
Robed Brooks, CFA 
Unz'uenib ofAlabama 

Interest Rate Modeling and the Risk 
Premiums in Interest Rate Swaps 

The Research Foundation of the 
Institute of Chartered Financial Analysts 



Interest Rate Modeii~g and the Risk Premiums in Interest Rute Swaps 

Active Curreno Management 
by Murali Ramaswarni 

Analysts' Earnings Forecast Accuracy in Japan and 
the United States 

by Robert M. Conroy, Robert S. Harris, and 
Young S. Park 

Bankrsptcy Prediction Using ArfificiaE Neural 
System 

by Robert E. Dorsey, Robert 0. Edmister, and 
John D. Johnson 

Canadian Stocks, Bonds, Bills, and Inflation: 
1950-1987 

by James E. Hatch and Robert E. White 

Company PPmfrmance and Measures of ValueAdded 
by Pamela P. Peterson, CFA, and David R Peterson 

CoQorate Bond Rating Drift: An Examination of 
Credit Qualily Rating Changes over Time 

by Edward I .  Altman and Duen Li Kao 

Corporate Governance and Finn Performance 
by Jonathan M. Karpoff, M. Wayne Marr, Jr., and 

Morris G .  Danielson 

Currency Management: Concepts and Practices 
by Roger G. Clarke and Mark P. Kritzman, CFA 

Earnings Forecasts and Share Price Reversals 
by Werner F.M. De Bondt 

Economically Targeted and Social Ixvcstments: 
investment Management and Pension Fund 
Performance 

by M. Wayne Marr, John R Wofsinger, and 
John L. Trimble 

Equity Trading Costs 
by Hans R Stoll 

Ethics, Fairness, Eflciency, and Fi~ancial Markets 
by Hersh Shefrin and Meir Statman 

Ethics ix the Investment Profession: A Szcrvoy 
by E. Theodore Veit, CFA, and Michael R 

Murphy, CFA 

Ethics in theInuestmenlBrofession: An International 
Survey 

by H. Kent Baker, CFA, E. Theodoreveit, CFA, and 
Michael R. Murphy, CFA 

Franchise Value and the Price/Earnixgs Ratio 
by Martin L. Leibowib and Stanley Kogelman 

Fundamental Considerations in Cross-Border 
Investment: The European View 

by Bruno Solnik 

Global Asset Management and Performance 
Attribution 

by Denis S. Karnosky and Brian D. Singer, CFA 

hitial  Dividends and Implications for Investors 
by James W.  Wansley, CFA, William R. Lane, CFA, 

and Phillip R. Daves 

Initial Public Offerings: The Role of Venture 
Capitalists 

by Joseph T. Eim and Anthony Saunders 

Interest Rate and Currelacy Swaps: A Tutor i~l  
by Keith C. Brown, CFA, and Donald J. Smith 

Managed Futures and Their Role in Investment 
Portfooliios 

by Don M. Chance, CFA 

The Modern Role of Bond Covenants 
by neen B. Malitz 

A New Pemcctive on Asset Allocation 
by Martin L. Leibowitz 

Options and Futures: A Tutorial 
by Roger G. Clarke 

The Poison Pill Anti-Takeover Definse: The Price of 
Strategic Deterrence 

by Robert F. Bruner 

A Practitionev-s Guide to Factor Models 

Predictable Time-Varying Components of 
Ixfernational Asset Returns 

by Bruno Solnik 

m e  Role of Risk Tolerance in the Asset Allocation 
Process: A New Perspective 

by W.V. Harlow 111, CFA, and Keith C. Brown, CFA 

Selecting Superior Securities 
by Marc R. Reinganum 

Time Diversi$caiion Revisited 
by William Reichenstein, CFA, and Dovalee Dorsett 

The Founders of Modern Finance: Their Prize- 
Winning Concepts and 1990 Nobel Lectures 



Interest Rate Modeling d the Risk 
Premiums in Interest Rate Swaps 



O 1997 The Research Foundation of the Institute of Chartered Financial Analysts 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, 
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, 
or otherwise, without the prior written permission of the copyright holder. 

