquidity; currency aspects;
liability commitments over time; Austrian pension fund law; and company
policy—suggested that a good way to approach this asset/liability problem
was via a multiperiod stochastic linear programming model. Various models
evolved from Kusy and Ziemba (1986), Cariño, Kent, Meyers, Stacy, Sylvanus,
Turner, Watanabe, and Ziemba (1994), Cariño and Ziemba (1998), Cariño,
Meyers, and Ziemba (1998), and Ziemba and Mulvey (1998). This model has
innovative features, such as state-dependent correlation matrixes, fat-tailed
asset return distributions, simple computational schemes, and output.

InnoALM was produced in six months in 2000, with Geyer and Ziemba
serving as consultants and with Herold and Kontriner, Innovest employees.
InnoALM demonstrated that a small team of researchers with a limited budget
could quickly produce a valuable modeling system that could easily be oper-
ated by nonstochastic programming specialists on a single personal computer
(PC). The IBM OSL stochastic programming software provided a good solver.
The solver was interfaced with user-friendly input and output capabilities.
Calculation times on the PC are such that different modeling situations can
be easily developed and the implications of policy, scenario, and other changes
can be seen quickly. The graphical output provides pension fund management
with essential information to aid in the making of informed investment deci-
sions and understanding the probable outcomes and risk involved with these
actions. The model can be used to explore possible European, Austrian, and
Innovest policy alternatives.

The liability side of the Siemens pension plan consists of employees for
whom Siemens is contributing DCP payments and retired employees who
receive pension payments. Contributions are based on a fixed fraction of
salaries, which varies across employees. Active employees are assumed to be
in steady state; thus, employees are replaced by a new employee with the same
qualification and sex so that there is a constant number of similar employees.
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Newly employed staff start with less salary than retired staff, which implies
that total contributions grow less rapidly than individual salaries. Figure 4.1
shows the expected index of total payments for active and retired employees
until 2030. 

The set of retired employees is modeled using Austrian mortality and
marital tables. Widows receive 60 percent of the pension payments. Retired
employees receive pension payments after reaching age 65 for men and 60 for
women. Payments to retired employees are based on the individually accumu-
lated contribution and the fund performance during active employment. The
annual pension payments are based on a discount rate of 6 percent and the
remaining life expectancy at the time of retirement. These annuities grow by
1.5 percent annually to compensate for inflation. Hence, the wealth of the
pension fund must grow by 7.5 percent a year to match liability commitments.
Another output of the computations is the expected annual net cash flow of
plan contributions minus payments. Because the number of pensioners is
rising faster than plan contributions, these cash flows are negative and the
plan is declining in size. 

Figure 4.1. Index of Expected Payments for Active and Retired Employees, 
2000–30

Source: Based on data from Geyer et al.
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The model determines the optimal purchases and sales for each of N
assets in each of T planning periods. Typical asset classes used at Innovest
are U.S., Pacific, European, and emerging market equities and U.S, U.K.,
Japanese, and European bonds. The objective is to maximize the concave risk-
averse utility function “expected terminal wealth” less convex penalty costs
subject to various linear constraints. The effect of such constraints is evaluated
in the examples that follow, including Austria’s limits of 40 percent maximum
in equities, 45 percent maximum in foreign securities, and 40 percent mini-
mum in Eurobonds. The convex risk measure is approximated by a piecewise
linear function, so the model is a multiperiod stochastic linear program.
Typical targets that the model tries to achieve (and is penalized for if it does
not) are for growth of 7.5 percent a year in wealth (the fund’s assets) and for
portfolio performance returns to exceed benchmarks. Excess wealth is placed
into surplus reserves, and a portion of the excess is paid out in succeeding
years.

The elements of InnoALM are described in Figure 4.2. The interface to
read in data and problem elements uses Excel. Statistical calculations use the
program Gauss, and these data are fed into the IBM OSL solver, which
generates the optimal solution to the stochastic program. The output, some
of which is shown in the next section, uses Gauss to generate various tables
and graphs and retains key variables in memory to allow for future modeling
calculations.1

Some Typical Applications.To illustrate the model’s use, I will present
results for a problem with four asset classes (European stocks, U.S. stocks,
European bonds, and U.S. bonds) with five periods (six stages). The periods
are twice 1 year, twice 2 years, and 4 years (10 years in total). I assume discrete
compounding, which implies that the mean return for asset i (µi) used in
simulations is µi  = exp( )i – 1(where  is the mean, based on log returns).
Using a 100 – 5 – 5 – 2 – 2 node structure, I generate 10,000 scenarios. Initial
wealth equals 100 units, and the wealth target is assumed to grow at an annual
rate of 7.5 percent. To make the results more general, I do not consider a
benchmark target or cash in- and outflows in this sample application. I use a
risk-aversion index of RA = 4, and the discount factor equals 5 percent, which
corresponds roughly with a simple static mean–variance model and a standard
60/40 stock/bond pension fund mix (see Kallberg and Ziemba 1983).

Assumptions about the statistical properties of returns measured in nom-
inal euros are based on a sample of monthly data from January 1970 for stocks

1Details of the model formulation are in Appendix D (p. 27), which is available online in the
Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixD.pdf.

y y
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and 1986 for bonds to September 2000. Summary statistics for monthly and
annual log returns are shown in Table 4.3. The U.S. and European equity
means for the longer 1970–2000 period were much lower and slightly less
volatile than those for the 1986–2000 period. The monthly stock returns were
nonnormal and negatively skewed. Monthly stock returns were fat tailed,
whereas monthly bond returns were close to normal (the critical value of the
Jarque–Bera test for a = 0.01 is 9.2). 

For long-term planning models such as InnoALM with a one-year review
period, however, properties of monthly returns are less relevant. The bottom
panel of Table 4.3 shows statistics for annual returns. Although average

Figure 4.2. Elements of InnoALM

Source: Based on data from Geyer et al.
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returns and volatilities remained about the same (I lost one year of data when
I computed annual returns), the distributional properties changed dramati-
cally. I still found negative skewness, but no evidence existed for fat tails in
annual returns, except for European stocks (1970–2000) and U.S. bonds.

The mean returns from this sample are comparable to the 1900–2000
101-year mean returns estimated by Dimson et al. Their estimate of the
nominal mean equity return was 12.0 percent for the United States and 13.6
percent for Germany and the United Kingdom (the simple average of the two
countries’ means). They estimated the mean bond return to be 5.1 percent for
the United States and 5.4 percent for Germany and the United Kingdom.

Assumptions about means, standard deviations, and correlations for the
applications of InnoALM appear in Table 4.4 and are based on the sample
statistics presented in Table 4.5. Projecting future rates of return from past
data is difficult. The equity means from the 1970–2000 period are used because
the 1986–2000 period had an exceptionally good performance of stocks that
is not assumed to prevail in the long run.

The correlation matrixes in Table 4.4 for the three different regimes are
based on the regression approach of Solnik, Boucrelle, and Le Fur (1996).
Moving average estimates of correlations among all assets are functions of

Table 4.3. Statistical Properties of Asset Returns

Returns

European Stocks U.S. Stocks
European 

Bonds
U.S.

Bonds

1/70–
9/00

1/86–
9/00

1/70–
9/00

1/86–
9/00

1/86–
9/00

1/86–
9/00

Monthly
Mean (%)a  10.60  13.30  10.70  14.80 6.50 7.20
Standard deviation (%)a  16.10  17.40 19.0  20.200 3.70 11.3
Skewness –0.90 –1.43 –0.72 –1.04 –0.50 0.52
Kurtosis 7.05 8.43 5.79 7.09 3.25 3.30
Jarque–Bera Test  302.60  277.30  151.90  155.6 7.70 8.50

Annual
Mean (%)  11.10  13.30 11.0  15.20 6.50 6.90
Standard deviation (%)  17.20  16.20  20.10  18.40 4.80 12.10
Skewness –0.53 –0.10 –0.23 –0.28 –0.20 –0.42
Kurtosis 3.23 2.28 2.56 2.45 2.25 2.26
Jarque–Bera test  17.40 3.90 6.20 4.20 5.00 8.70
aannualized.

Source: Based on data from Geyer et al.
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Table 4.4. Mean, Standard Deviation, and Correlation Assumptions

Asset Class European Stocks
U.S.

Stocks European Bonds
U.S. 

Bonds

Normal periods (70% of the time)
U.S. stocks 0.755
European bonds 0.334 0.286
U.S. bonds 0.514 0.780 0.333
Standard deviation 14.6% 17.3% 3.3% 10.9%

High volatility (20% of the time)
U.S. stocks 0.786
European bonds 0.171 0.100
U.S. bonds 0.435 0.715 0.159
Standard deviation 19.2% 21.1% 4.1% 12.4%

Extreme periods (10% of the time)
U.S. stocks 0.832
European bonds –0.075 –0.182
U.S. bonds 0.315 0.618 –0.104
Standard deviation 21.7% 27.1% 4.4% 12.9%

Average period
U.S. stocks 0.769
European bonds 0.261 0.202
U.S. bonds 0.478 0.751 0.255
Standard deviation 16.4% 19.3% 3.6% 11.4%

All periods
Mean 10.6% 10.7% 6.5% 7.2%

Source: Based on data from Geyer et al. 

Table 4.5. Regression Equations Relating Asset Correlations and U.S. 
Stock Return Volatility

Correlation Constant

Slope with 
respect to U.S. 
Stock Volatility

t-Statistic
of Slope R2

European stocks–U.S. stocks 0.62 2.7 6.5 0.23
European stocks–European bonds 1.05  –14.4  –16.9 0.67
European stocks–U.S. bonds 0.86 –7.0 –9.7 0.40
U.S. stocks–European bonds 1.11  –16.5  –25.2 0.82
U.S. Stocks–U.S. bonds 1.07 –5.7  –11.2 0.48
European bonds–U.S. bonds 1.10  –15.4  –12.8 0.54

Source: Based on data from Geyer et al.
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standard deviations of U.S. equity returns. The estimated regression equa-
tions are then used to predict the correlations in the three regimes shown in
Table 4.4. Results for the estimated regression equations appear in Table 4.5.
Three regimes are considered, and the assumption is that 10 percent of the
time, equity markets are extremely volatile; 20 percent of the time, markets
are characterized by high volatility; and 70 percent of the time, markets are
normal. The 35 percent quantile of U.S. equity return volatility defines “nor-
mal” periods. “Highly volatile” periods are based on the 80 percent volatility
quantile, and “extreme” periods, on the 95 percent quartile. The associated
correlations reflect the return relationships that typically prevailed during
those market conditions. The correlations in Table 4.4 show a distinct pattern
across the three regimes. Correlations among stocks tend to increase as stock
return volatility rises, whereas the correlations between stocks and bonds
tend to decrease. European bonds may serve as a hedge for equities during
extremely volatile periods because bond and stock returns, which are usually
positively correlated, are then negatively correlated. The latter is a major
reason that scenario-dependent correlation matrixes are a major advance over
sensitivity and stress testing a single average correlation matrix.

Optimal portfolios were calculated for seven cases—with and without
mixing of correlations and with normal, t-, and historical distributions. The
“mixing” cases NM, TM, HM use mixing correlations. Case NM assumes
normal distributions for all assets. Case HM uses the historical distributions
of each asset. Case TM assumes t-distributions with five degrees of freedom
for stock returns, whereas bond returns are assumed to have normal distribu-
tions. The “average” cases NA, HA, and TA use the same distribution assump-
tions but with no mixing of correlation matrixes. Instead, the correlations and
standard deviations used in these cases correspond to an “average” period in
which 10 percent, 20 percent, and 70 percent weights are used to compute the
averages of correlations and standard deviations in the three different
regimes. Comparisons of the average (A) cases and mixing (M) cases are
mainly intended to investigate the effect of mixing correlations. TMC main-
tains all assumptions of case TM but uses Austria’s constraints on asset
weights (see Exhibit 4.1). Eurobonds must be at least 40 percent and equity
at most 40 percent, and these constraints are binding.

Some Test Results. Table 4.6 shows the optimal initial asset weights
at Stage 1 for the various cases. Table 4.7 shows results for the final stage
(expected weights, expected terminal wealth, expected reserves, and shortfall
probabilities). These tables exhibit a distinct pattern: The mixing-correlation
cases initially assign a much lower weight to European bonds than the
average-period cases. Single-period, mean–variance optimization, and
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average-period cases (NA, HA, and TA) suggest an approximate 45/55 percent
stock/bond mix. The mixing-correlation cases (NM, HM, and TM) imply a
65/35 percent stock/bond mix. Investing in U.S. bonds is not optimal at Stage
1 in any of the cases, an apparent result of the relatively high volatility of U.S.
bonds.

Table 4.7 shows that the distinction between A and M cases becomes less
pronounced over time. European equities, however, still have a consistently

Table 4.6. Optimal Initial Asset Weights at Stage 1 by Case

Case
European 

Stocks
U.S. 

Stocks
European 

Bonds
U.S.

Bonds

Single-period, mean–variance optimal weights 
(average periods)  34.8% 9.6%  55.6% 0.0%

NA: No mixing (average periods) normal distributions 27.2 10.5 62.3 0.0
HA: No mixing (average periods) historical 

distributions 40.0 4.1 55.9 0.0
TA: No mixing (average periods) t-distributions for 

stocks 44.2 1.1 54.7 0.0

NM: Mixing correlations normal distributions 47.0 27.6 25.4 0.0
HM: Mixing correlations historical distributions 37.9 25.2 36.8 0.0
TM: Mixing correlations t-distributions for stocks 53.4 11.1 35.5 0.0

TMC: Mixing correlations historical distributions; 
constraints on asset weights 35.1 4.9 60.0 0.0

Source: Based on data from Geyer et al.

Table 4.7. Final Stage Results

Case
European 

Stocks
U.S. 

Stocks
European 

Bonds
U.S. 

Bonds

Expected 
Terminal 
Wealth

Expected 
Reserves
at Stage 6

Probability
of Target 
Shortfall

NA  34.3%  49.6%  11.7%  4.4%  328.9  202.8  11.2%
HA 33.5 48.1 13.6 4.8  328.9  205.2  13.7
TA 35.5 50.2 11.4 2.9  327.9  202.2  10.9

NM 38.0 49.7 8.3 4.0  349.8  240.1  9.3
HM 39.3 46.9 10.1 3.7  349.1  235.2  10.0
TM 38.1 51.5 7.4 2.9  342.8  226.6  8.3

TMC 20.4 20.8 46.3  12.4  253.1 86.9  16.1

Source: Based on data from Geyer et al.
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higher weight in the mixing cases than in the no-mixing cases. This higher
weight is mainly at the expense of Eurobonds. In general, the proportion of
equities at the final stage is much higher than in the first stage. This result
may be explained by the fact that the expected portfolio wealth at later stages
is far above the target wealth level (206.1 at Stage 6), and the higher risk
associated with stocks is less important. The constraints in case TMC lead to
lower expected portfolio wealth throughout the horizon and to a higher
shortfall probability than in any other case. Calculations show that initial
wealth would have to be 35 percent higher to compensate for the loss in
terminal expected wealth stemming from those constraints. In all cases, the
optimal weight of equities is much higher than the historical 4.1 percent in
Austria.

The expected terminal wealth levels and the shortfall probabilities at the
final stage shown in Table 4.7 make the difference between mixing and no-
mixing cases even clearer. The mixing-correlation cases yield higher levels
of terminal wealth and lower shortfall probabilities.

If the level of portfolio wealth exceeds the target, the surplus,  in period
j, is allocated to a reserve account. The reserves in t are computed from

 and are shown in Table 4.7 for the final stage. These values are in
monetary units given an initial wealth level of 100. They can be compared with
the wealth target 206.1 at Stage 6. Expected reserves exceed the target level
at the final stage by up to 16 percent. Depending on the scenario, the reserves
can be as high as 1,800. Their standard deviation (across scenarios) ranges
from 5 at the first stage to 200 at the final stage. The constraints in case TMC
lead to a much lower level of reserves compared with the other cases, which
implies, in fact, less security against future increases of pension payments.

We thus find that optimal allocations, expected wealth, and shortfall
probabilities are mainly affected by considering mixing correlations, but the
type of distribution chosen has a smaller impact. This distinction is primarily
the result of the higher proportion allocated to equities if different market
conditions are taken into account by mixing correlations.

The results of any asset allocation strategy depend crucially on mean
returns. I can investigate the effect by parameterizing the forecasted future
means of equity returns. Assume that an econometric model forecasts that the
future mean return for U.S. equities is some value between 5–15 percent. The
mean of European equities is adjusted accordingly so that the ratio of equity
means and the mean bond returns shown in Table 4.7 are maintained. I retain
all other assumptions of case NM (normal distribution and mixing correla-
tions). Figure 4.3 summarizes the effects of these mean changes in terms of
the optimal initial weights. As expected, the results are sensitive to the choice

D˜ j

Dj
˜

j=1
t

∑
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of the mean return; see Chopra and Ziemba (1993) and Kallberg and Ziemba
(1981, 1983). If the mean return for U.S. stocks is assumed to equal the long-
run mean of 12 percent, as estimated by Dimson et al., the model yields an
optimal weight for equities of 100 percent. A mean return for U.S. stocks of 9
percent, however, implies an optimal weight of less than 30 percent for
equities. 