This publication is designed to provide accurate and authoritative information in regard to the 
subject matter covered. It is sold with the understanding that the publisher is not engaged in 
rendering legal, accounting, or other professional service. If legal advice or other expert 
assistance is required, the services of a competent professional should be sought. 

ISBN 978-0-943205-92-2 

Printed in the United States of America 

January 1997 

Editorid Staff 

Charlene Semer 
Editor 

Roger S. Mitchell 
Assistant Editor 

Jaynee M. Dudley 
Production Manager 

Diane B. Hamshar 
Typesetting/Layout 



Th Resear& pundation's mission is to 
ident&]f.nk andpublkh researdi that is 
relevant to th AIMR Gbbal Body of 
Kmwh@e and ueefulfar AlMR mmber 
i n m m n t  practitianers and investors. 

The Research fiupzdation of 
The Institute of Chartered Financial Analysts 

P.0. Box 3668 
Charlottesvilb, Virginia 22903 

U. S. A. 
Telgflhone: 804-980-3655 

Fax: 804-980-3634 
E-mail: flaimr.org 

W~r ld  Wide Web: h~~://2$rww.aimr.org/aimr/research/reseh~~ch.htmE 



Interest Rate Modeling and the Risk Premiums in Interest Rate Swaps 

About %he Author 

Robert Brooks, @FA, is an associate professor of finance at the University 
of Alabama, Board of Visitors Research Fellow in Finance, and president of 
Financial Risk Management, a derivatives consulting firm. He has served as 
a consultant regarding the management of financial risks for auditing firms, 
corporations, investment bankers, and commercialbankers. Mr. Brooks is the 
author of more than 30 articles that have appeared in such publications as the 
Journal of fiancial and Quantitative Aaalysis, the Journal of Banking & 
Finance, and the Journal of Fireamial Engineering. He is also co-author of the 
book Interest Rate Risk Management: The Banker's Guide to U s i ~ g  Fukres, 
Options, Swaps, and Other Derivative Instruments. 



Interest Rate Modeling and the Risk Premiums in Interest Rate Swaps 

Foreword 

In his 1985 presidential address to the American Finance Association, entitled 
"Of Financial Innovations and Excesses," James Van Horne outlined the 
differences between success and failure for any new product or service 
introduced into the capital markets. A genuine innovation, Van Horne noted, 
"must make the markets more efficient in an operational sense [or] more 
complete." Conversely, he defined financial excesses as "things labeled 
financial innovations [that] have little or no substance when we peel away the 
veneer, other than to their promoters." From success stories such as zero- 
coupon bonds and asset securitization programs to ill-fated ventures such as 
unbundled stock units, the past 20 years of market history have been witness 
to an abundance of both innovation and excess. 

Few would question placing interest rate swaps in the innovation category. 
Indeed, the swap market has risen from its origins in the early 1980s to a point 
at which the outstanding notional principal is now counted in the tens of 
trillions of dollars. Furthermore, the swap product is truly global, with end 
users kequently demanding cash flows denominated in any of several differ- 
ent nondollar currencies. As summarized in Interest Rate and Currency Swaps: 
A Tutorial, a 1995 Research Foundation monograph, the fundamental reason 
for this rapid acceptance is that swap contracts provide an efficient way for 
corporations to mitigate their unwanted exposures to often-volatile move- 
ments in interest rates. Put more simply, swaps have become extraordinarily 
popular because they help companies solve problems cheaply and quickly. 

The marketing effort that accompanied the introduction of swap contracts 
is now several years old and, one would have to concede, has done a remark- 
able job of acquainting potential customers with the product's myriad benefits. 
Furthermore, recent trading debacles (e.g., Procter & Gamble, Barings Bank, 
Bank of New England) have made financial market participants acutely aware 
of two of the more prominent risks involved with these contracts: price risk 
and default risk. In this monograph, Robert Brooks documents another cost 
of using swaps that heretofore has received little attention, namely, the 
possibility that some end users of these arrangements are consistently paying 
more than others. h interesting aspect of this finding is that swaps, which 
are simply packages of forward contracts, require no explicit front-end premi- 
um payment, so establishing this result requires a more subtle approach than 
simply comparing market prices with theoretical values. 

@The Research Foundation of the ICFA vii 
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Brooks' argument goes something like this: The plain vanilla form of 
interest rate swap requires counterparties to exchange cash flows on a peri- 
odic basis, with one of those payments tied to a fixed interest rate and the 
other adjusted to changes in a variable reference rate (e.g., the London 
Interbank Offered Rate). Thus, at the time the swap is originated, the uncer- 
tainty over future rate conditions means that neither end user-the one 
making the fixed-rate payment or the one receiving it-knows exactly whether 
the cash exchanges will balance out over the life of the agreement. Standard 
textbook treatments of these contracts often argue that they are zero-sum 
games, meaning that the fixed rate is negotiated SO as to be an average of the 
sequence of future variable rates that is expected at tbe time of the initial 
negotiation. What if, however, supply and demand conditions dictate other- 
wise? We know, for example, that five out of six corporate users of swaps 
choose the pay-fixed side of the deal. So, is it possible that these participants 
consistently commit to a series of fixed-rate payments that end up being larger 
than the floating-rate receipts? 

Brooks documents that such is indeed the case. We interprets this result 
as being consistent with the existence of a significant risk premium in the 
swap market, defined as the difference between the current swap rate and an 
average of the expected future variable rates. In the process of developing his 
empirical analysis, Brooks also provides us with another valuable service. 
Specifically, his work includes a user-friendly survey of the more prominent 
theories and equilibrium models of the interest rate term structure, with a 
special primer on the notion of arbitrage-free modeling in finance. Even those 
readers with no direct involvement in the swap market are likely to find this 
section of Brooks' work to be quite useful. 

Producing compelling research about derivatives contracting is always 
subject to two difficulties. First, the topic tends to be challenging quantitatively 
for those without day-to-day exposure to these products. Second, because 
derivatives are often traded in nonpublic venues, the kinds of data necessary 
to deduce the market's behavioral fingerprints are often diacult to obtain. 
Brooks has been able to traverse both of these hurdles, and the result is a 
study that helps to establish a solid technical foundation for understanding 
these important instruments. This monograph is interesting and useful, and 
the Research Foundation is pleased to be able to publish it for your enjoyment. 

Keith C. Brown, CFA 
Research Director 

The Research Foundaton ofthe 
Institute of Chartered Financial Anaijsts 
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Interest Rate Modeling and the Risk 
Premiums in Interest Rate Swaps 

The focus ofthis research is on improving understanding of the consequences 
of using interest rate swap contracts, as well as related contracts. Interest rate 
swaps are widely believed to be basically a "zero-sum proposition," meaning 
that sometimes you win and sometimes you lose.' That is, over long periods 
of time, the impact of interest rate changes nets out. Thus, entering an interest 
rate swap does not change the expected return; rather, it changes only the 
resulting risk profile. 

The purpose of this research is to examine, both theoretically and empir- 
ically, the expected-return consequences of entering an interest rate swap or 
other interest rate derivative contract. For example, on average, does a 
receive-fixed interest rate swap result in net receipts or net payments? If net 
receipts (as anecdotal evidence suggests), how large are these receipts em- 
pirically?%at is, what is the historical average dollar return on a receive-fixed, 
pay-floating interest rate swap? Wow do the net receipts change for different 
interest rate swap maturities? 

lmplica8iosos for Prsedicing Financial Amalysqs 
The research described in this monograph is vitally important for several 
reasons. First, it will expand the general understanding of interest rate swaps. 
An investor may be able to use a swap to convert a floating-rate debt to a k e d -  
rate debt, thus reducing the portfolio's risk profile and increasing the expected 
return (this result would obviously depend on the investment horizon). Thus, 
this research will improve investors' ability to analyze the risk-return trade- 
oB involved with interest rate swaps. 