Model Tests. Because state-dependent correlations have a significant
impact on asset allocation decisions, it is worthwhile to further investigate their
nature and implications from the perspective of testing the model. Positive
effects on pension fund performance induced by the stochastic, multiperiod
planning approach will be realized only if the portfolio is dynamically

Figure 4.3. Optimal Asset Weights at Stage 1

Source: Based on data from Geyer et al.
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rebalanced, as implied by the optimal scenario tree. I tested the performance
of the model considering this aspect. As a starting point, I broke down the
rebalancing decisions at later stages into groups of achieved wealth levels.
This process reveals the “decision rule” implied by the model, depending on
the current state. Consider case TM. I formed quintiles of wealth at Stage 2,
computed the average optimal weights assigned to each quintile, and did the
same using quintiles of wealth at Stage 5.

Panel A and Panel B of Figure 4.4 depict the distribution of weights for
each of the five average levels of wealth at the two stages. Although the
average allocation at Stage 5 is essentially independent of the wealth level
achieved (the target wealth at Stage 5 is 154.3), the distribution at Stage 2
depends on the wealth level in a specific way. If average attained wealth is
103.4, which is slightly below the target, I would choose a cautious strategy.
Bonds have the highest weight in this case (almost 50 percent). In this
situation, the model implies that the risk of even stronger underachievement
of the target is to be minimized. The model relies on the low, but more certain,
expected return of bonds to move back to the target level. If attained wealth
is far below the target (97.1), the model implies more than 70 percent equities
and a high share (10.9 percent) of relatively risky U.S. bonds. With such strong
underachievement, a cautious strategy has no room to attain the target level
again. If average attained wealth equals 107.9, which is close to the target
wealth of 107.5, the highest proportion would be invested in U.S. assets, with
49.6 percent in equities and 22.8 percent in bonds. The U.S. assets are more
risky than the corresponding European assets, which is acceptable because
portfolio wealth is close to the target and risk does not play a large role. For
wealth levels above the target, I would switch most of the portfolio to European
assets, which are safer than U.S. assets. This “decision” may be interpreted
as an attempt to preserve the high levels of attained wealth.

The decision rules implied by the optimal solution can be used to perform
a test of the model using the following rebalancing strategy. Consider the
10-year period from January 1992 to January 2002. In the first month of this
period, I assume that wealth is allocated according to the optimal solution for
Stage 1, given in Table 4.6. In each of the subsequent months, I rebalance the
portfolio as follows. First, I identify the current volatility regime (extreme,
highly volatile, or normal) based on the observed U.S. stock return volatility.
Then, I search the scenario tree to find a node that corresponds to the current
volatility regime and has the same or a similar level of wealth. The optimal
weights from that node determine the rebalancing decision. For the no-mixing
cases NA, TA, and HA, the information about the current volatility regime
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Figure 4.4. Optimal Weights Conditional on 
Quintiles of Portfolio Wealth at 
Stages 2 and 5

Source: Based on data from Geyer et al.
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cannot be used to identify optimal weights. In those cases, I use the weights
from a node with a level of wealth as close as possible to the current level of
wealth. 

Table 4.8 presents summary statistics for the complete sample and out-
of-sample periods. The mixing-correlation solutions assuming normal and
t-distributions (cases NM and TM) provided a higher average return with
lower standard deviation than the corresponding no-mixing cases (NA and
TA). The advantage may be substantial, as indicated by the 14.9 percent
average return of TM compared with 10.0 percent for TA. The t-statistic for
this difference was 1.7 and was significant at the 5 percent level (one-sided
test). Using the historical-distribution and mixing-correlation case (HM)
yielded a lower average return than the no-mixing case (HA). In the con-
strained case (TMC), the average return for the complete sample was in the
same range as for the unconstrained cases. This result stems primarily from
the relatively high weights assigned to U.S. bonds; U.S. bonds performed well
during the test period, whereas stocks performed poorly. The standard devi-
ation of returns was much lower because the constraints imply a lower degree
of rebalancing. 

To emphasize the difference between the cases TM and TA, Figure 4.5
compares the cumulated monthly returns obtained from the rebalancing
strategy for the two cases with a buy-and-hold strategy that assumes that the
portfolio weights on January 1992 were fixed at the optimal TM weights
throughout the test period. In comparison to the buy-and-hold strategy or the
performance using TA results, for which rebalancing does not account for

Table 4.8. Results of Asset-Allocation Strategies Using the  Decision Rule 
Implied by the Optimal Scenario  Tree

Case

Complete Sample Out of Sample

1/92–1/02 10/00–1/02

Mean Standard Deviation Mean Standard Deviation

NA  11.6%  16.1% –17.1% 18.6%
NM 13.1 15.5 –9.6 16.9

HA 12.6 16.5 –15.7 21.1
HM 11.8 16.5 –15.8 19.3

TA 10.0 16.0 –14.6 18.9
TM 14.9 15.9 –10.8 17.6

TMC 12.4 8.5 0.6 9.9

Source: Based on data from Geyer et al.



Pension Fund Applications

©2003, The Research Foundation of AIMR™ 115

different correlation and volatility regimes, rebalancing on the basis of the
optimal TM scenario tree provided a substantial gain. 

Such in- and out-of-sample comparisons depend on the asset returns and
test period. To isolate the potential benefits from considering state-dependent
correlations, we perform the following controlled simulation experiment.
Consider 1,000 10-year periods in which simulated annual returns of the four
assets are assumed to have the statistical properties summarized in Table 4.4.
One of the 10 years is assumed to be an “extreme” year, two years correspond
to “highly volatile” markets, and seven years are “normal” years. We compare
the average annual return of two strategies: (1) a buy-and-hold strategy using
the optimal TM weights from Table 4.6 throughout the 10-year period, and
(2) a rebalancing strategy that uses the implied decision rules of the optimal
scenario tree as explained in the in- and out-of-sample tests above. For
simplicity, we assume that the current volatility regime is known in each
period. The average annual returns for 1,000 repetitions of the two strategies

Figure 4.5. Cumulative Monthly Returns for Different Strategies,  
1992–2002

Source: Based on data from Geyer et al.
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are 9.8 percent (rebalancing) and 9.2 percent (buy and hold). The t-statistic
for the mean difference is 5.4, thus indicating the highly significant advantage
of the rebalancing strategy, which exploits the information about state-depen-
dent correlations.

For comparison, we use the optimal weights from the constrained case
TMC and repeat the same experiment. We obtain the same average mean of
8.1 percent for both strategies. This result indicates that the constraints imply
insufficient rebalancing capacity. Therefore, knowledge about the volatility
regime cannot be sufficiently exploited to achieve superior performance
relative to a buy-and-hold strategy. This result also shows that the relatively
good performance of the TMC rebalancing strategy in the sample 1992–2002
period was positively biased by the favorable conditions during that time.

Risk in 401(k) and Other Company Pension Plans
The stock market decline of 2000–2003 has been hard on pension funds in
several ways:
• Shortfalls were created in DBPs. For instance, at the start of 2002, General

Motors had obligations of US$76.4 billion and assets of US$67.3 billion,
for a shortfall of US$9.1 billion. Despite contributions of US$3.2 billion in
2002, the shortfall was projected to be US$23 billion at the end of 2002.
Ford had an underfunding of US$6.5 billion on 30 September 2002 that
was projected to be about US$10 billion by the end of 2002.

• For companies with DCPs, company image and employee morale have
suffered.

The collapse of Enron Corporation in late 2001—when the stock fell 99 percent
from US$90 to under US$1.00 and employees lost their jobs and most of their
pensions—highlights a problem well known to professional analysts. Having
a pension fund largely in one asset carries a lot of risk, and the risk is even
larger if that asset is correlated with one’s income. Enron employees lost more
than US$1 billion in total, some 60 percent of their 401(k) pension—a classic
example of overbetting and lack of diversification.

Table 4.9 shows that for many major companies, own-company stock is
a high percentage of 401(k) plans. In total, according to Mitchell and Utkus
(2002), about 5 million 401(k) plan participants hold 60 percent of their assets
in own-company stock, and those that do generally have large amounts. In
total, own-company stock is about 19 percent of assets. But for those who have
any company stock, it is 29 percent of assets. Not surprisingly, employees have
a lower percentage of own-company stock, 22 percent, when they have free
choice versus 53 percent when the company decides. 
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Why do companies and employees invest so much of their own-company
stock in their pensions? Companies can either purchase shares in the open
market, as Microsoft Corporation does, or they can issue shares just like
options to key employees and slightly dilute the stock price, which is econom-
ical for the company. 

Employees who invest in their company’s shares solve two problems, in theory.
They resolve the issue of agency costs that arises between shareholders and the
people hired to work on their behalf. And, . . . they reap the benefits of capital
appreciation, a fundamental component of capitalism. The results can be spectacu-
lar. America is filled with tales of people who held jobs as cash-register clerks at Wal-
Mart, or on the diaper-making line at Procter & Gamble, who survived on their
wages but have made fortunes through steady accumulation of company stock in
retirement plans. (Economist, p. 60)

Other spectacular examples include Microsoft, Intel Corporation, and Nokia
Corporation.

Employees can frequently purchase own-company shares at a discount to
current market price or acquire the shares through options given for free. The
pressure of corporate culture is also present. In Japan in 1988–1989, for
example, employees of the Yamaichi Research Institute were obliged by moral
suasion and peer pressure to buy stock in Yamaichi Securities, which went
bankrupt in 1995.

Enron has refocused attention on this risk that has been around a long
time. As a result, rule changes are likely to be enacted. A key is the risk-bearer
position of employees and employers. In 1942, laws were passed to limit own-
company stock to 10 percent in DBPs that bore employer risk. The 401(k)s

Table 4.9. Share of Own-Company Stock in 401(k) Pension Plans

Company
Own-Company Share 

in 401(k) Assets

Share Price Performance

2001 2002

Proctor & Gamble 94.7%  –2.2% 11.5%
Pfizer 85.5  –12.3 –22.0
Coca-Cola 81.5  –25.1 –5.5
General Electric 77.4  –23.3 –37.4
Enron 57.7  –99.1 –85.4
Texas Instruments 75.7  –34.5 –46.1
McDonald’s 74.3  –22.1 –39.3
Ford 57.0  –28.9 –38.3
Qwest 53.0  –69.7 –64.6
AOL Time Warner 52.0  –8.1 –59.2

Source: Based on data from the Economist.
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are DCPs that shift the risk to the employees. The Procter & Gamble Company
maintains that the welfare of the company and the employee are inseparable.
That attitude may be the American way, but at 95+ percent job risk, employees
are taking a lot of risk. This concentration usually leads to either very high or
very low returns.

What is the real risk of the own-company stock and job risk concentration?
Douglass, Wu, and Ziemba (2003) estimated this risk using mean–variance
and stochastic programming assets-only models. Before discussing these
models, recall how volatility destroys wealth, as discussed by Mitchell and
Utkus. They consider three workers who earn US$50,000 a year and contrib-
ute 10 percent to a 401(k). They assume an inflation rate of 3 percent a year
and that the stock market index and company stock return 10 percent a year,
with annual standard deviations of 20 percent and 40 percent, respectively.
After 30 years, the median employee who invested 100 percent in the market
index has US$830,000; with 50/50 percent in the market index and company
stock, the employee has US$615,000; and with 100 percent in company stock,
US$411,000. This result stems from the geometric arithmetic inequality
caused by the volatility of the company stock—gaining 50 percent and then
losing 50 percent does not make one even; 100 becomes 75, with a rate of
return of –13.4 percent. The greater the volatility, the lower the geometric
mean, which determines long-run wealth gains for constant arithmetic mean.

Douglass et al. consider the following situation: An investor chooses from
the market index (S&P 500), a bond index (Lehman Brothers U.S. Aggregate),
cash, and own-company stock. The parameter assumptions, estimated from
1985–2002 monthly data from DataStream, mirror long-run stock, bond, and
cash returns from Constantinides (2002), Dimson et al., and Siegel. Yearly
mean returns are 1.10, 1.05, 1.00, and 1.125 percent for these four assets,
respectively; standard deviations are 0.20, 0.04, 0.01, and 0.50 percent, and the
covariance matrix is

These assumptions yield mean returns relative to cash and higher
expected returns, with much higher volatility, for own-company stock (two
and a half times the S&P 500, which is typical for midcap equities). Figure
4.6 shows the results from the mean–variance model as a function of investor
risk aversion with (Panel B) and without (Panel A) company stock and as a
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Figure 4.6. Mean–Variance Model: Optimal 
Portfolios as a Function of Risk 
Aversion and Expected Return on 
Company Stock

Note: The shaded regions indicate portfolio weights (left axis). The
line represents the expected return on the optimal portfolio (right
axis). The circles indicate values of the independent variable for
which calculations were performed. Results for the three-asset case
with no own-company stock are in Panel A, and results for the four-
asset case are in Panel B and Panel C.

Source: Based on data from Douglass et al.
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function of company stock mean return (Panel C). When risk aversion is 8,
there is a 60/40 percent stock/bond mix. 

The optimal portfolio in Panel A of Figure 4.6 has no own-company
stockholdings. Hence, without trading constraints and with a risk aversion of
8, it is not optimal to hold own-company stock. For investors with trading
constraints, such as the inability to short sell, however, owning some own-
company stock can be optimal. Own-company stock appears as an optimal
portfolio choice if the investor’s risk aversion is very low or the expected return
for the stock is high. At a risk aversion of 5, the short-selling constraint
becomes binding and the optimal portfolio begins to shift to the riskier stock
investment (Panel B of Figure 4.6). To obtain company stockholdings above
50 percent, as shown in Table 4.9, requires a risk-aversion parameter below
0.5. Alternatively, an own-company stockholding of 50 percent is obtained if
the employee is presumed to have an expected return for own-company stock
of more than 50 percent (Panel C of Figure 4.6). Own-company stock enters
the optimal portfolio when its mean return approaches 20 percent (i.e., double
the S&P 500 mean return). The expected return of own-company stock must
be more than 50 percent or five times the S&P 500 for the optimal allocation
of own-company stock to reach 50 percent.

This analysis assumes that all employee wealth is contained in the com-
pany pension plan. This assumption is reasonable considering that many
North Americans save little beyond what they have in their tax-sheltered
accounts. Panel B of Figure 4.6 shows, however, what proportion of wealth
has to be held outside the plan in order to support a 50 percent own-company
stockholding within the plan. Employees with a risk aversion of 8 and 50
percent of their pension plan in own-company stock have to have 50 percent
of their retirement savings outside the company plan.

The effect of human capital on investment choice is modeled as an
additional risky asset in the employee’s portfolio in Figure 4.7. The value of
the untradeable asset is determined by assuming an expected initial annual
income, i0, and income growth rate, g. The value of the asset is

where income loss depends on own-company stock return; only when returns
have losses greater than 50 percent is there an effect on income return. Then,
as returns become lower, the effect is more dramatic.

Consider an employee with 20 years to retirement and starting income
equal to 20 percent of wealth (in the retirement plan). The present value of
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Figure 4.7. Optimal Portfolio Results of the 
Mean–Variance Analysis When 
Human Capital Is Modeled as an 
Untradeable Asset

Note: The shaded regions indicate portfolio weights (left axis). The
line represents the expected return on the optimal portfolio (right
axis). The circles indicate values of the independent variable for
which calculations were performed.

Source: Based on data from Douglass et al.
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human capital would be 1.12 times wealth. The base case scenario assumes a
20 percent income volatility and 80 percent correlation between income and
return on own-company stock. Optimal asset choices versus risk aversion as
a percentage of income are shown in Panel A of Figure 4.7 and of expected
stock return in Panel B of Figure 4.7. In both cases, the parameter choice
required to obtain a large own-company stockholding becomes more extreme
with inclusion of the untradeable asset. This result confirms Viceira’s (2001)
conclusion that in a continuous-time setting, investors with an untradeable
asset tend to hold less risky portfolios.

The conclusion is that in a mean–variance portfolio setting, large own-
company stockholdings can be explained only by extremely low values of risk
aversion or a high expected return for own-company stock. These values
become only more extreme once the restrictive assumptions required for
mean–variance analysis, such as normality of asset returns, are relaxed.

A stochastic programming model can handle the fat tails in real assets that
the mean–variance model cannot. The likely nonnormality of the S&P 500 also
exists for the own-company stock and the wealth loss from possible job loss.
Douglass et al. used a one-period version of the InnoALM model to analyze
these results.2

The probability of job loss increases if the company runs into serious
difficulties. To account for this possibility, the employee is terminated with
scenario-dependent probability γt(st). Employee termination does not neces-
sarily have to be accompanied by company default or vice versa. Thus,
Douglass et al. do not explicitly model company default. Instead, they assume
that probability of termination is a nonlinear function of the stock price factors,
that increases rapidly as the stock price approaches zero. They use a logit
function to model the probability of termination: γ = 1/[1 + a exp(bX)], where
a and b are parameters and X is the stock return. The probability of termination
approaches one as the return approaches zero. Thus, the parameter, a, takes
on a small value; b sets the rate at which termination probability decays as
price factors increase.

Douglass et al. consider a scenario in which the employee receives an
income, i, equal to 10 percent of starting wealth. They multiply the expected
income in each scenario by the probability of job retention: 1 – γ. When job
loss is high, company stock return drops below 0.5 percent and rapidly rises
to almost certain job loss in the case of zero return or bankruptcy (see Panel
B of Figure 4.8). They assume that the employee considers the loss of labor
income as an addition to any shortfall. 

2See Appendix D (p. 30), which is available online in the Supplementary Material area at
www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixD.pdf.
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Figure 4.8. Solution of Employee’s Problem 
Formulated as a  Stochastic Program

Note: The logit function used in the model is in Panel B. In Panel A and
Panel B, portfolio weights (shaded regions, left axis) and expected return
on the optimal portfolio (line, right axis) are a function of the risk-aversion
parameter, λ . The plots are interpolated between λ values, indicated by
circles. 

Source: Based on data from Douglass et al.
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Panel A of Figure 4.8 shows the optimal portfolio weights for various risk-
aversion values for the four asset classes when there is no possibility of job
loss. Panel C of Figure 4.8 shows the optimal portfolio weights for the four
asset classes when there is the possibility of job loss. The results indicate a
shift to a more conservative portfolio when potential loss of labor income is
included in the portfolio-choice problem. At low levels of risk aversion, com-
pany stockholdings are replaced by holdings in the market. At higher risk
aversion, the total holdings of bonds and cash are much higher than those
observed when potential income loss is not included in the analysis.

Large holdings of own-company stock in pension accounts cannot be
explained by traditional models of rational portfolio choice. Explanation of the
exceptionally high observed holdings thus relies on behavioral explanations.
This finding, however, presupposes some ignorance on the part of the
employee or an ability of the employer to dupe the employee, even though
having large holdings in own-company stock is a phenomenon that has
persisted for decades. Thus, employees seem to have been making the same
errors in their portfolio choices for a long time. One would expect the
irrationality of employee choices to lessen over time, as employees learn from
previous actions and consequences. Thus, other factors must be included in
rational-choice models to explain own-company stockholdings.

Employers, as plan fiduciaries, may be in a position to influence employee
decisions and steer them toward own-company stock; employees may inter-
pret the channeling of employer contributions into own-company stock as an
endorsement of that investment (Mitchell and Utkus). Alternatively, employ-
ees may choose own-company stock simply because it is listed as an invest-
ment option. Benartzi and Thaler (2001) found that many DCP investors follow
some version of the 1/n strategy (i.e., they divide their contributions evenly
across plan offerings). In addition, employees may be myopic when evaluating
risk of company stock. In a 2001 survey of DCP participants conducted during
a period of stock market growth, John Hancock Financial Services reported
that DCP participants rated own-company stock as less risky than an equity
mutual fund. Other factors, such as loyalty, taxes, and peer pressure, may also
influence employee investment decisions.

Trading constraints have also been discussed as explanations for large
own-company stockholdings. For example, many companies that match con-
tributions to pension plans deposit own-company stock. Often, an employee
is restricted from trading this stock. Douglass et al. were interested in explor-
ing potential explanations for extremely high own-company stock weights,
such as those listed in Table 4.9. In most cases, any minimum-holding
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constraint for own-company stock is not binding. Employees hold more
company stock than they have to (Mitchell and Utkus).

A Continuous-Time Approach to Surplus Management
Rudolf and Ziemba (forthcoming 2004) presented a continuous-time model
for pension or insurance company surplus management over time. Such
lifetime intertemporal portfolio investment models date to Samuelson (1969)
in discrete time and Merton (1969) in continuous time. Rudolf and Ziemba
used an extension of the Merton (1973, 1990) model that maximizes the
intertemporal expected utility of the surplus of assets, net of liabilities, by
using liabilities as a new variable. They assume that both the asset and the
liability returns follow Ito processes as functions of a risky state variable. The
optimum occurs for investors holding four funds—the market portfolio, the
hedge portfolio for the state variable, the hedge portfolio for the liabilities, and
the riskless asset. This model is a four-fund capital asset pricing model
(CAPM), whereas Merton’s is a three-fund CAPM and the ordinary Sharpe–
Lintner–Mossin CAPM has two funds.

Rudolf and Ziemba found that the hedge portfolio provides maximum
correlation to the state variable; that is, it provides the best possible hedge
against the variance of the state variable. In contrast to Merton’s result in the
asset-only case, the liability hedge is independent of preferences and depends
only on the funding ratio. With hyperabsolute risk-aversion utility, which
includes negative exponential, power, and log, the investments in the state
variable hedge portfolio are also preference independent, and with log utility,
the market portfolio investment depends only on the current funding ratio.
The following summarizes the main points.

Life and other insurance companies, pension funds, and other organiza-
tions try to achieve having a surplus over time. In both life insurance compa-
nies and pension funds, parts of the surplus are distributed to the clients,
usually once every year. Hence, optimizing their investment strategy is well
represented by maximizing the expected lifetime utility of the surplus.3 

Rudolf and Ziemba provided a case study illustrating the reasons, in
practice, that discrete-time, constrained stochastic programming models are
preferred to unconstrained, continuous-time models. I will discuss why these
continuous-time models are so popular with finance academics; they have a
simple elegance that yields direct answers to economic questions.

3The model is summarized in Appendix D (p. 31), which is available online in the Supplemen-
tary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixD.pdf.
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Consider a U.S.-dollar-based surplus optimizer investing in the stock and
bond markets of the United States, the United Kingdom, Japan, the European
Monetary Union (EMU) countries, Canada, and Switzerland. The results are
shown in Table 4.10. Monthly MSCI data between January 1987 and July
2000 (163 observations) are used for the stock markets. The monthly J.P.
Morgan indexes are used for the bond markets in this period (Salomon
Brothers for Switzerland). The stochastic benchmark is the quarterly Thom-
son Financial DataStream index for U.S. wages and salaries. Quarterly data is

Table 4.10. Basic Monthly Data in U.S. Dollars, January 1987–July 2000

Mean 
Return Volatility

Beta 
GBP

Beta 
JPY

Beta 
EUR

Beta 
CAD

Beta
CHF

Stocks
United States  13.47%  14.74%  0.18  0.05  0.35 –0.59 0.35
United Kingdom 9.97 17.96  –0.47  –0.36  –0.29 –0.48 –0.14
Japan 3.42 25.99  –0.61  –1.11  –0.45 –0.44 –0.43
EMUa  10.48 15.80  –0.32  –0.27  –0.26 –0.45 –0.11
Canada 5.52 18.07  0.05  –0.02  0.27 –1.44 0.34
Switzerland  11.56 18.17  –0.14  –0.32  –0.26 0.13 –0.32

Bonds
United States  5.04%  4.50%  –0.03  0.00  –0.06 –0.04 –0.06
United Kingdom 6.86 12.51  –0.92  –0.44  –0.80 –0.39 –0.59
Japan 3.77 14.46  –0.53  –1.04  –0.75 0.09 –0.72
EMUa 7.78 10.57  –0.69  –0.42  –0.93 –0.06 –0.74
Canada 5.16 8.44  –0.09  0.03  –0.02 –1.14 0.02
Switzerland 3.56 12.09  –0.67  –0.53  –1.03 0.19 –0.99

Exchange Rates in USD
GBP  0.11%  11.13%  1.00  0.37  0.86 0.42 0.64
JPY –2.75 12.54  0.48  1.00  0.65 0.04 0.61
EURa 1.13 10.08  0.70  0.42  1.00 0.10 0.79
CAD 0.79 4.73  0.08  0.00  0.02 1.00 –0.02
CHF 0.32 11.57  0.69  0.52  1.04 –0.13 1.00
Wage and salary 

growth rates 5.71 4.00  0.00  0.01  0.00 –0.01 0.00

Note: Mean returns and volatilities are in percent per year. GBP = British pound; JPY = Japanese yen; EUR
= euro; CAD = Canadian dollar; and CHF = Swiss franc. The stock market data are based on MSCI indexes
and the bond data, on JP Morgan indexes (Switzerland is based on Salomon Brothers data). The wage and
salary growth rates are from Datastream.
aEuropean currency unit before January 1999. 

Source: Based on data from Rudolf and Ziemba.
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linearly interpolated in order to obtain monthly wages and salaries data. The
average growth rate of wages and salaries in the United States between
January 1987 and July 2000 was 5.7 percent a year, with annualized volatility
of 4.0 percent. Table 4.10 also contains the stock and bond market descriptive
statistics in U.S. dollars and the currency betas of the indexes.

All foreign currencies except the Canadian dollar (CAD) (i.e., the British
pound [GBP], Japanese yen [JPY], the euro [EUR], and Swiss franc [CHF])
had volatility of about 12 percent a year, and all currencies except JPY
depreciated against the USD by a little more than zero percent to 1.13 percent
a year. From a USD viewpoint, the GBP beta was especially high (absolute
value) for the U.K. bond market. The Japanese stock and bond markets
revealed JPY betas of –1.11 and –1.04, respectively, and the EMU bond market
had a EUR beta of –0.93. These betas are the percentage change in the variable
of interest caused by a percentage change in the independent variable. Fur-
thermore, the CAD beta of the Canadian bond market was –1.14, and the CHF
beta of the Swiss bond market was –0.99. All other countries had substantially
lower currency betas. Because the betas were close to zero, the wages and
salaries did not depend on currency movements.

The investor faces an exposure against five foreign currencies (GBP, JPY,
EUR, CAD, and CHF) and has to invest in eight funds. Five funds are hedge
portfolios for the state variables, which are assumed to be currency returns,
and the others, by portfolio separation, are the market portfolios, the riskless
asset, and the liability-hedge portfolio. The compositions of the eight mutual
funds appear in Table 4.11. 

The holdings of the six fund situations shown in Table 4.12 depend only
on the funding ratio and on the currency betas of the distinct markets. For a
funding ratio of 1.0, there is no investment in the market portfolio and only
diminishing investment in the currency hedge portfolios. The portfolio betas
against the five currencies are close to zero for all funding ratios. The higher
the funding ratio, the higher the investment in the market portfolio, the lower
the investment in the liability and the state-variable hedge portfolios, and the
lower the investment in the riskless fund. Negative currency hedge portfolios
imply an increase of the currency exposure instead of a hedge against it. The
increase of the market portfolio holdings and the reduction of the hedge
portfolio holdings and the riskless fund for increasing funding ratios show that
the funding ratio is directly related to the ability to bear risk. Rather than risk-
aversion coefficients, the funding ratio provides an objective measure to
quantify attitudes towards risk. 

The positive features of the study and approach are that the portfolio is
able to hedge out all five currency risks. The strategy is very conservative,
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Table 4.11. Optimal Portfolio Weights, Assuming a Riskless Interest Rate 
of 2 Percent

Asset/Country
Market 

Portfolio

Liability-
Hedge 

Positions

Hedge Portfolio

GBP JPY EUR CAD CHF

Stocks
United States  83.9%  –30.4% 3.9%  –4.5%  –7.5%  60.9%  –5.1%
United Kingdom  –14.8 60.6  –31.0 –1.1 –8.6  –85.3 1.9
Japan –6.7 2.7 6.1 8.9 –2.4 –4.0 –0.7
EMU  –19.2  –68.3 35.3 12.8 23.5  138.3 –3.8
Canada  –39.2 5.1 14.6 13.6 5.5 –2.6 –0.9
Switzerland 21.6 1.5  –24.8  –14.6  –14.7  –100.7 1.0

Bonds
United States  14.8%  126.0%  –126.4%  –28.6%  –41.2%  –627.3%  –35.9%
United Kingdom –9.7  –56.8  189.7 7.9 –3.4 97.5 –8.5
Japan 0.6 39.1  –31.2  133.9 –3.6  –30.1 6.4
EMU  138.5 9.6  –16.4  –38.0 97.3  –170.1 34.0
Canada 7.9 5.0  –11.8  –32.6 –7.9  679.6 0.9
Switzerland 77.7 5.9 91.9 42.4 62.9  143.8  110.7

Source: Based on data from Rudolf and Ziemba.

Table 4.12. Optimal Portfolio Weights with Log Utility and Differing Funding 
Ratios

Funding Ratio 0.9 1 1.1 1.2 1.3 1.5

Market portfolio –11.5% 0.0% 6.3%  12.3%  18.2% 24.6%
Liability-hedge portfolio 14.8 13.3 12.1 11.1 10.2 8.9
Hedge portfolio GBP –0.6 –0.5 –0.5 –0.5 –0.4 –0.4
Hedge portfolio JPY 1.2 1.1 1.0 0.9 0.9 0.8
Hedge portfolio EUR 0.3 0.2 0.1 0.0 0.0 –0.1
Hedge portfolio CAD –0.1 –0.1 –0.1 –0.1 –0.1 –0.1
Hedge portfolio CHF 1.1 1.0 0.9 0.8 0.8 0.7
Riskless assets 94.9% 85.1% 80.2%  75.3%  70.4% 65.6%

Portfolio beta vs. GBP –0.01 –0.01 –0.01  –0.01  –0.01 –0.01
Portfolio beta vs. JPY 0.02 0.02 0.02 0.02 0.02 0.02
Portfolio beta vs. EUR 0.01 0.00 0.00 0.00 0.00 0.00
Portfolio beta vs. CAD –0.02 –0.02 –0.01  –0.01  –0.01 –0.01
Portfolio beta vs. CHF 0.02 0.01 0.01 0.01 0.01 0.01

Source: Based on data from Rudolf and Ziemba.
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with a high investment in riskless assets; 85.1 percent of the portfolio is in
riskless assets with a funding ratio, F, of 1.0, when assets match liabilities.
This ratio drops monotonically to 65.6 percent with a funding ratio of 1.5. Small
changes in funding ratios change the asset weights significantly but in a
reasonable way. Market weights range from zero percent at F = 1 to 12.3
percent at F = 1.2 to 24.6 percent at F = 1.5. Because the market portfolio is
composed of stocks and bonds, the equity component of these values are still
low compared with typical insurance and pension fund weightings. Compare
these results with those of the InnoALM model calculations in Tables 4.6 and
4.7. The sensitivity of the continuous-time model is less dramatic here than in
many applications. More dramatic are the weights in the market and hedge
portfolios (see Tables 4.13 and 4.14).

The equity portfolio is short 39.2 percent Canadian stocks and 14.8 percent
U.K. stocks; long 83.9 percent U.S. stocks and 21.6 percent Swiss stocks; and
long 138.5 percent Eurobonds and short 77.7 percent Swiss bonds. Although
optimal in the model, these weightings are more like a hedge fund than a
pension or insurance portfolio. The hedge fund portfolios have similar huge
long and short positions, namely, long 679.6 percent Canadian bonds and 97.5
percent U.K. bonds and short 627.3 percent U.S. bonds and 170.1 percent
EMU bonds.

Hence, in practice, these results must be viewed with caution. In addition,
in a continuous-time model, the portfolio is being constantly revised, and this
model and most other continuous-time models omit transaction costs. The
recommendation is to understand such models and look at their calculations,
but given that investment decisions have transaction costs, are made at
intervals of one quarter or one year, and have many other complications, the
discrete-time, scenario-based, constrained stochastic programming models
are usually more practical.
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5. Individual Asset/Liability 
Planning Models

• Individual asset/liability models (ALMs) are for lifetime financial
planning.

• Preferences, taxes, constraints, hidden assets, and other difficulties make
individual ALMs much more complex than institutional ALMs.

Models for Wealthy Individuals and Families
. . . taxes, taxes, taxes and the rest.

Wealthy individuals and families have usually accumulated their wealth from
a private or public business, successful investing, or some form of entertain-
ment services. These individuals may have a small or large cash flow. Taxes
are always crucial.

Consider the case of Henry Highgate, a wealthy individual whose assets
and liabilities are depicted in Table 5.1. Henry is a 60-year-old business owner
who sold his business to a public company in the past year. He holds a
substantial amount of the acquiring company’s stock and is an aggressive
investor with his remaining wealth. Henry’s wife, Mary, is 58, and his 16-year-
old son James is in high school. Henry relies on the advice of his attorney,
accountant, several brokers, private bankers, and money managers. He is a
sophisticated investor who is in the highest tax bracket (49 percent). He wants
US$6 million in cash flow annually and has no other sources of income except
for his assets. 

The tax basis, or book value, and the current market value must be kept
track of. Henry currently has eight asset classes. Other asset classes should
be considered. The US$6 million annual cash flow is only 1.5 percent of his
net wealth, so the penalty function for this cash flow will be easy to meet. But
with random returns, Henry may need more than the US$6 million in later
years. Other targets can be added, especially on the benchmark returns of the
asset classes. As an aggressive investor, Henry has a low RA value of about 2.
Now that he is 60 years old and has no employment income, however, he
should consider being a little more risk averse. The tax aspects of the real
estate and investment loans need to be considered carefully. The bulk of the
portfolio is in somewhat illiquid restricted stock and real estate. The cash,
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marketable securities, and closed-end funds provide cash flow and liquid
assets. Total loans and other liabilities are about half of net assets—an
aggressive and dangerous position. The model will suggest reducing this risk
because, although Henry is in a strong financial position relative to his needs,
a bad scenario could lead to considerable losses. Hedge funds, enhanced
portfolio strategies, and private placements can be considered, along with a
decrease in loans, to lower the net risky exposure. A yearly model seems
appropriate because quarterly aspects are dominated by yearly tax and other
considerations. Quarterly estimated taxes are due, however, and the impact
of this liability commitment must be modeled.