Second, financial managers will be better able to assess the benefits and 
costs of converting floating-rate debt to fixed and vice versa. Barclay and Smith 

'~erivatives, by their very construction, have an overall payout of zero, meaning that if 
one side loses a certain amount, then the other side gains that amount. In keeping with this 
view, derivatives ape considered zero-sum propositions. In this monograph, we focus on only 
one side: the receive-fied-rate side of an interest rate swap. 

@The Research Foundation of the ICFA I 
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(1995) observed that, for the industrial corporate sector between 1974 and 
1992,36.6 percent of corporate debt had a maturity exceeding five years and 
more than 50 percent had a maturity exceeding three years. In part, this 
research will help corporate executives evaluate the economic consequences 
of issuing either long-term fixedsate debt or floating-rate debt. 'They will be 
able to compare the cost of k i n g  their borrowing rate as opposed to having 
a floating rate. 

Third, security analysts will be betier equipped to assess the advantages 
and disadvantages of a particular corporation's debt policy. The economic 
costs of decisions related to debt maturity policy are important to stock price 
performance. Goswami, Noe, and Rebello (1995) reported that the use of debt 
financing has more than doubled over the past 50 years and the ratio of long- 
term debt to longterm capital has more than tripled.2 

Fourth, investment bankers will be better equipped to advise dients 
regarding the benefits and costs of various debt strategies. For some corporate 
executives, the idea of issuing floating-rate debt borders on high-stakes 
gambling. This study may help investment bankers persuade corporate exec- 
utives that their debt maturity decisions involve economic trade-offs. One 
objective is to help quantify the historical cost of issuing fixed- rather than 
floating-rate debt. 

Fifth, based on empirical evidence presented in this study, interest rate 
swap dealers can examine the cost of running a completely hedged book. 
Perhaps over the long run, being slightly long the bond market (receiving 
fixed) might prove very beneficial. 

In the next section, we review the theoretical underpinnings of interest 
rate contingent claims pricing. Specifically, we suwey the various t e rn  struc- 
ture theories and review general equilibrium term structure models. We 
develop the notion of arbitrage-free modeling and apply it to interest rate 
swaps. After examining in detail various arbitrage-free interest rate models, 
we contrast pricing interest rate swaps with actually applying them in interest 
rate risk management. 

In the third section, we develop an arbitrage-free interest rate model 
explicitly incorporating a risk premium. We build upon the Black, Deman, 
and Toy model (1990) using a five-year observation period. We focus on how 
risk-neutral valuation is distinctly different from assuming unbiased expecta- 
tions. This section p r o ~ d e s  the framework for assessing the empirical evi- 
dence in the fourth section. 

'This evidence was based on B e  work of Masulis (1988). 

@The Research Foundation of the ICFA 
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The last section, in which we examine daily Eurodollar futures data from 
October 21,1986, through March 29,1996, is an effort to assess the economic 
consequences of using interest rate swaps. We found considerable evidence 
supporting a dissipating risk premium. 

Interest Rate Contingent Claims Pvicirrg Modeis 
Interest rate contingent claims models are directly linked to the term structure 
of interest rates. The term structure of interest rates is the relationship 
between yield and maturity for similar bonds. Accurately modeling and 
interpreting the term structure has captured the attention of many people 
during the years. Models that have been used to value interest rate contingent 
claims span from a direct application of the standard Black-Schsles option- 
pricing model to a multivariate simulation with thousands of paths. (For a 
review of valuation of interest rate swaps, see Brown and Smith 1995.) The 
model of the term structure that we ultimately adopt is a pragmatic blend of 
simplicity and realism. The model needs to be logically consistent, but value 
is placed on simplicity. 