Hence, a model structure of the family—first quarter, rest of Year 1, Year
2, Years 3 to 5, and Years 5 to 20—seems appropriate. One then needs
scenarios over these five periods that provide a plan until Henry is 80 years

Table 5.1. Wealthy Individual Example

Tax Basis Value Cash Flow

Assets
Cash and marketable securities  $ 29,523,641  $ 41,047,448  $ 1,231,423
Closed-end funds  38,642,851  60,088,774  660,977
Restricted stock  195,453,200  286,722,100  661,000
Illiquid assets  1,195,275  2,751,915
Insurance  1,006,000  1,142,117
Limited partnerships  5,364,780  12,806,664  650,000
Commercial real estate  165,300,000  205,400,000  12,000,000
Personal real estate 18,500,000 22,400,000

Total assets  $454,985,747  $632,359,018  $15,203,400

Liabilities and equity
Credit cards and ST Loans  $ 87,543 $ (87,543)
Margin loans  10,324,312 (2,100,000)
Commercial R/E loans  82,160,000 (7,394,400)
Personal R/E loans  15,680,000 (1,411,200)
Unfunded equity commitments 88,878,692

Total liabilities 197,130,547
Net equity 435,228,471

Total liabilities and equity  $632,359,018 $(10,993,143)

Current annual income  $15,203,400
Current annual expenses and 

liabilities (10,993,143)
Net cash flow  4,210,257

Cash flow required  (6,000,000) 
Cash flow shortfall  (1,789,743)
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old. Henry and his wife need to generate target goals for her and James.
Because Henry has so much capital, James’ college costs are minor, but they
still need to be modeled. James may wish to start a new business, which would
require more capital. Hence, Henry will need to establish target cash flows
over the five periods and to penalize their nonfulfillment. The key decision
area in which the model can be helpful is to move, in a good tax effective way,
into an overall portfolio that is less risky while still achieving Henry’s goals.

The next example is that of a family business, as described in Table 5.2.
John James manages a family office as his full-time job. The family’s wealth is
held in various liquid and illiquid assets. James is particularly interested in the
net tax effects of the investment choices he can make. He is not concerned
about short-term shifts in individual parts of the family portfolio because he
wants to make all decisions from a long-term perspective. 

The family has four members, and the modeling system must consider
the entire estate as the main item to be maximized. The income needs of the
four individuals are well modeled using the four separate targets, each with
their own convex penalty functions in each period. These targets over time
must reflect possible shifts across individuals and across time for separate

Table 5.2. Family Office Example

Family members Tax Bracket Income Needs

John James 49%  $650,000
Susan James (sister) 49  800,000
Frank James (brother) 15  1,000,000
Michael James (son)  37.6%  250,000

Total income required  2,700,000

Assets Value Tax Basis Cash Flow
Hedge funds  $ 4,500,000  $ 3,400,000  $ 0
U.S. equity funds  6,700,000  3,600,000  107,200
Foreign funds  3,800,000  2,700,000  68,400
Taxable bonds  3,500,000  3,100,000  227,500
Tax-exempt bonds  6,000,000  4,700,000  324,000
Private equity  6,400,000  850,000 0
Family business  35,000,000  1,200,000  850,000
Family trust (untouchable)  40,000,000  1,100,000  220,000
Real estate  6,500,000 1,400,000  150,000

Total  $112,400,000  $22,050,000  $1,947,100

Liabilities
Family business debt  $15,000,000  $15,000,000  $(1,312,500.)
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individuals. Hence, the targets do not need to be quite as tight as those listed
in Table 5.2. The penalty functions will help organize these targets. Also
crucial is the way the funds are allocated to the various individuals to lessen
taxes and thereby maximize the overall net wealth of the family. So, overall
family wealth targets, net of taxes in various periods, are also necessary.

In future periods, the individuals’ tax situation will change, and the
modeling system can handle that. Shifts in the family portfolio can be modeled,
and relevant constraints can be imposed. Currently, assets are in nine classes.
Book and current values of assets are needed in the model formulation.
Liabilities in terms of income needed per year and debt are small in relation
to total net assets. This family has a large tax liability that needs to be dealt
with carefully. Also, the family business and family trust are illiquid, but they
contribute to the yearly cash flow liability. From a long-term perspective, this
portfolio is light on equity in relation to bonds (which look like they can be
lightened up without much tax liability). A moderately aggressive risk struc-
ture with an RA of about 3 seems appropriate. A yearly model seems appropri-
ate because quarterly aspects are dominated by yearly tax and other aspects
(except that quarterly estimated taxes need to be handled properly).

Hence, an appropriate model structure is the first quarter, the rest of the
Year 1, Years 2 to 5, and Years 6 to 20. John’s long-term goals can be modeled
by placing more weight on the 2- to 5- and 6- to 20-year time periods. Shifting
of assets among family members can occur, and the tax and cash flow aspects
can be taken into account. The way John has laid out the assets needs to be
more detailed; the ownership of specific assets across the four family mem-
bers must be delineated with joint family assets, such as keeping the trust as
a separate asset holder. Hence, the model should consider five separate
parties with overall and individual goal targets.

John has done a good job of putting the family in a position whereby a bad
scenario will not hurt much. With debt of only a little more than 10 percent of
assets, the family is not taking much risk. The asset classes are quite broad
and provide considerable real diversification because domestic and foreign
assets, stocks and bonds, hedge funds, real estate, private equity, and the
family business are already in the portfolio. The stochastic programming
asset/liability management approach will probably help Henry more than
John because Henry is much more levered. The model can be helpful to John
in delineating the details of the individual family members’ holdings, their
differing needs over time, and the balancing of individual needs and long-run
family wealth.
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Retirement

As the stock market hit a seven-year low this week, it became clearer
than ever that anyone approaching retirement will have to carry on
working.

Margaret Hughes (2003)

Retirement models must be conservative because the possibility of recouping
lost wealth is more difficult for retirees, who have no labor income. The Henry
Highgate example is typical of a retirement model for a wealthy individual or
family. He has plenty of assets, and the planning problem is to make them last
indefinitely while providing for a lavish lifestyle. Most people have far fewer
assets and can easily run into trouble if asset returns are too low or negative
and spending is too high. Retirement and individual ALMs can be made for
specific parties on a customized basis or en masse for a class of individuals.
Frank Russell Company’s Italian Bank Federeuen model is an example of the
latter (see Murray, 1997, 1998).  It was designed for clients of the bank to be
implemented by some 2,500 account executives, each of whom would be
responsible for about 500 separate accounts. The procedure was to interview
clients to assess their assets, liabilities, target goals, and preferences. Based
on this information, a tentative plan was developed, and the plan was imple-
mented after a second discussion was held. Then, the portfolio was to be
revised yearly. The implementation and project were successful, but the
problem has the following complexities, which are not found in institutional
models:
• ascertaining all client assets and valuing them because assets may be

hidden for personal or other reasons;
• determining the relative importance of different goals because individuals

tend to think that everything is important; scales are needed to balance
the preferences;

• tax aspects are crucial and must be modeled carefully;
• providing client security and protection against bad scenarios, given the

lack of labor income;
• agency problems of account executives pushing products with high

commissions rather than those in the best interests of the client; and
• operational problems of account executives unable or unwilling to use the

stochastic programming approach.
These complexities have been studied using other approaches by individuals
at the Centers for Retirement Research at Boston College and the University
of Michigan and at brokerage firms, which provide rules for guidance.
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Stochastic programming scenario-based optimization approaches clearly have
a role to play in improving the performance of retirement planning.

Endowments
Major foundations, such as the Carnegie, Ford, and Rockefeller, and univer-
sities such as Harvard, Princeton, and Stanford have large multibillion dollar
endowments. These funds, which came from wealthy donors, are used for
humanitarian and other purposes and to improve and preserve educational
institutions. Because of inflation, endowment spending usually increases. The
endowments must manage their funds so that current spending can increase
without depleting much of the capital to be used for future spending. Capital
campaigns occur from time to time, as do bequests, and income comes from
tuition, grants, research contracts, and other sources. To maintain this level
of spending, however, good investment performance is crucial.

Yale University has approached this problem with a heavy emphasis on
private equity rather than publicly traded equity (see Swensen 2000). The Yale
endowment made 19.1 percent on its private equity portfolio and 17.6 percent
on the whole portfolio during the 16 years from 1982–1997, which is higher
than U.S. bonds, U.S. equity, development equity, emerging equity, real
estate, and cash. Adding two more years for the 18 years from 1982–1999, the
annualized return was 16.9 percent, which was in the top 1 percent of institu-
tional funds during this period. The asset allocation as of June 1997 was 22.5
percent in domestic equity, 12.5 percent in domestic fixed income, 12.5
percent in foreign equity, 32.5 percent in private assets, and 20.0 percent in
other marketable securities. The high amount of private assets reflects the
belief that large-scale inefficiencies frequently exist in illiquid markets; the
illiquidity provides a premium so that positions can be entered at discounts,
and these markets are not well understood. So, Yale is an example in which
private equity can have high returns over long periods that include bear
markets (see Table 5.3). Yale’s returns were statistically significantly higher
than the other asset classes. 

Venture capital investors live by either feast or famine. The best managers
(including Swensen at Yale) are extremely careful and have good returns, but
most others have poor returns. (See Table 5.4 and Table 5.5.) 

An important way to preserve capital is not to lose it during weak markets.
Table 5.6 shows that the Ford Foundation, Berkshire Hathaway, Fidelity
Magellan, and Barclays Global Investors Tactical Asset Allocation funds were
able to preserve capital from 1977 to 2001. Bear markets are defined as July
1977 to February 1978, December 1980 to July 1982, September to November
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1987, June to October 1990, and July to August 1998. Other periods are defined
as bull markets, even if there was little gain, as in 1984 and 1994.

The problem of how to invest in risky assets and cash dynamically in time
so that a given spending rule will allow spending to never decrease has been
considered by Dybvig (1999), based on his 1988 and 1995 research papers.
This problem, illustrated in Figure 5.1, Figure 5.2, and Figure 5.3, is
similar to the 1992 constant proportional portfolio insurance model of Black
and Perold.1

Table 5.3. Net Returns from Various Asset Classes, 1982–97

Measure
U.S. 

Bonds
U.S. 

Equity
Developed 

Equity
Emerging 

Equity
Real 

Estate Cash

Yale

Absolute 
Return

Private 
Equity

Years  72  72 38 13 21 72 20 16
Arithmetic 

return (%)  1.2  9.2 6.3 11.1 3.5  –0.4 17.6 19.1

Standard 
deviation (%)  6.5  21.7 18.9 27.9 5.1 4.1 11.8 20.0

Growth rate (%)  1.0  7.0 4.7 7.7 3.4  –0.5 17.0 17.5

Table 5.4. Dispersion of Active Management Returns, January 1988–
December 1997

Asset Class First Quartile Median Third Quartile Range

U.S. fixed incomea  9.7%  9.2%  8.5%  1.2%
U.S. equitya  19.5  18.3  17.0 2.5
International equitya  12.6  11.0 9.7 2.9
Real estateb 5.9 3.9 1.2 4.7
Leveraged buyoutsc  23.1  16.9  10.1  13.0
Venture capitalc  25.1  12.4 3.9  21.2

Note: Venture capital and leveraged buyout data represent returns on funds formed between 1988 and 1993,
excluding more recent funds so that mature investments will not influence reported results.
aBased on data from Piper Managed Accounts.
bBased on data from Institutional Property Consultants.
cBased on data from Venture Economics.

Source: Based on data from Swenson.

1The model is summarized in Appendix E (p. 34), which is available online in the
Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixE.pdf.
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Panel A of Figure 5.1 depicts the 1946–96 performance of a fixed-mix
strategy with equal proportions of large-cap U.S. stocks and 3-month U.S.
Treasury Inflation-Indexed Securities (TIPS, assumed to be a risk-free asset
in real terms). The spending rate is 4.5 percent of beginning initial wealth each
year with an initial endowment to US$100 million. With the fixed-mix strategy,
the weights change as the stock portfolio rises and falls, as shown in Panel B
of Figure 5.1. A protected part is invested in the TIPS and the remainder is in

Table 5.5. Comparison of Asset Classes: Investment Fund Returns, 
1980–97

Real 
Estatea

Venture 
Capitalb

Leveraged 
Buyoutsb

Domestic
Equityc

Foreign
Equityc

Maximum NA  498.2%  243.9%  18.1%  19.5%
First quartile 9.9%  17.1  23.8  16.6  16.1
Median 7.8 8.1  13.2  15.5  14.9
Third quartile 5.9 0.6 1.1  14.9  14.0
Minimum NA  –89.7  –65.9  13.2  11.1
First to third quartile range 4.0  16.5  22.7 1.7 2.1

Standard deviation 2.5  30.0  35.7 1.3 2.1

NA = not available.
aBased on data from Institutional Property Consultants.
bBased on data from Venture Economics.
cBased on data from Piper Managed Accounts. 

Source: Based on data from Swenson.

Table 5.6. Four Funds’ Performance in Bull and Bear Markets, 
1977–2001

Fund

Bull and Bear
Markets

Crashes of 
1987 and 1998

Market 
Volatility Sharpe

Ratio 
1/80–3/00

Average Monthly Return in 
Excess of Benchmark

Monthly Return in 
Excess of Benchmark Correlationa 

Bulls Bears 10/87 8/98

Berkshire Hathaway 1.21%  1.70%  0.40% 0.89% –0.14 0.786
BGI TAA 0.10 0.73  20.38 –1.74 0.54 0.906
Ford Foundation 0.11 –0.08 –1.11 –2.11 –0.09 0.818
Magellan 0.52 0.88 –5.46 –1.20 –0.04 0.844
aCorrelation of monthly return in excess of benchmark with volatility measure.

Source: Based on data from Clifford, Kroner, and Siegel (2001).
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Figure 5.1. Performance and Portfolio Composition 
of a Simple Portfolio Strategy and 
Spending Rule, 1946–96

Source: Based on data from Dybvig.
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Figure 5.2. Performance and Portfolio Composition 
of the Proposed Expenditure-Protected 
Policy, 1946–96

Source: Based on data from Dybvig.
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Figure 5.3. Performance and Portfolio Composition 
of a Diluted Version of the Expenditure-
Protected Policy, 1946–96

Source: Based on data from Dybvig.
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stocks. The protected strategy, like portfolio insurance, moves into safer
assets when the market falls. The strategy avoids spending cuts while still
allowing for significant participation in rising equity markets.

One can smooth the spending pattern in Panel A of Figure 5.1 and base
spending on the average wealth levels over several years, but this is an ad hoc
approach. Figure 5.2 shows Dybvig’s approach, in which spending never
decreases, even in periods in which the portfolio value declines. The strategy
does require low spending rates, which may be below current spending for
some plans. Many variants are possible, such as beginning with higher
spending rates and allowing the spending rate to decline at a small, continuous
rate. In Figure 5.3, for example, spending fell by nearly half following the 1973–
74 oil price crisis.

This interesting strategy performs best in rising or falling markets and
not so well in choppy markets. As with all continuous-time models, the choice
of parameters is crucial, and the portfolio weights will change dramatically as
market expectations, especially the means, change.
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6. Hedge Fund Applications

Eifuku Master Fund, a $300 million Japanese hedge fund, collapsed. Eifuku, which
means eternal luck in Japanese, lost nearly everything in a week’s trading in
January 2003.

If I hadn’t lost everything I’d definitely be buying now.
Leo Cullum

Barron’s cartoon

Hedge funds can clearly get into trouble by overbetting and not being truly
diversified, and being vulnerable, they can get caught by low-probability but
plausible disaster scenarios. It is exactly then—when hedge funds are in
trouble—that they need access to new cash, and because new cash is usually
not available, it makes sense to plan ahead for such contingencies by not
overbetting and being truly diversified in advance.

Hedge funds are pooled investments that attempt to obtain superior
returns for their mostly wealthy investors. The name “hedge fund” is mislead-
ing; it is a vehicle to trade a pool of money from a number of investors in various
financial markets. The general partner runs the fund and collects fees to
compensate for expenses and receives bonuses for superior performance.
Typically, the general partner is an investor in the fund, a strategy known as
“eating your own cooking.” It gives investors added confidence, increases the
incentive for the manager to perform well, and dampens the incentive to take
excessive risks. The latter is especially important because operating a hedge
fund is essentially a call option on the investors’ wealth. In addition, the general
partner conveniently stores fees collected month by month or quarter by
quarter in the fund.

The hedge fund industry has grown explosively since 1980. The first
official hedge fund was established in 1949. By the late 1980s, the number of
funds had increased to about 100. In 1997, more than 1,200 hedge funds
existed, managing a total of more than US$200 billion. As of May 2003, about
6,000 hedge funds worldwide had more than US$600 billion in assets about a
third of which is in funds of hedge funds.

Although hedge funds are small in number and size compared with mutual
funds, their growth reflects the importance of alternative investments for
institutional investors and wealthy individuals. In addition, hedge funds fre-
quently exert an influence on financial markets that is much greater than their
size. An important example is the hedge fund Long-Term Capital Management
(LTCM), whose collapse in 1998 jeopardized several large financial institutions
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and was considered a threat to the world economy by the U.S. Federal Reserve
(Fed). Hence, the study of risk taking in the hedge fund industry is relevant
for the financial system as a whole.

Some hedge funds actually use hedging, such as those using long–short
convergence trades and statistical arbitrage. Others, called “macro funds,” use
strategies that take directional bets on currencies, stock indexes, and so on. A
list of 10 distinct types of hedge funds appears in Exhibit 6.1. Risks in macro
and other directional funds are much greater than in long–short or convergence-
type funds. In this chapter, I will describe some aspects of hedge fund operation
and the results. Stochastic programming strategies are useful for risk control
and optimal betting strategies. Statistical arbitrage, such as pairs trading of
individual or groups of stocks, is currently popular in many hedge funds.  

Exhibit 6.1. Selected Types of Pure Hedge Fund Strategy Categories
Market-neutral strategies

• Fixed-income arbitrage. Long and short bond positions via cash or derivative markets in 
government, corporate, and/or asset-backed securities. The risk varies, depending on duration, 
credit exposure, and the degree of leverage.

• Event driven. A strategy that attempts to benefit from mispricing arising in different events, such 
as merger arbitrage, restructurings, and so on. Positions are taken in undervalued securities 
anticipated to rise in value because of events such as mergers, reorganizations, or takeovers. The 
main risk is nonrealization of the event.

• Equity convergence hedge. Investing in equity or equity derivative instruments whose net 
exposure (gross long minus short) is low. The manager may invest globally or have a more defined 
geographic industry or capitalization focus. The risk primarily pertains to the specific risk of the 
long and short positions.

• Restructuring. Buying and occasionally shorting securities of companies under Chapter 11 and/
or those undergoing some form of reorganization. The securities range from senior secured debt 
to common stock. The liquidation of financially distressed companies is the main source of risk.

• Event arbitrage. Purchasing securities of a company being acquired and shorting the acquiring 
company. This risk relates to the deal risk rather than market risk.

• Capital structure arbitrage. Buying and selling different securities of the same issuer (e.g., 
convertibles/common stock) and attempting to obtain low-volatility returns by exploiting the 
relative mispricing of these securities.

Directional strategies
• Macro. An attempt to capitalize on country, regional, and/or economic change affecting securities, 

commodities, interest rates, and currency rates. Asset allocation can be aggressive, using leverage 
and derivatives. The method and degree of hedging can vary significantly.

• Long. A growth, value, or other model approach to investing in equities with no shorting or hedging 
to minimize market risk. These funds mainly invest in emerging markets, in which restrictions on 
short sales may exist.

• Long bias. Similar to equity convergence hedge but with a net long exposure.
• Short. Selling short overvalued securities and attempting to repurchase them in the future at a lower 

price.

Source: Modified from Agarwal and Naik (1999).
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Since 1997, a number of academic studies have tried to estimate the
returns and risks of investing in hedge funds. Chen and Passow (2003); Fung
and Hsieh (2001); Brown, Goetzman, and Ibbotson (1997); Ackerman,
McEnally, and Ravenscraft (1999); Agarwal and Naik (2001); Amin and Kat
(2003); and Kouwenberg (2003) have all contributed to this research. Obtain-
ing data for empirical studies has been difficult because hedge funds are not
required to report their returns to the public. As a result, each study typically
investigates a subset of the total hedge fund universe, depending on which
data happen to be available. Another factor is that the best and worst funds
prefer to be silent on their performance; the best are oversubscribed and the
worst do not need more publicity. Hence, private data sources have more
accurate and complete databases.

In general, the empirical studies seem to agree on one important point:
Hedge funds significantly improve the trade-off between risk and return when
added to a traditional portfolio of bonds, mutual funds, and stock indexes. This
result stems from the fact that some hedge funds have relatively little exposure
to sources of general market risk. Except for Ackerman, McEnally, and
Ravenscraft, the studies have also found that individual hedge funds provide
better risk-adjusted performance (after fees) than a broadly diversified stock
index, usually the S&P 500 Index. According to Van Hedge Advisors Interna-
tional, the international hedge fund industry grew from US$311 billion to
US$600 billion in 2002. In 2001, the average hedge fund returned 5.8 percent
versus a loss of 12.6 percent for the average equity fund. In 2002, hedge funds
lost 0.4 percent, on average, their first loss in 14 years. Meanwhile, equity
funds lost 20.3 percent in 2002.

Not much persistence exists in hedge fund performance: Winners may
easily become losers. Although the hedge fund industry as a whole provides
good opportunities for investors, some successful hedge fund managers tend
to lose their magic now and then. As I mentioned, a well-known and notewor-
thy example of a winner that turned into a loser is LTCM. (See Edwards 1999,
Jorion 2000a, Ross 1999, and Ziemba 2000.) And after many years of high
returns, Julian Robertson’s Tiger Fund and George Soros’ Quantum Fund
closed in 2000 because of poor returns. In addition, the real risk in hedge funds
that are highly levered through borrowing or derivatives is frequently greatly
understated by the monthly or quarterly reporting periods and by using such
risk measures as standard deviation or the Sharpe ratio.

The theoretical literature concerning hedge funds is small. Typically,
papers focus on the optimal fee structure for investment funds (Heinkel and
Stoughton 1994; Maug and Naik 1995; and Dybvig, Farnsworth, and Carpenter
1999), exploiting arbitrage opportunities with restrictions on short selling (Liu
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and Longstaff 2000 and Loewenstein and Willard 2000), and applying option
pricing to calculate the value of the incentive fees paid to hedge fund managers
(Goetzmann, Ingersoll, and Ross 2003). 

Heinkel and Stoughton; Maug and Naik; and Dybvig, Farnsworth, and
Carpenter investigated the relationship between fee contracts and fund man-
agement. Their studies applied the principal agent framework developed by
Ross in 1973 in order to derive the optimal management contract from the
point of view of the investor.

Liu and Longstaff and Loewenstein and Willard investigated the equilib-
rium impact of investors that exploit arbitrage opportunities (hedge fund
managers). In the model of Loewenstein and Willard, hedge fund managers
provide liquidity to institutional investors who face uncertain cash withdraw-
als. Liu and Longstaff investigated a market with a pure arbitrage opportunity
and hedge fund managers that face restrictions on short selling. Similar
studies about the risks of arbitrage strategies can be found in Shleifer (2000).

Goetzmann, Ingersoll, and Ross developed a continuous-time Black–
Scholes-like environment to model the high-watermark incentive system used
by many hedge funds. That is, fees are a flat amount per unit of time plus an
incentive that is a percentage above a benchmark (which they take to be zero).
They assume that the hedge fund returns the mean rate of return of the market
and goes on forever with continuous redemptions, unless it is closed by poor
return scenario outcomes. Given these assumptions, they estimate the value
of the fees paid to the manager as a call option on the investors’ wealth.

Kouwenberg and Ziemba (2003) discussed incentives and risk taking in
hedge funds. Their theoretical model uses a prospect theory preference
framework. When hedge fund managers have incentives, then taking exces-
sive risk is optimal. This risk is greatly reduced, however, if the manager has
a substantial amount of his or her own money in the fund. In an empirical
study, they found that managers with incentive fees have higher downside
risk than funds without such a compensation contract. Mean returns are lower
in both absolute and risk-adjusted terms when managers have incentive fees.

Keynes as a Hedge Fund Manager
Unofficial (i.e., private) hedge funds have been run for centuries using futures,
equities, and other financial instruments. Futures in rice trading in Japan date
from the 1700s, and futures trading in Chicago was active in the mid-1800s.
An interesting early hedge fund was the Chest Fund at King’s College,
Cambridge, which was managed by the first bursar, the famous economic
theorist John Maynard Keynes, from 1927–1945. The following discussion is
based on and extends Chua and Woodward (1983).
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In November 1919, Keynes was appointed second bursar. Up to this time,
King’s College investments had been only in fixed-income trustee securities
and the college’s own land and buildings. By June 1920, Keynes convinced the
college to start a separate fund containing stocks, currency, and commodity
futures. Keynes became first bursar in 1924 and held this post, which had final
authority on investment decisions, until his death in 1945. Keynes (1938)
emphasized three principles of successful investing:
1) a careful selection of a few investments (or a few types of investments),

having regard to their cheapness in relation to their probable actual and
potential intrinsic value over a period of years ahead and in relation to
alternative investments at the time;

2) a steadfast holding of these investments in fairly large units through thick
and thin, perhaps for several years, until either they have fulfilled their
promise or it is evident that they were purchased by mistake;

3) a balanced investment position (i.e., a variety of risks in spite of large
individual holdings and, if possible, opposed risks).

And he did not believe in market timing:
We have not proved able to take much advantage of a general systematic move-
ment out of and into ordinary shares as a whole at different phases of the trade
cycle dots. . . . As a result of these experiences I am clear that the idea of wholesale
shifts is for various reasons impracticable and indeed undesirable. Most of those
who attempt to sell too late and buy too late, and do both too often, incurring heavy
expenses and developing too unsettled and speculative a state of mind, which, if it
is widespread, has besides the grave social disadvantage of aggravating the scale
of the fluctuations. 

By emphasizing value, large holdings, and patience, Keynes’ ideas overlap
to some extent with those used by Warren Buffett in his Berkshire Hathaway
Fund. Buffett has also added effective side businesses, such as insurance, and
a greater level of involvement in the management of his holdings. Keynes’
approach of having a small number of positions even partially hedged naturally
led to fairly high volatility, as shown Table 6.1 and Figure 6.1. Details of the
holdings over time, as with hedge funds, are not known, but it is known that
in 1937, the fund had 130 separate positions.

The returns in Table 6.1 do not include dividends and interest. The
income, which is not public information, was spent on modernizing and
refurbishing King’s College. The index’s dividend yield was under 3 percent.
A capital asset pricing model (CAPM) analysis suggests that Keynes was an
aggressive investor with a beta of 1.78 versus the benchmark U.K. market
return, a Sharpe ratio of 0.385, and geometric mean returns of 9.12 percent a
year versus –0.89 percent for the benchmark. Keynes had a yearly standard
deviation of 29.28 percent versus 12.55 percent for the benchmark. 
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The drawdown from 100 in 1927 to 49.6 in 1931, with losses of 32.4 percent
in 1930 and 24.6 percent in 1931, was more than 50 percent, but this drawdown
occurred during the depression, when the index fell 20.3 percent and 25.0
percent, respectively. The College’s patience with Keynes was rewarded in
the substantial rise in the index from 1932 to 1937 to 315.4. Keynes’ aggressive
approach caught up with him as Britain prepared for World War II in 1938–
1940, when the index fell to 179.9. Then, during the war, 1941–1945, Keynes
had a strong record.  

Table 6.1. Absolute and Relative Performance of Keynes’ Chest Fund, 
1927–1945

Chest Fund U.K. Market U.K. T-Bill

Year Index Return Index Return Index Return

1927  100.0  100.0  100.0
1928  96.6  –3.4%  107.9  7.9%  104.2 4.2%
1929  97.4 0.8  115.0 6.6  109.7 5.3
1930  65.8  –32.4  91.7  –20.3  112.5 2.5
1931  49.6  –24.6  68.8  –25.0  116.5 3.6
1932  71.8  44.8  64.8 –5.8  118.3 1.5
1933  97.0  35.1  78.7  21.5  119.0 0.6
1934  129.1  33.1  78.1 –0.7  119.8 0.7
1935  186.3  44.3  82.3 5.3  120.4 0.5
1936  290.6  56.0  90.7  10.2  121.1 0.6
1937  315.4 8.5  90.2 –0.5  121.9 0.6
1938  188.9  –40.1  75.7  –16.1  122.6 0.6
1939  213.2  12.9  70.2 –7.2  124.2 1.3
1940  179.9  –15.6  61.2  –12.9  125.4 1.0
1941  240.2  33.5  68.8  12.5  126.7 1.0
1942  238.0  –0.9  69.4 0.8  127.9 1.0
1943  366.2  53.9  80.2  15.6  129.2 1.0
1944  419.3  14.5  84.5 5.4  130.5 1.0
1945  480.3  14.6  85.2 0.8  131.8 1.0

Arithmetic mean  13.06%  –0.11% 1.56%
Geometric mean  9.12%  –0.89%
Standard deviation  29.28%  12.58%
Beta  1.78
Sharpe index  0.385  –0.129
Treynor index  6.46  –1.86
Jensen index  14.45
Standard error  4.69%

Source: Based on data from Chua and Woodward.
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Keynes’ turning 100 into 480.3 in 18 years, versus 85.2 for the index, plus
dividends and interest given to the College, gives Keynes a good record as a
hedge fund manager. Keynes’ aggressive style (which is similar to the Kelly
betting I discuss later) led to great returns—and some losses and embarrass-
ments. When a grain contract was not covered in time, Keynes had to take
delivery and fill up the famous King’s College chapel, which was fortunately
large enough to store the grain safely until it could be sold. The Sharpe ratios
and CAPM results are based on normality, and a better way to calculate
Keynes’ B’s is through Leland’s (1999) B’s (discussed in Chapter 1), which
applies for the fat tails that Keynes had. For example, Keynes’ aggressive style
is close to log utility, so a relative risk aversion, γ, of 1.25 approximates his
behavior, compared with 1/γ = 80 percent in the log optimal portfolio and 20
percent in cash.

Gamblers as Hedge Fund Managers
I have been fortunate to work and consult with four individuals who used
investment market anomalies and imperfections and hedge funds ideas to turn
a humble beginning with essentially zero wealth into hundreds of millions of
dollars. They shared several common characteristics—a gambling back-
ground obtained by playing blackjack professionally; a focused, fully
researched, computerized system for asset-position selection; and careful
attention to the possibility of loss—and focused more on not losing than on
winning. Two were relative value long–short managers who consistently eked
out small edges. One was a futures trader who took bets on a large number
of liquid financial assets based on favorable trends (interest rates, bonds, and
currencies were the best). The fourth was a Hong Kong horserace bettor (see

Figure 6.1. Performance of Keynes’ Chest 
Fund, 1927–45
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Benter in Hausch, Lo, and Ziemba 1994). Their gambling backgrounds led
them to conservative investment behavior and excellent results, both absolute
and risk adjusted. They had their losses, but rarely did they overbet or lack
sufficient diversification. Good systems for diversification and bet size, as
discussed in this chapter and the rest of this monograph, were crucial in
avoiding major blowouts.

Edward Thorp, a mathematician with a PhD from the University of
California at Los Angeles, became famous in 1960 after devising a simple-to-
use card-counting system for use in the card game blackjack. In 1966, Thorp
wrote a follow-up to his book Beat the Dealer called Beat the Market, which
outline a system for obtaining edges in warrant markets. Thorp was close to
finding the Black–Scholes formula for pricing options, at least from an approx-
imate, empirical, and discrete-time point of view, and some of his ideas were
used in his hedge fund Princeton Newport Partners (PNP).1 He ran this fund,
with offices in Newport Beach, California, and Princeton, New Jersey, from
1969 to 1988 and used a variety of strategies, many of which can be classified
as convergence or long–short strategies. See Figure 6.2 and Table 6.2 for
PNP’s performance record. Actual trades and positions used by Thorp and his
colleagues are not public information, but a Nikkei put warrant risk-arbitrage
trade that Thorp and I jointly executed based on my ideas discussed in
Appendix E gives some idea of the approach.2 The basic idea is to sell A at an
expensive price, hedge it with the much cheaper close substitute A′, and then
wait until the prices converge and cash out, remembering not to overbet. 

PNP gained 15.1 percent, net of fees (which were about 4 percent given the
20 percent profit fee structure), versus 10.2 percent for the S&P 500 and 8.1
percent for T-bills. An initial index of 100 on 1 November 1969 became 148,200
at the end of December 1988 versus 64,500 for the S&P 500 and 44,500 for T-bills.
But what is impressive and a central lesson of this chapter is that the risk control,
by using various stochastic optimization procedures, led to no years with losses
and a high Sharpe ratio, which, based on monthly data, approached 3.0. Of
course, Thorp had an easier market to deal with than Keynes. For example, the
S&P 500 had negative returns only in 1973, 1974, and 1976. 

1Thorp wrote the foreword to my book, Beat the Racetrack written with Donald Hausch. By
using probabilities estimated from the simpler win market, we provided a simple-to-use winning
system for racetrack betting based on weak market inefficiencies in the complex place and
show markets.
2See Appendix E (p. 37), which is available online in the Supplementary Material area at
www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixE.pdf.
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As a comparison with Keynes’ and Thorp’s performance, Figure 6.3
shows the brilliant record of Warren Buffett’s Berkshire Hathaway closed-end
fund from December 1985 to June 2000, which is run like a hedge fund with
an emphasis on value investing, insurance businesses, and other ventures.
Buffett also had a great record from 1977 to 1985, turning the index value of
100 into 1,429.87 in 1985 and 65,852.40 in April 2000. This graph also shows
the records of George Soros’ Quantum Fund, John Neff’s Windsor Fund,
Julian Robertson’s Tiger Fund, and the Ford Foundation.3

Capital growth or Kelly criterion fans, such as Thorp and I, prefer Buffett’s
long-term growth record. Indeed, Thorp (1997) has argued that Buffett largely
uses Kelly-like strategies. Keynes and Buffett have many common character-
istics in addition to their aggressive style, namely, an emphasis on value, large
holdings, and patience. 

From January 1980 to March 2000, Buffett’s Sharpe ratio was 0.786,
whereas the Ford Foundation’s was 0.818. So, by the Sharpe ratio measure, the
Ford Foundation beat Berkshire Hathaway because it had good growth with
little variation. But much of Berkshire Hathaway’s variation was on gains, and
the total wealth at the horizon was much greater. Using the symmetric down-
side risk measure discussed in Chapter 1 provides a fairer evaluation—with

Figure 6.2. PNP’s Cumulative Results, 
November 1968–December 1988

3Thanks go to Larry Siegel of the Ford Foundation for these data.
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Berkshire Hathaway dominating, as Figure 6.3 indicates. Starting from July
1977, Berkshire Hathaway’s Sharpe ratio was 0.850 versus Ford’s 0.765, and
the S&P’s was 0.676, and geometric mean returns were 32.07 percent (Berk-
shire Hathaway), 14.88 percent (Ford), and 16.71 percent (S&P 500).