Term Structure Theories. Theories about the behavior of the term 
structure of interest rates date back at least to Fisher (1896). The unbiased 
ex$ectations hyfiothesis states that forward rates are unbiased predictors of 
future spot rates. In this study, the difference between the forward rate and 
the expected future spot rate is defined as a risk premium. The local expeeto- 
t i o ~ s  hyjothesis states that similar bonds will provide the same expected return 
over the next period regardless of maturity. Culbertson (1957) argued that 
supply and demand over different segments of the t e rn  structure dictate the 
equilibrium yield observed. He found evidence that the holding-period returns 
are different for different maturities. This market segment~tion hypothesis was 
iurther modified by Msdigliani and Sutch (1966), who recognized that if 
nearby yields differ sufficiently, participants will change maturities. This 
theory became known as the preferred habitad hypothesis. 

Meiselman (1962), using an error-learning model, affirmed Fisher's unbi- 
ased expectations hypothesis based on empirical data. Brooks, Km,  and 
Livingston (19931, however, challenged the link between enor learning and 
the unbiased expectations hypothesis. They found evidence of error learning 
but rejected the unbiased expectations hypothesis. Hicks (1946) asserted that 
because of a liquidity premium, fonvard rates should be biased high. 

Most prior studies have documented that fonvard rates are biased predic- 
tors of future spot rates (see, for example, Brooks, Levy, and Livingston 1995; 
Levy and Brooks 1989; and Fama (1976a, 1976b, 1984a, 1984b). Engle and Wg 
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(1993) applied a factor ARCH (autoregressive conditional heteroscedasticity) 
model to U.S. Treasury bills and found that the premium embedded in forward 
rates is a function of interest rate volatility. They concluded, 

Adjusting the forward rate for the volatility-related forward premium can 
improve its performance as a predictor for [the] future spot rate. Thus, 
volatility-based premium adjustments are an important ingredient in deter- 
mining the term structure of interest rates. 

Most prior studies focused on U.S. Treasury data and very short maturities. 
Here, we focus on London Interbank Offered Rate (LIBOR) data and 
maturities of up to twro years. LIBOR is the variable interest rate c s m o n l y  
used in interest rate swaps. 

Qeneral Eqrsilibrium Perm Structure Models. Merton (1974) intro- 
duced the idea of a general equilibrium term structure model by assuming 
that zero-coupon bonds follow a specific stochastic process. Since Merton's 
work, many authors have extended the idea of a general equilibrium term 
structure framework. Vasicek (1977) assumed that the spot interest rate 
follows a diffusion process. Dothan (1978) assumed that the spot interest rate 
follows a geometric Wiener process. Richard (1978) focused on inflation risk 
by modeling the real rate and the inflation rate. Brennan and Schwartz (1977, 
1979) introduced a t e rn  structure model based on a stochastic short rate and 
a stochastic long rate. 

hngetieg (1980)'used a multivariate stochastic process to model the term 
structure. Cox, Ingersoll, and Ross (1981) reexamined the basic theories of 
the term structure and found theoretical justifkition for the local expectations 
hypothesis. They asserted that holding-period returns for similar bonds with 
different maturities should be the same. This result, however, hinges on the 
ability to hedge various maturity bonds costlessly and dynamically. 

Rendleman and Bartter (1980) used a binomial setup to model interest 
rate uncertainty and derive valuation methodologies for interest rate contin- 
gent claims. Courtadon (1982) assumed a mean-reverting, proportional model 
of the short rate and derived various partial differential equations whose 
boundary conditions drive the resulting valuations. Using a square root 
process for short rates, Cox, Ingersoll, and Ross (B9851o) derived an intertem- 
poral general equilibrium term structure model. Longstaff and Schwa* 
(1992) assumed a two-factor general equilibrium model based on the short 
rate and the volatility of the short rate. 