Typical Hedge Fund Trades
Hedge funds and others have many possible trades, and they can be made in
combination. Following are a few typical pure trades that allow for analysis of
gain-and-loss functions, scenarios, and so on.

The Yen Carry Trade. Start with $US cash.
• Use this cash as collateral to borrow ¥Y @ y0 (JPY/USD) exchange rate,

so you owe about 1/2 percent per year on this ¥Y because Japanese
interest rates are very low.

• Change the ¥Y into Y/y0 US$.

Table 6.2. PNP’s Record, 1969–1988

Begin 
Period

End 
Period

Begin Capital 
(US$ 

thousands)

Profit/Loss 
(US$ 

thousands)

End Capital 
(US$ 

thousands)

Added Capital 
(US$ 

thousands)

PNP 
Return

(%)

S&P 500 
Return

(%)

3-Month 
T-Bill Return

(%)

1/Nov/69 31/Dec/69  1,400  57  1,457  544 4.1 4.7 3.0
1/Jan/70 31/Dec/70  2,001  364  2,365  737  18.2 4.0 6.2
1/Jan/71 31/Dec/71  3,102  1,281  4,383  1,944  41.3  14.3 4.4
1/Jan/72 31/Dec/72  6,327  1,046  7,373  1,134  16.5  19.0 4.6
1/Jan/73 31/Dec/73  8,507  711  9,218  (2,550) 8.4  –14.7 7.5
1/Jan/74 31/Dec/74  6,668  751  7,419  (70)  11.3  –26.5 7.9
1/Jan/75 31/Oct/75  7,349  961  8,310  596  13.1  34.3 5.1
1/Nov/75 31/Oct/76  8,906  1,793  10,699  1,106  20.1  20.1 5.2
1/Nov/76 31/Oct/77  11,805  2,350  14,155  3,843  19.9  –6.2 5.5
1/Nov/77 31/Oct/78  17,998  2,797  20,795  (635)  15.5 6.4 7.4
1/Nov/78 31/Oct/79  20,160  4,122  24,282  4,349  20.4  15.3  10.9
1/Nov/79 31/Oct/80  28,631  7,950  36,581  9,728  27.8  21.4  12.0
1/Nov/80 31/Oct/81  46,309  13,227  59,536  2,343  28.6  22.8  16.0
1/Nov/81 31/Oct/82  61,879  18,747  80,626  18,235  30.3  21.8  12.1
1/Nov/82 31/Oct/83  98,861  13,842  112,703  26,342  14.0  10.5 9.1
1/Nov/83 31/Oct/84  139,045  20,193  159,238  (6,195)  14.5  11.6  10.4
1/Nov/84 31/Oct/85  153,043  21,813  174,856  (40,244)  14.3  11.4 8.0
1/Nov/85 31/Oct/86  134,612  41,143  175,755  (21,727)  30.6  24.5 6.3
1/Nov/86 31/Dec/87  154,028  52,451  206,479  17,722  34.1  26.7 7.1
1/Jan/88 31/Dec/88  224,201  8,918  233,119  (232,118) 4.0 3.2 7.4

 1,382.0  545.5  345.0
 15.10  10.2 8.1



The Stochastic Programming Approach to Asset, Liability, and Wealth Management

152 ©2003, The Research Foundation of AIMR™

• Buy US$ assets that have a yearly return greater than 1/2 percent plus
the loss on JPY/USD exchange rate moves. A typical investment is in U.S.
10- or 30-year Treasuries.

• Receive i = 5–6 percent in fixed-income payments.
• Plus, receive the gain in the value of the bond if interest rates drop

(Warren Buffett made billions on this one-way [macro] bet with zeros in
1998).
This trade was a big money maker for hedge funds when the yen was

falling against the U.S. dollar from mid-1995 to 1998 and interest rates, i, were
falling as well. The profit function is

Figure 6.3. Growth of Assets for Various High-Performing Funds,   
December 1985–June 2000
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The two shocks in July 1998 and September 1998 shown in Figure 6.4,
which were plausible but low-probability scenarios, led to considerable losses
for holders of such trades who did not quickly neutralize their positions
through stops or other actions. In July 1998, there was U.S. coordinated
intervention in the yen market (Panel A). In September 1998, there was a
hedge fund unwinding disaster associated with the LTCM failure and associ-
ated trades in other hedge funds that had to be closed out to cover losses
elsewhere (Panels B and C, which has interest rates). 

To model the profit function, one needs scenarios on:
1. Where are long-term interest rates (i) going?
2. Where is the JPY/USD exchange rate (y) going?

In addition, unforeseen factors include:
1. Intervention, which is always a danger and may or may not be signaled

by market actions; and  

Figure 6.4. Two Shocks and U.S. Coordinated 
Intervention, 1998

A. July 1998
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B. September 1998
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C. September 1998
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2. hedge funds in trouble may need to unwind other trades to raise cash,
which serves as a reminder of another danger in today’s markets. One
derivative disaster can lead to others because hedge fund traders have
intertwined positions; raising cash to deal with one disaster can create
another one for someone else.
Hence, investors must diversify: Investors cannot have too much invested

in any one strategy and should use protective procedures, such as stops, to
limit losses.4 A multiperiod stochastic programming model is useful here.

Volatility and Spread Trading, Long–Short across Countries.
Perhaps the most common hedge fund equity trade is through spreads. These
trades can be long–short (possibly market neutral, zero beta) across stocks,
country indexes, or groups of stocks or futures contracts. They can be
modeled with scenarios for the longs and shorts, with risk control through
stops. The key is not to overbet.

Investment in T-Bills or Other High-Yield Instruments in Countries
with High Interest Rates. The idea is to collect more interest than one loses
from slow, steady currency depreciation and to avoid a large loss from a
sudden devaluation. The trade is based on the concept that in such countries,
interest rates exceed the devaluation rates and large devaluations are partially
predictable from foreign reserve and other economic variables.

Let X be the initial investment in U.S. dollars and Xit the amount converted

into country i’s currency at time t, where  The present

value of U.S. money in period t is ct, so the total investment is

 The return in currency i from the xit invested in

country i during period t to t + 1 is rit, and the exchange rate into currency i

is eit at time t. Hence, the profit from all the investments in the T periods is

the return minus the investment, namely,

for some given scenario. But investors must average over scenarios and
diversify so that the effect of bad scenarios is not disastrous. The main
uncertainty is in the eit’s. Assume that in the period from t to t + 1, e1t, . . . , eIt

4The setting of stop losses is largely an art with little good theory behind it because the problem
is complicated. A useful recent paper is Warburton and Zhang (2002).
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has the joint distribution function Ft(e1t, . . ., eIt), where the Ft’s have some
dependency. There is also uncertainty in the rit’s and the ct’s represented by
Gt(r1t, . . ., rIt and Ht(Ct), respectively. The Ft’s and Gt’s are highly related
because high interest rates in country i at time t are a signal that the expected
devaluation during t to t + 1 is also high. The ht’s may be related as well because
of two main effects—worldwide interest rate levels and movements and the
economic situation in various countries at this time.

I first started going to Turkey in 1970, when the exchange rate was 7
Turkish lira to the U.S. dollar; in March 2003, it hit 1.746 million. According
to Berument (2001), inflation typically ranged from 40 to 120 percent a year,
averaging 52.3 percent from 1975 to 2000. Interest rates in 2003 were in the
60–70 percent range (see Figure 6.5 for 1998–2003 interest rates and infla-
tion). As an oriental rug trader and author (see Ziemba, Akatay, and Schwartz,
1979, which was one of the first books about Turkish kilims and flatweaves),
I was well aware, as were the rug dealers, that such assets should be priced
in hard currencies, such as the German mark or U.S. dollar.5 Still, with the
astronomical devaluation over the past 32 years, hedge fund investors who
changed U.S. dollars into lira and collected T-bill interest made profits when
they converted the money back to U.S. dollars. Those who were able to predict
the large currency devaluations based on economic factors, such as foreign
reserves, had even higher gains. 

This strategy has been successful in a number of high-yield countries from
time to time. The gains are risky, however, and can be lost with a sudden large
devaluation. One such devaluation, which caused a Fidelity Investments fund
manager to lose his job of managing a $10 billion fund, happened in December
1994/January 1995 in Mexico. For several years, the manager’s strategy
returned 14–18 percent on Mexican T-bills, net a 2–4 percent average annual
decline in the currency against the U.S. dollar, until the major December 1994
devaluation that occurred largely because Mexico’s foreign currency reserves
declined sharply to low levels. Judging such a changing economic environ-
ment is difficult, and even the enormous resources of Fidelity did not allow
the manager to obtain sufficient information to exit the Mexican position
before the major devaluation occurred.

How to Lose Money in Derivatives
The derivative industry deals with products in which zero-sum games are the
norm—what one party gains the other party loses. Hence, there are bound to

5My analysis was intuitive, but for a learned analysis of the politics of currency unions, currency
boards, and case studies of Turkey, Montenegro, Argentina and Ecuador, see R. Ziemba (2003).
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be large winners and large losers. The size of the gains and losses are magnified
by the leverage and overbetting, which invariably lead to large losses when a
bad scenario occurs. 

Who loses in derivative disasters? This monograph is concerned with
procedures to avoid or limit financial disasters that occur because the investor
is not properly diversified or financed. Miller (1996) discussed the social costs
of various derivative disasters and took the view that in most cases, such
disasters are a zero-sum situation in which one side’s loss is the other side’s

Figure 6.5. Turkish Interest Rates and 
Inflation, 1998–2003

Note: 2003 data through May.
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gain. Indirect social costs, such as bankruptcy, are present, but because the
institutions and physical assets, such as buildings, are likely to survive, their
impact is small. Hence, Miller argues, more regulation is not needed; rather,
‘‘more understanding by top management of how to manage risk (and less
hubris on the part of . . . treasurers convinced they could forecast interest
rates’’ is needed. 

Figlewski (1994) categorized derivative disasters as follows:
1. Hedge. In an ordinary hedge, one loses money on one side of the transac-

tion in an effort to reduce risk. The correct way to evaluate the perfor-
mance of a hedge is to consider all aspects of the transaction. In
sophisticated hedges, where one delta hedges but is a net seller of options,
there is volatility (gamma) risk, which can lead to losses if prices move
much up or down. Also, accounting problems can lead to losses if gains
and losses on all sides of a derivative hedge are recorded in the firm’s
financial statements at the same time.

2. Counterparty default. Credit risk is the fastest growing area of derivatives,
and a common hedge fund strategy is to be short overpriced credit default
derivatives. There are many ways to lose on these shorts if they are not
hedged properly, even if they have an edge.

3. Speculation. Derivatives have many purposes, including transferring risk
from those who do not wish to have it (hedgers) to those who do
(speculators). Speculators who take naked unhedged positions take the
purest bet and win or lose monies related to the size of the move of the
underlying security. Bets on currencies, interest rates, bonds, or stock
market moves are leading examples.

Human agency problems frequently lead to large losses for traders
holding losing positions, which, if cashed out, would lead to lost jobs or
bonuses. Some traders, whose motivations are largely driven by short-
term performance targets (which if not met will result in losing client
money) will increase exposure exactly when they should reduce it in the
hope that a market turnaround will allow them to cash out with a small
gain before their superiors find out about the true situation and force them
to liquidate. Because the job or bonus is already lost, the trader’s interests
are in conflict with the firm’s and huge losses may occur. Writing options,
which typically gain small profits most of the time, is a common vehicle
for this problem because the size of the position accelerates quickly as
the underlying security moves in the wrong direction. Because trades
between large institutions frequently are not collateralized market to
market, large paper losses can accumulate without visible signs, such as
a margin call. Nick Leeson’s loss betting on short puts and calls on the
Nikkei Stock Average is one of many such examples. The 1995 Kobe
earthquake in Japan was the bad scenario that bankrupted Barings Bank.
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A proper accounting of trading success is to evaluate all gains and
losses so that the extent of some current loss can be weighed against
previous gains. Derivative losses should also be compared with losses on
underlying securities. For example, from 3 January to 30 June 1994, 30-
year T-bonds fell 13.6 percent. Hence, holders of bonds lost considerable
sums as well because interest rates rose quickly.

4. Forced liquidation at unfavorable prices. Gap moves through stops are one
example of forced liquidation. Portfolio insurance strategies based on
selling futures during the 18 October 1987 stock market crash were unable
to keep up with the rapidly declining market, whose futures fell 29 percent
that day. Forced liquidation stemming from margin problems is even more
difficult when others have similar positions and predicaments. The August
1998 problems of LTCM in bond and other markets were made more
difficult because others had followed their lead with similar positions.
When trouble arose, buyers were scarce and sellers were everywhere.
Another example is Metallgellschaft’s crude oil futures hedging losses of
more than $1.3 billion. The company had long-term contracts to supply oil
at fixed prices for several years—a similar problem to the insurance
guarantees discussed in Chapter 3. These commitments were hedged
with long oil futures. But when spot oil prices fell rapidly, the contracts to
sell oil at high prices rose in value but did not provide current cash to cover
the mark-to-market futures losses. A management error led to the unwind-
ing of the hedge near the bottom of the oil market and the disaster.

Potential problems are greater in illiquid markets. Such positions are
typically long term, and liquidation must be done by matching sales with
available buyers. Hence, forced liquidation can lead to large bid–ask
spreads. Askin Capital Management’s failure in the bond market in 1994
was exacerbated because it held sophisticated securities that were traded
only by a few counterparties; once they learned of Askin’s liquidity prob-
lems and weak bargaining position, they further lowered their bids. The
firm was then able to gain large liquidity premiums.

5. Misunderstanding the risk exposure. As derivative securities have become
more complex, so has investors’ understanding of them. The Nikkei put
warrant risk-arbitrage trade I mentioned was successful because Thorp
and I had done a careful analysis to fairly price the securities.6 In many
cases, losses are the result of unsophisticated investors’ trading in high-
risk financial instruments. Lawsuits have arisen by investors attempting

6See the discussion of this trade in Appendix E (p. 37), which is available online in the
Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixE.pdf.



Hedge Fund Applications

©2003, The Research Foundation of AIMR™ 159

to recover some of their losses; they claim that they were misled or not
properly briefed concerning the risks of the positions taken. Because the
general public, and thus judges and juries, find derivatives confusing and
risky even when they are used to reduce risk, such cases or the threat of
them may be successful.

A great risk exposure is the extreme scenario that investors assume
has zero probability but in fact has low but positive probability. Investors
are frequently unprepared for interest rate, currency, or stock price
changes so large and so fast that they are considered to be impossible to
occur. The move of some bond interest rate spreads from 3 percent a year
earlier to 17 percent in August/September 1998 led even the savvy
investor and sophisticated LTCM researchers and traders down this road.
Their extensive stress testing failed; the extreme events, such as the
August 1998 Russian default, had both the extreme low-probability event
plus the changing correlations. As argued in this monograph, scenario-
dependent correlation matrixes, rather than simulation around the past
correlations, is suggested. This strategy was implemented, for example,
in the Innovest pension plan model, discussed in Chapter 4, which did not
involve levered derivative positions. The key for staying out of trouble,
especially with highly levered positions, is to fully consider the range of
possible future outcomes and to have enough capital, or access to capital,
to weather bad scenario storms so that any required liquidation can be
done in an orderly manner.

Figlewski (1994) noted that the risk in mortgage-backed securities is
especially difficult to understand. Interest-only securities (IOs), which
provide only a share of the interest as part of the underlying mortgage
pool’s payment stream, are a good example. When interest rates rise, IOs
rise because payments are reduced and the stream of interest payments
is larger. But when rates rise sharply, IOs fall in value like other fixed-
income instruments because the future interest payments are more heavi-
ly discounted. This sign-changing interest rate exposure was one of the
difficulties in Askin’s losses in 1994. Similarly, the sign change between
stocks and bonds during stock market crashes, as in 2000 to 2003, has
caused other similar losses. Scenario-dependent matrixes are especially
useful and needed in such situations.

6. Forgetting that high returns involve high risk. If investors seek high returns,
then they will usually have some large losses. The Kelly criterion strategy
and its variants in this chapter provide a theory to achieve high long-term
returns, but large losses will also occur. These losses are magnified with
derivative securities, especially with large derivative positions in relation
to the investor’s available capital.



The Stochastic Programming Approach to Asset, Liability, and Wealth Management

160 ©2003, The Research Foundation of AIMR™

Stochastic programming models, such as those discussed in this mono-
graph, provide a good way to try to avoid problems 1–6 by carefully modeling
the situation at hand and considering the possible economic futures in an
organized way.

The Failure of LTCM
Of the many hedge fund failures, LTCM stands out as a particularly public
one. The firm started with the talents of the core bond traders from John
Meriwether’s group at Salomon Brothers, who were successful for a number
of years. When Warren Buffett came on board at Salomon, the culture of this
group clashed with Buffett’s apparently more conservative style, although in
truth, Buffett’s record is Kelly-like and not all that different from Meriwether’s
group. A new group was formed with an all-star cast of top academics,
including two future Nobel Laureates and a number of top professors and
students, many of whom were linked to Massachusetts Institute of Technol-
ogy. In addition, top government officials were involved. The team was dubbed
as being “too smart to lose,” and several billion was raised, despite the lack of
a real track record; fees were high (25 percent of profits), and entry investment
($100 million minimum) was also high. The idea, according to Myron Scholes,
was to be a big vacuum cleaner, sucking up nickels all over the world.