Equilibrium models typically start with assumptions regarding the be- 
havior sf some basic economic variables. For example, Cox, Ingersoll, and 
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Ross (1985a,b) assumed a single good economy with linear production 
opportunities and stochastic development of technology. With this general 
equilibrium, they derived the stochastic process of interest rates as 

where 8 is the central location or long-term value, r is the current spot rate, K 

is the pull parameter that governs the speed at which the spot rate is drawn 
back to the long-term value, o is the measure of rate volatility, df is a small 
change in time, and dz is the standard one-dimensional Wiener process. Other 
authors have started with an assumption on the behavior of spot interest rates. 

Equilibrium models suffer from several weaknesses. First, the adopted 
model may not match the current term structure and, hence, will fail to explain 
observable prices. Second, equilibrium models require an explicit accounting 
for the current market price of risk. The arbitrage-free approaches are able to 
use current market prices; thus, they avoid resorting to ascertaining the 
market price of risk. Current market prices have the market price of risk 
already embedded in them. 

ArbltrageFree Mdeiing. Many single-factor models of spot interest 
rates use standard arbitrage arguments. Each model takes as a requirement 
the ability to replicate current prices. Typically, the assumption is that a set of 
zero-coupon bond prices is observable, although one could just as easily start 
with a set of forward rates or par bond yields. Also, the stochastic variable is 
usually taken to be the current spot rate (although this condition is not 
necessary). All of the models take as their continuous time limit a linear 
stochastic differential equation of the general form (assuming modeling spot 
rates) 

dr = p (r,t) dt + o (r,O dz, 

where p(r,t) is the drift term and o(r,t) is the volatility tern. The no-arbitrage 
condition is equivalent to claiming the existence of a probability measure such 
that the local expectations hypothesis holds. Etchken (1996) summarized this 
assertion as follows: '" . . for an arbitrage-free process of bond prices to exist, 
it must be the case that a probability measure exists such that the local 
expectations hypothesis holds with respect to that measure." That is, there 
exists a probability, q, such that the expected future zero-coupon bond value, 
discounted at the current spot interest rate, is equal to the current bond price. 

In an eBort to explain these models precisely, we introduce highly specific 
notation. Suppose a given time period is split into intervals of length t(s)- that 
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is, time step, expressed as a fraction of a year. A time line with points in time 
and time steps noted is shown below: 

Points in Time 0 1 2 3 

Periods sf Time 1 2 3 

The uncertainty represented by a stochastic process will be modeled with a 
binomial lattice framework. Let 

P Z t ( n  = a zero-coupon, default-free bond paying $1.00 at T, obsemd at 
t, given that we are at state i 

4i" = the risk-neutral probability that rates will rise, observed at t, 
given state i 

qt (I) = the continuously compounded spot interest rate (one-period 
rate), observed at t, given state i 

hf G,k) = the forward rate for periods between j and k (j < k), observed 
at t, given state i 

d;,* G,k) = the forward price for a bond at point in time j, maturing at point 
in time k ,  observed at tf, given siate i 

Mit = the value of a rnoney-market account (a deposit earning at the 
one-period spot rate), observed at t, given state i, starting with 
$1.00 at t = 0 

The value of the money market account is $1.00 grossed up by the interest 
earnings in the account, given the particular rates observed. That is, 

We assume throughout that quoted interest rates are compounded 
continuously unless otherwise explicitly noted. 

With this notation, we know the relationship between forward rates and 
forward prices (assuming $1.00 par) is 

Fit ((i, k> = exp [-A' Cj, k )  ks (fi - j )  I .  
Zero-coupon bonds c m  be expressed in te rns  sf forward rates or forward 

prices as 

C*[T) = exp 1 - ts "' xfit G, j + 1 )  1 
@The Research Foundation sf the ICFA 
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As an example, suppose we observe the following spot rate and forward rates 
at t = 0: 

Assuming one-year time steps, we compute the zero-coupon bond prices as 

The current single-period forward prices are 

In practice, the zero-coupon prices are typically used as inputs, and then 
forward rates and forward prices are computed. 