There were many types of trades, but the essence of the bond risk
arbitrage was to buy underpriced bonds in various locales and sell overpriced
bonds in other locales and then wait for the prices to revert to their theoretical
efficient market prices and unwind the position. These trades were similar to
the Nikkei put warrant risk-arbitrage trade that Thorp and I did, only LTCM
used much more leverage. I call such bond trades “buy Italy and sell Florence”
trades. As shown in Figure 6.6, the interest rate implied by the bond prices
is higher in Italy than in Florence. But the theory is that Florence, a smaller
city, would have more risk. Hence, the trade should have an advantage and
be unwound once the prices revert to their true risk-priced values. 

LTCM analysts made many such trades, most of which were much more
complex, all around the world. They also had many other complex and innova-
tive trades. Their belief that markets were efficient and would snap back quickly
when temporarily out of whack and the continuous lognormal assumptions of
option-pricing hedging led them to take large positions that, according to their
theory, were close to riskless. The plan worked. Net returns for the part of 1994
that the fund operated were 19.9 percent. The fund had superb results in 1995
and 1996, with returns of 42.8 percent and 40.8 percent, respectively. Indeed,
for the principals whose money grew fee-less, the net returns were 63 percent
and 57 percent, respectively, with taxes deferred. By 1997, however, it became
harder to find profitable trades and the gains fell to 17.1 percent. 
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Although a good record for most, it was not satisfactory to LTCM’s
principals. The action was to return US$2.7 billion of the US$6.7 billion
investor money and to put in an additional US$100 million of personal loans
to the principals from banks. Banks and most others were keen to loan to or
invest with this group, and investors were not happy to leave the fund. The
difficulties in 1998 were exacerbated by the 17 August Russian ruble devalu-
ation and bond default. Russian bonds denominated in rubles trading for, say,
60 rubles fell rapidly to 3 rubles, whereas Russian bonds denominated in
German marks or dollars fell only a few percent because they were not subject
to default. So, long 60/short 95, say, became long 3/short 92.

Such losses occur from time to time in various markets, and hedge funds
that overbet are vulnerable. LTCM had US$1.25 trillion in positions (i.e., about
1 percent of the current [May 2003] value of the world’s derivatives and an
even higher percentage in 1998) and US$125 billion in borrowed money, but
although the trades were all over the world and hence seemed to be diversified,
they were not. As a result, a scenario-dependent correlation situation occurred,
such as that modeled in the Innovest pension application in Chapter 4. The
underlying variable that frequently rears its ugly head in disasters—investor
confidence—played a role. As shown in Figure 6.7, from August to October
1998, the difference in high-yield bond rates and U.S. Treasury rates increased
from roughly 4 percent to 6 percent. For example, emerging market debt was
trading for 3.3 percent above U.S. T-bonds in October 1997, 6 percent in July
1998, and then an astounding 17 percent in September 1998. 

LTCM was unable to weather the storm of this enormous crisis of confi-
dence and lost about 95 percent of its US$4 billion, including most of the
principals’ and employees’ considerable accumulated fees. The US$100 mil-
lion loan put some of them into bankruptcy, although others came out better

Figure 6.6. “Buy Italy, Sell Florence” Trades
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financially. It did not help that they unwound liquid positions first rather than
across all liquidity levels, as the Nobel Laureates recommended. Nor did it
help that many other copycat firms had similar positions; that LTCM had
created enemies by being so good and so brash; that the lack of monitoring
of margin by brokers eager for business allowed the positions to grow to way
overbet dangerous levels; and that the $2.8 billion was gone and they could
not draw on it when it was most needed.7 Smart people bounce back and learn
from their mistakes, as has this group of traders with new hedge funds and
other ventures. The lessons for the purposes of this monograph are:
• Do not overbet, it is too dangerous.
• VAR-type systems are inadequate to measure true risk, but see Jorion’s

(2000b) book on VAR and Dunbar’s (2000) discussion of the VAR
calculations used by LTCM. LTCM analysts did a careful analysis, but the
problem was that the risk-control method of VAR used in regulations does
not protect highly levered hedge funds; you are not penalized enough for
large losses. Indeed, if you lose US$10 million, it is penalized the same as
losing US$100 million if the VAR number is US$9 million of losses. LTCM
was not subject to VAR regulations but still used it. What you really need
are convex penalties so that penalties are more than proportional to losses.

• Be aware of and consider extreme scenarios. 
• Allow for extra illiquidity and contract defaults. LTCM also suffered

because of the copycat firms that put on similar positions and unwound
them at the same time in August/September 1998.

Figure 6.7. Difference in Yields between 
High-Yield Bonds and  U.S. 
Treasuries, 1998

Source: Based on data from Salomon Smith Barney.

7In the section that follows on the Kelly criterion, I argue that investors should never bet more
than the log optimal amount and betting more (as LTCM did) is stochastically dominated
because of lower growth rates and higher risk.
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• Really diversify (as Soros said, we risked 10 percent of our funds in Russia
and lost it, US$2 billion, but we were still up 21 percent in 1998).

• Historical correlations work when you do not need them and fail when
you need them in a crisis when they approach 1.0. Real correlations are
scenario dependent.
Good information on the demise of LTCM and the subsequent US$3.5

billion bailout by major brokerage firms that was organized by the Fed are in
Perold (1999), Jorion (2000a) and Edwards (1999). Eventually, the positions
converged and the bailout team was able to emerge with a profit on its
investment.

The Russian ruble devaluation of some two-thirds was no surprise to me.
In 1992, my family and I were in St. Petersburg as guests of Professor Zari
Rachev, an expert in stable and heavy-tail distributions (see Rachev 2003). As
we arrived, I gave him a $100 bill and he gave me six inches of 25 ruble notes.
Our dinner out cost two inches for the four of us, and drinks were extra in
hard currency. So, I am in the Soros camp: Make bets in Russia if you have
an edge but do not risk too much of your wealth.

Where was the money lost? The score card, according to Dunbar, was a
loss of US$4.6 billion. Emerging market trades, such as those similar to my
“buy Italy, sell Florence” trades, lost US$430 million. Directional, macro trades
lost US$371 million. Equity pairs trading lost US$306 million. Short long-term
equity options, long short-term equity lost US$1.314 billion. Fixed-income
arbitrage lost US$1.628 billion

The bad scenario of investor confidence that led to much higher interest
rates for lower-quality debt and much higher implied equity volatility had a
serious effect on all the trades. The long–short equity option trades, largely in
the CAC40 and Dax equity indexes, were based on a historical volatility of about
15 percent versus implied volatilities of about 22 percent. Unfortunately, in the
bad scenario, the implieds reached 30 percent and then 40 percent. With smaller
positions, the fund could have waited it out, but with such huge levered
positions, it could not. Equity implieds can reach 70 percent or higher, as Japan’s
Nikkei Stock Average did in 1990–1991, and stay there for many months.

The Imported Crash of 27 and 28 October 1997
A currency crisis developed in various Asian countries in mid-1997. It started
in Thailand and moved all across the region. The problem was lack of foreign
reserves, which occurred because spending and expectations that had led to
borrowing were too high and Japan, the main driver of these economies, was
facing a consumer slowdown and its imports had dropped. Also, loans were
denominated in what was then considered a weak currency, the U.S. dollar;
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these countries were thus effectively long yen and short dollars. A large
increase in the U.S. currency in yen terms exacerbated the crisis. The coun-
tries devalued their currencies, interest rates rose, and stock prices fell. A well-
known hedge fund failure in 1997 was Victor Niederhoffer’s fund, which had
an excellent previous record with only modest drawdowns. A large long bet
on cheap Thai stocks that became cheaper and cheaper turned US$120 million
into US$70 million. Buying on dips added to losses. Then, the fund created a
large short position in out-of-the-money S&P 500 futures index puts. A typical
position was November 830 puts trading for about US$4–6 at various times
around August/September 1997.

The crisis devastated the small economies of Malaysia, Singapore, Indo-
nesia, and so on. Finally, it spread to Hong Kong. There, the currency was
pegged to the U.S. dollar at around 7.8. The peg was useful for Hong Kong’s
trade and was to be defended at all costs. The weapon used was higher interest
rates, which almost always led to a stock market crash but with a lag. (See the
discussion in Chapter 2.) The S&P 500 was not in the danger zone in October
1997, by my models and I presume those of others, and the trade with Hong
Kong and Asia was substantial but only a small part of U.S. trade. U.S. investors
thought that this Asian currency crisis was a small problem because it did not
affect Japan very much. In fact, Japan caused a lot of it. In my opinion,
whenever a boom or bust occurs in Asia, look to Japan and you will likely find
much of the cause there.

The week of October 20–25 was difficult, with the Hang Seng dropping
sharply. The S&P 500 was also shaky, so the November 830 puts were 60 cents
on Monday, Tuesday, and Wednesday but rose to 1.20 on Thursday and 2.40
on Friday. The Hang Seng dropped more than 20 percent in a short period,
including a 10 percent drop on Friday, October 25. The S&P 500 was at 976,
way above 830, as of Friday’s close. A further 5 percent drop on Monday,
October 27 in Hong Kong led to a panic in the S&P 500 futures later on Monday
in the United States. The fall was 7 percent, from 976 to 906, which was still
considerably above 830. On Tuesday morning, there was a further fall of 3
percent to 876, which still kept the 830 puts out of the money. The full fall in
the S&P 500 was then 10 percent.

But the volatility exploded and the 830s were in the $16 area. Refco called
in Niederhoffer’s puts in the midmorning. They took a loss of about US$20
million. So Niederhoffer’s US$70 million fund was bankrupt and in the red
because the large position in these puts and other instruments turned US$70
million into –US$20 million. The S&P 500 bottomed out at around 876, moved
violently in a narrow range, and then settled and moved up by the end of the
week  to around 976. So, it really was a tempest in a teapot. The November
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830 puts expired worthless. Investors who were short equity November 830
puts were required to put up so much margin that that they had to have small
positions; they weathered the storm, and their US$4–$6, while temporarily
behind at US$16, did eventually go to zero. The futures puts went to zero as
well, but futures shorters are not required to post as much margin; if they
did not have adequate margin, it was because they had too many positions.
They could have easily been forced to cover at a large loss. I argue that
futures margins, at least for equity index products, do not fully capture the
real risk inherent in these positions. I follow closely the academic studies on
risk measures and none of them deal with this issue properly. When in doubt,
always bet less. Niederhoffer is back in business after having profited by this
experience.

One of my Vancouver neighbors, I learned later, lost US$16 million in one
account and US$4 million in another account, the difference being the time
given to cash out and cover the short puts. I was in this market also and won
in the equity market and lost in futures. I learned how much margin you
actually need in futures, a lesson I use now in trading for myself and in private
accounts, which has been very profitable, with a few wrinkles to protect
oneself. One of the naked strategies won 64 out of 65 times from 1985 to 2003.
A hedged strategy had a 45 percent geometric mean, with 60 of 65 winners
with the five ruled too risky by a cash, option-price danger control measure
out of the 70 possible plays in those 18 years and a seven symmetric downside
Sharpe (as discussed in Chapter 1).

The lessons for hedge funds are similar to those taught by LTCM. Do not
overbet, do diversify, watch out for extreme scenarios. Even the measure to
keep one out of potentially large falls (the 5 of 70 above) did not work in
October 1997. That was an imported fear-induced crash, which was not really
based on U.S. economics. My experience is that most crashes occur when
interest rates relative to P/Es are too high, as discussed in Chapter 2. A mini-
crash caused by some extraneous event can occur at any time. So, to protect
oneself, derivative positions must not be too large or they must be hedged or
have proper stop-loss provisions.

The Kelly and Fractional Kelly Wagering Strategies
In the mathematics of investing, the basic goal is to turn gambles (with negative
expectations) into investments (with positive expectations) through the devel-
opment of good playing strategies and intelligent wagers. Strategy develop-
ment follows general principles but is somewhat different for each particular
situation. The wagering, or money management, concepts apply to all games.
The difference in application depends on the edge and the probability of
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winning. The size of the wager depends on the edge but much more so on the
probability of winning, if one takes a long-run rate of growth of profit approach. 

I will consider situations in which the player has an edge and develop
playing strategies to exploit that edge. These are situations in which, on
average, the player can win using a workable system. The analyses will use
concepts from modern financial economics investment theory and related
mathematical optimization, psychological, statistical, and computer techniques
and apply them to gambling situations in order to yield profitable systems. This
process frequently involves the identification of a security market imperfection
or anomaly or partially predictable prices. Naturally, in gambling situations, all
players cannot win, so the potential gain will depend on how good the system
is, how well it is played, how many are using it or other profitable systems, and,
most crucially, the risk control system in use. Not every game has a useful,
favorable system by which one can make profits, on average. Consider, for
example, baccarat or chemin de fer. Virtually every financial market, however,
has strategies that can lead to winning investment situations.

Two considerations should be taken into account in the analysis of each
situation: When should one bet and how much should be bet? These consid-
erations may be referred to as “strategy development” and “money manage-
ment.” They are equally important. The strategy development aspect is fairly
well understood by many people. The money management (risk control)
element is more subtle, however, and errors in this area can lead to financial
disasters. Using the capital growth/Kelly and fractional Kelly betting systems,
I will discuss the basic theory of gambling/investing over time and apply it to
blackjack, horseracing, lotteries, and futures trading.

The maximization of logarithmic utility as a desirable objective dates
back at least to the letters from Daniel Bernoulli in the 1700s. In his view, log
has smoothly declining marginal utility and is risk averse (i.e., concave). Log
is a risky utility function, however, because its Arrow–Pratt absolute risk-
aversion index [–u′′(w)/u′(w)] is 1/w, which for wealth w at any reasonable
level is essentially zero. I argue that log is the most risky utility function one
should ever consider and betting more than that suggested by log is stochas-
tically dominated.

Log utility is related to negative power utility, namely, αwα for parameter
α < 0, because negative power converges to log when α → 0. Kelly (1956)
discovered that log utility investors are in possession of the best utility function,
provided they are long-run investors. The asymptotic rate of asset growth is

G lim log
wN
w0
-------

⎝ ⎠
⎜ ⎟
⎛ ⎞

1/N

,=
N ∞→
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wN is period N’s wealth and w0 is initial wealth. Consider Bernoulli trials that
win +1 with probability, p, and lose –1 with probability 1 – p. If M out of N of
these independent trials are won, 

wN = w0(1 + f )M (1 – f )N–M,

where f is the fraction of the wealth bet in each period, then

which by the strong law of large numbers is

G(f ) = plog(1 + f ) + qlog(1 – f ) = E (logw), 

where E represents expectation. Hence, the criterion of maximizing the long-
run exponential rate of asset growth is equivalent to maximizing the one-
period expected logarithm of wealth. To maximize long-run (asymptotic)
wealth, then, maximizing expected log is the way to do it period by period.

The optimal fractional bet, obtained by setting the derivative of G(f ) to
zero, is f∗ = p – q, which is simply the investor’s edge or expected gain on the
bet.8 If the bets are win O + 1 or lose 1 (i.e., the odds are O to 1 to win), then
the optimal Kelly bet is f∗ = (p – q/O) or the Edge/0dds. So edge is a mean
concept and odds is a risk concept and the bettor wagers more with higher
mean and less with higher risk.

In continuous time,

with optimal growth rate

where µ is the mean portfolio return, r is the risk-free return, and σ2 is the
portfolio return variance.

Kelly bets can be large. Recall Bernoulli trials in which the bettor wins 1
or loses 1 with probabilities p and 1 – p, respectively; then,

8If there are two independent wagers and the size of the bets does not influence the odds, then
an analytic expression can be derived (see Thorp 1997, pp. 19–20). In general, to solve for the
optimal wagers in cases in which the bets influence the odds, there is dependence, or for cases
with three or more wagers, one must solve a nonconvex linear program (see Ziemba and
Hausch 1984 and 1987 for technique). This strategy gives the optimal wager and takes into
account the effect of bets on the odds (prices).

G f( ) lim  M
N
----- log 1 f+( )

N M–
N

--------------- log 1 f–( )+ ,=
N ∞→

f ∗ µ r–

σ2
-----------

Edge
Risk odds( )
----------------------------- ,= =

G∗ 1
2
---

µ r–
σ
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.

The bets f∗ become larger and larger as the edge increases with constant risk.
Hence, wealth grows on a bumpy path, as shown in the top line in Figure 6.8.

But the Kelly bettor is sure to win in the end if the horizon is long enough.
Breiman (1961) was the first to clean up the math from Kelly’s 1956 and
Latane’s 1957 heuristic analyses. He proved that

where wKB(N) and wB(N) are the wealth levels of the Kelly bettor and another
essentially different bettor after N play; that is, the Kelly bettor wins infinitely
more than bettor B and moves further and further ahead as the long time

Figure 6.8. Wealth Level Histories from Place 
and Show Betting on the Kentucky 
Derby, 1934–98

Note: With system using a 4.00 dosage index filter rule with full
and half Kelly wagering from $200 flat bets on the favorite. Initial
wealth = $2,500.
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horizon becomes more distant.9 Recall from Chapter 4, the Hensel–Ziemba
(2000b) calculation that from 1942–1997, a 100 percent long investor solely in
large-cap stocks with Republican administrations and solely in small-cap
stocks with Democratic administrations had 24.5 times as much wealth as a
60/40 percent large-cap stock/bond investor. That is the idea of Kelly betting,
more or less. Keynes and Buffett are essentially Kelly bettors (see Figure 6.1
and Figure 6.3, respectively). Kelly bettors have bumpy investment paths, but
they end up with more money than other types of investors. 

I have worked with Professor Leonard MacLean of Dalhousie University
since 1986 on approaches to tone down the danger of log while retaining its
growth properties. I will discuss some of our work here.

The Kelly criterion has been used by gamblers since its discovery. The
leading champion of its use in blackjack and other games of chance, sports
betting, and the stock market is Thorp. Thorp can hardly be considered to be
a gambler; as shown in Figure 6.2 and Table 6.2, he had a very smooth hedge
fund record that looks nothing like the top line in Figure 6.8. Instead, he
learned from gambling theory how to be a conservative investor, which is what
I am trying to show in this section of the monograph.

The risk of Kelly strategies can be reduced by blending them with cash. A
fractional Kelly strategy is δ percent in the Kelly strategy and 1 – δ percent in
cash. Fractional Kelly strategies have smoother wealth paths, such as that
shown in Figure 6.8 for bets on the Kentucky Derby using the system devised
in Hausch, Ziemba, and Rubinstein (1981), refined in Hausch and Ziemba
(1985), and popularized in my books with Hausch (1984, 1986, 1987), plus using
a breeding concept called “dosage” (see Bain, Hausch, and Ziemba 2002). 

The fractional Kelly strategies 0 < δ < 1 are related to the coefficients α < 0
in the negative power utility function because δ = (1/1 – α). So, δ = 1/2, or half
Kelly, is α = –1 or –w–1, and δ = 1/4, or quarter Kelly, is –w–3. This calculation
is exact for lognormally distributed assets in continuous time and normally
distributed assets in discrete time and approximately correct with other distri-
butions; a proof is provided in MacLean, Ziemba, and Li (2002).

The simulation study by Ziemba and Hausch (1986) illustrates typical Kelly
and half Kelly behavior with shorter time horizons. An investor starts with
US$1,000 and makes 700 wagers 1,000 different times. The wagers all have an
expected return of 14 percent but have different chances of winning and odds

9Bettor B must use an essentially different strategy than the Kelly bettor for this outcome to
be true, so the strategies differ infinitely often. For example, they are the same for the first 10
years, then every second trial is different. This point is technical, to get proofs correct, but it is
nothing much to worry about in practice because nonlog strategies differ infinitely often.
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according to the values shown in Table 6.3. The edge over odds gives f∗ equal
to 0.14 down to 0.028 for bets with 1–1 versus 5–1 odds. The results are shown
in Table 6.4. 

The minimum of 18 in the first column shows that a Kelly bettor can
make 700 independent wagers—all with a 14 percent edge having a 19
percent to 57 percent chance of winning each wager—and still lose more
than 98 percent of his or her wealth. But the last column shows that 16.6
percent of the time, the Kelly bettor’s initial wealth increases hundredfold.
The half Kelly strategy is much safer; the chance of being ahead after the
700 wagers is 95.4 percent versus 87 percent for the full Kelly strategy. But
the growth rate is much lower because the 16.6 percent chance increasing
wealth hundredfold is only 0.1 percent for half Kelly wagerers. The Kelly
bettor accumulates more wealth but with a much riskier time path of wealth
accumulation. The Kelly bettor can take a long time to get ahead of another
bettor, as shown in Figure 6.8 for the Kentucky Derby dosage bets; the full
and half Kelly winning strategies are compared with the losing strategy of
simply betting on the favorite, the lowest odds’ horse. 10

Table 6.3. Value of Odds on Wagers in the Ziemba–
Hausch  (1986) Simulation

Probability of 
Winning Odds

Probability of Being 
Chosen in the Simulation 

at Each Decision Point

Optimal Kelly 
Fraction of 

Current Wealth

0.570 1–1 0.1 0.140
0.380 2–1 0.3 0.070
0.285 3–1 0.3 0.047
0.228 4–1 0.2 0.035
0.190 5–1 0.1 0.028

Table 6.4. Distributions of Final Wealth in Dollars for Kelly and Half Kelly 
Wagers in the Ziemba–Hausch (1986) Simulation Starting with 
US$1000

Final Wealth 
Strategy

Number of Times the Final Wealth 
out of 1,000 Trials Was:

Minimum Maximum Mean Median >500 >1,000 >10,000 >50,000 >100,000

Kelly 18  483,883  48,135  17,269  916  870   598  302 166
Half Kelly 145  111,770  13,069  8,043  990  954  480 30 1

10See the discussion of properties in Appendix E (p. 53), which is available online in the
Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixE.pdf.
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Dosage bets in Figure 6.8 on the Kentucky Derby from 1934–1998 were
made using an inefficient market system; probabilities from a simple market
(win) were used in a more complex market (place and show) and were coupled
with a breeding filter rule (dosage filter 4.00) to eliminate horses lacking
sufficient stamina. Basically, you bet on horses that have the stamina to finish
first, second, or third and are underbet to come in second or better or third
or better relative to their true chances estimated from their odds to win.

The full Kelly log bettor has the most total wealth at the horizon but has
the most bumpy ride—US$2,500 becomes US$16,861. The half Kelly bettor
ends up with much less, US$6,945, but has a much smoother ride. A compar-
ison with random betting proxied by betting on the favorite in the race shows
how tough it is to win at horseracing, particularly with the 16 percent track
take plus breakage (rounding payoffs down) at Churchill Downs. Betting on
the favorite turns US$2,500 into US$480. Actual random betting has even
lower final wealth at the horizon because favorites are underbet.

The difference between full and fractional Kelly investing and the result-
ing size of the optimal investment bets is illustrated via a trade-off of growth
versus security. This difference, akin to the static mean versus variance so
often used in portfolio management, yields two-dimensional graphs that aid
in the investment decision-making process.11

The Kelly criterion can also be used for betting on favorable (unpopular)
numbers in lotto games.12 Even with a substantial edge and large payoffs if
the bettor wins, the bets are extremely tiny because the chance of losing most
or all of the bettor’s money is high.

What has been learned from this exercise?
1. Lotto games are, in principle, beatable, but the Kelly and fractional Kelly

wagers are so small that it takes virtually forever to have confidence in
winning. Of course, the bettor could win earlier, and the bettor has a
positive mean on all bets. My studies have shown that the largest jackpots
contain about 47 percent of the 19 most unpopular numbers in 1986 versus
17 percent of the most unpopular numbers in the smallest jackpots. My six
most unpopular numbers produced a $10 million jackpot in Florida a few
years ago. Hence, emphasizing unpopular numbers is a valuable strategy
to employ. Could more be bet? Sorry, log is the most one should ever bet.

11This difference is illustrated in Appendix E (p. 43) by the game of blackjack, in which
fractional Kelly strategies have been used by professional players. Appendix E is available
online in the Supplementary Material area at www.aimrpubs.org/rf/issues/v2003n6/pdf/
AppendixE.pdf.
12For details, see Appendix E (p. 44), which is available online in the Supplementary Material
area at www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixE.pdf.
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2. The Kelly and fractional Kelly wagering schemes are useful in practice,
but the size of the wagers varies from tiny to enormous. My best advice:
Never overbet; it will eventually lead to trouble unless it is controlled
somehow, which is hard to do!

Commodity Trading: Investing in the Turn-of-the-Year Effect
with Index Futures
Repeated investments in commodity trades are well modeled by the capital
growth theory, with modifications for margin, daily mark-to-market account
variation, and other practical details. An interesting example is the turn-of-the-
year effect in U.S. small-cap stocks in January. Figure 6.9 shows the mean
excess return of the smallest minus largest decile of U.S. stocks for the 1926–
93 period by month. In 11 of the months, the advantage was small or negative;
a large advantage, however, occurred in January. The 10.36 percent mean
difference in January provided a strong advantage with high reliability; a small-
cap stock advantage occurred in 63 of the 68 years.  

One way to invest in this anomaly is to hold long positions in a small-cap
stock index and short positions in large-cap stock indexes because the transac-
tion costs (commission plus market impact) are less than a tenth of that of
trading the corresponding basket of securities. An example from Clark and
Ziemba (1987) using data from 1976–1977 to 1986–1987 follows. During the time
of this study, the March Value Line (VL) Index was an equally weighted
geometric average of the prices of about 1,700 securities emphasizing small-cap
stocks, whereas the S&P 500 was a value-weighted index of 500 large-cap
stocks. Hence, the VL/S&P 500 spread was long in small-cap stocks. 

Figure 6.9. Average Excess Return of 
Smallest minus Largest Decile of 
U.S. Stocks, 1926–93

Source: Based on data from Ibbotson Associates.
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Each point change in the index spread was worth US$500. The spread was
entered in mid-December, before futures anticipation bid up the lightly traded
VL Index. On average, the 15 December to (–1) day gain on the spread, that
is, the futures anticipation, was 0.57 points. By 15 January, the largest average
gains were over and the risks had increased. On average, the spread dropped
0.92 points in this period, with a high variance. The projected gain from a
successful trade was 0–5 points and averaged 2.85 points or $1,342.50 per
spread, assuming a commission of 1.5 × $55.

The average standard deviation of the VL/S&P 500 spread was about 3.0.
Table 6.5 shows an approximate return distribution with a mean of 2.85
points for the trade. The optimal Kelly investment, based on the return
distribution, is 74 percent of one’s fortune! Such high wagers are typical for
profitable situations with a small probability of loss. Given the uncertainty of
the estimates involved and the volatility and margin requirements of the
exchanges, a much smaller wager is suggested.

Panel A of Figure 6.10 displays the growth rate and probability of
doubling, tripling, and tenfolding one’s fortune before losing half of it for
various fractional Kelly strategies. At fractional strategies of 25 percent or less,
the probability of tenfolding one’s fortune before halving it exceeds 90 percent,
with a growth rate in excess of 50 percent of the maximal growth rate. Panel
B of Figure 6.10 gives the probability of reaching the distant goal of $10 million
before ruin for Kelly, half Kelly, and quarter Kelly strategies, with wealth levels
in the range of US$0–10 million. The results indicate that the quarter Kelly
strategy seems safe, with a 99 percent chance of achieving this goal. The
markets have become much more dangerous than during the period of this
study, however, so an even lower Kelly fraction is suggested.

These concepts were used in a US$100,000 speculative account by a
Canadian investment management firm. Five VL/S&P 500 spreads were
purchased to approximate a slightly less than 25 percent fractional Kelly
strategy. Watching the market carefully, the firm bought them on 17 Decem-
ber 1986 at a spread of –22.18 points, which was close to the minimum that
the spread traded at around 15 December. The spread continued to gain, and
the position was cashed out at –16.47 points on 14 January for a gain of 5.55

Table 6.5. Approximate Return Distribution
Gain 7 6 5 4 3 2 1 0 –1
Probability 0.007 0.024 0.0700 0.146 0.217 0.229 0.171 0.091 0.045
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points per contract, or US$14,278.50, after transaction costs. Additional dis-
cussion of many of the issues in this section appears in Clark and Ziemba and
is updated in Ziemba (1994a) and in Hensel and Ziemba (2000a).

Throughout the 1980s and up to the mid-1990s, the data were consistent
with the past substantial small-cap stock advantage. The market has changed
in the past few years, however, and the advantage has not been apparent,
except for shorter periods in the futures markets (see Hensel and Ziemba
2000a, who provide year-by-year daily data plots of the spread up to 1999–
2000.) The January effect is still alive, at least in the futures markets in
December. Spreads using the Russell 2000 Index (small caps) have more
liquidity than those using the Value Line Index.

Figure 6.10. Turn-of-the-Year Effect

Source: Based on data from Clark and Ziemba.
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Calculating the Optimal Kelly Fraction
Most applications of fractional Kelly strategies pick the fractional Kelly strat-
egy in an ad hoc fashion. MacLean, Ziemba, and Li showed that growth and
security trade-offs are effective for general return distributions in the sense
that growth is monotone decreasing in security (i.e., as growth rises, security
falls, and vice versa). But with general return distributions, this trade-off is not
necessarily efficient in the sense of Markowitz generalized growth playing the
role of mean and security, or variance. If returns are lognormal, however, the
trade-off is efficient. MacLean, Ziemba, and Li also developed an investment
strategy whereby the investor sets upper and lower targets and rebalances
when those targets are achieved. Empirical tests in MacLean, Zhao, and
Ziemba (2003a, 2003b) proved the advantage of this approach.

A solution to the problem of how to pick an optimal Kelly function appears
in MacLean, Sangre, Zhao, and Ziemba (forthcoming 2004). As illustrated in
Figure 6.11, staying above a wealth path while using a Kelly strategy is
difficult because the more attractive the investment opportunity, the larger
the bet size and, hence, the larger the chance of falling below the path.13 

The capital growth or Kelly criterion is an interesting and valuable betting
strategy that is useful in a variety of applications.14 

13An example applying this idea to the fundamental problem of asset allocation over time,
namely, the determination of optimal fractions over time in cash, bonds, and stock, is in
Appendix E (p. 50), which is available online in the Supplementary Material area at
www.aimrpubs.org/rf/issues/v2003n6/pdf/AppendixE.pdf.
14Further information on its important properties, good and bad, appears in Appendix E (p. 53),
which is available online in the Supplementary Material area at www.aimrpubs.org/rf/issues/
v2003n6/pdf/AppendixE.pdf.
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Figure 6.11. Kelly Fractions and Path 
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7. The Top 10 Points to 
Remember

Following are the key points to remember about the stochastic programming
approach to asset, liability, and wealth management.

• Point 1. Means are by far the most important part of the distribution of
returns, especially the direction. Thus, you must estimate future means
well or you can quickly travel in the wrong direction, which usually leads
to losses or underperformance.

• Point 2. Mean–variance models are useful as a basic guideline when you
are in an assets-only situation. Professionals adjust means using mean-
reversion, James–Stein, or truncated estimators and constrain output
weights. Do not change asset positions unless the advantage of the change
is significant. Do not use mean–variance analysis with liabilities and other
major market imperfections, except as a first test analysis.

• Point 3. Trouble arises when you overbet and a bad scenario occurs. Thus,
do not overbet when there is any possibility of a bad scenario occurring,
unless the bet is protected by some type of hedge or stop loss.

• Point 4. Trouble is exacerbated when the expected diversification does
not hold in the scenario that occurs. Thus, you must use scenario-
dependent correlation matrixes because simulations around historical
correlation matrixes are inadequate for extreme scenarios.

• Point 5. When a large decline in the stock market occurs, the positive
correlation between stocks and bonds fails and they become negatively
correlated. Thus, when the mean of the stock market is negative, bonds
are more attractive, as is cash.

• Point 6. Stochastic programming scenario-based models are useful when
you want to look at aggregate overall decisions—with liabilities, liquidity,
taxes, policy, legal, and other constraints—and have targets and goals you
want to achieve. It thus pays to make a complex stochastic programming
model when a lot is at stake and the essential problem has many
complications.

• Point 7. Other approaches, such as continuous-time finance, decision-rule-
based stochastic programming, control theory, and so on, are useful for
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problem insights and theoretical results. But in actual use, they may lead
to disaster unless modified. The Black–Scholes theory says you can hedge
perfectly with lognormal assets, which can lead to overbetting. Fat tails
and jumps arise frequently and can occur without warning. The S&P 500
opened limit down 60 points or 6 percent when trading resumed after

 and it fell 14 percent that week. Thus, be careful of the assumptions,
including implicit ones, of theoretical models. Use the results with caution
no matter how complex and elegant the math or how smart or famous the
author. Remember, you have to be very smart to lose millions and even
smarter to lose billions.

• Point 8. Do not be concerned with getting all the scenarios exactly right
when using stochastic programming models. You cannot do so, and it
does not matter that much anyway. Instead, worry about having the
problem periods laid out reasonably and make sure the scenarios basically
cover the means, the tails, and the chance of what could happen. If the
current situation has never occurred before, use one that is similar to add
scenarios. For a crisis in Brazil, use Russian crisis data, for example. The
results of stochastic programming will give you good advice when times
are normal and keep you out of severe trouble when times are bad. Those
using stochastic programming models may lose 5, 10, or 15 percent, but
they will not lose 50, 70, or 95 percent, as some investors and hedge funds
have. Thus, if the scenarios are more or less accurate and the problem
elements are reasonably modeled, stochastic programming will give good
advice. You may slightly outperform in normal markets, but you will
greatly outperform in bad markets, when other approaches may blow up.

• Point 9. Stochastic programming models for asset/liability management
were very expensive in the 1980s and early 1990s but are not expensive
now. Vancouver analysts using a large linear programming model to plan
lumber operations at MacMillan Blodel used to fly to San Francisco to use
a large computer that would run all day to run the model once. Now,
models of this complexity take only seconds to run on inexpensive
personal computers. Thus, advances in computing power and modeling
expertise have made stochastic programming modeling much less
expensive. Such models, which are still complex and require
approximately six months to develop and test, cost a couple hundred
thousand dollars. A small team can make a model for a complex
organization quite quickly at fairly low cost compared with what is at stake.
See www.numerikaalm.com or my website, homepage.mac.com/wtzimi/
index.htm, or contact the author at wtzimi@mac.com.

9/11,
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• Point 10. Eventually, as more disasters occur and more successful
stochastic programming models are built and used, they will become
popular. Thus, the ultimate goal is to have them in regulations, such as
value at risk is now. Although value at risk does more good than harm, its
safety is questionable in many applications. Conditional value at risk is an
improvement, but for most people and organizations, the nonattainment
of goals is more than proportional (i.e., convex) in the nonattainment.
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