At this point, we need a method of introducing uncertainty while making 
sure that the model does not permit riskless arbitrage. Most practical appli- 
cations of single-factor models rely on a lattice approach to representing the 
uncertainty of future rate movements and focus primarily on a binomial tree 
(two arcs at each node). No unique way exists to represent the u p  and down- 
arcs along with the probabilities of each event; rather, the binomial model can 
be implemented in multiple ways. To achieve the appropriate limits, the u p  
jump, down-jump, and probability of the upjump are expressed as3 

In the limit, as the time step goes to zero, the parameters will converge to the 
mean (p) and standard deviation (o) for any choice of h. Lf we choose p = h, 
the probability will always be one-ha. 'This choice, however, is strictly 

3 ~ e  assume here that cs(r,t) is of the form o(t)r. 

OThe Research Foundation of the ICFA 
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arbitrary. Some of the original work on the binomial model assumed riz = 0 .  
(For more details, see Nawalkha and Chambers 1995.) 

Figure 1 illustrates the binomial approach to modeling spot rates. Every 
effort is made to assure that the tree recombines, that is, an upmove followed 
by a down-move results in the same rate as a down-move followed by an up- 
move. A nonrecolnbining tree (called a bushy tree or an exploding tree) 
quickly becomes unwieldy because the number of observations grows at a 
rate of 2", where n is the number of time steps. A recombining tree grows at 
a rate of n and, hence, remains tractable. 

Figure 1. The Binomial A~proach to Madeling Spot Rates 

Z'@) 

Z'(1) 

q t+2 (I) 

In a binomial setup, the state can be represented by the number of up- 
moves, denoted here as i. The first arc going up shows i going to i + 1 as we 
move from time t to t -c 1. Alternatively, the first arc going down shows i staying 
the same and, hence, implicitly going down. Because this tree is a binomial 
one, the arc must go either up or down. 

Through careful selection of parameters, the spot rate two periods out will 
be the same whether the path followed went up then down or down then up. At 
times, however, this procedure is not acceptable (for example, when the secu- 
rity is highly path dependent, such as with some mortgage-backed securities). 

A large number of results-the spot rate, forward rates, and forward 
prices-can be derived with zero-coupon bond prices alone. With zero-coupon 
bonds, the yield to maturity, y ( ~ ) ,  is the rate that solves the following equation: 

P(n) = $1.00 exp I-zy(n) 3, 

8 O n e  Research Foundation of the ICFA 
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Using the prices so computed, we have 

We can also compute the equilibrium swap rates. 

interest Rate Swaps. Interest rate swaps are essentially a portfolio of 
forward rate agreements. Loosely, the value of a receive-floating, pay-fixed 
interest rate swap is 

n-l 

v,,,, = N P ~  pir( j  + 1 ) ( N ~ ~ ~ l ) ~ ~ i ~ d  - ( j , j  + 1) - ( f j x e d , d l .  
j=O 

NP is the notional principal determining the cash amount of the coupon 
payments. NAD is the number of accrued days in the settlement period, and 
NTD is the number of total days in the year. The last, bracketed term is the 
diflereace between the floating spot rate and some predetermined fixed swap 
rate. The subscript d denotes discrete compounding. The floating interest rate 
is unknown. 

The current market rate for converting an uncertain future floating rate 
to a known fixed rate comes from nothing more than a fomard rate agreement 
or futures c~n t r ac t .~  Hence, tlne appropriate value of an interest rate swap, 
VsWQp, can be found by substituting the fornard rate for the floating rate; that is, 

Although swaps can be structured in a wide variety of ways, typically they 
are settled in arrears (one period later) on a cash flow basis. Hence, the rates 

*some well-documented dierences exist between forward rates and the rate implied by 
futures contracts. See, for example, Burghardt and Hosliins (1994,1995a, 1995b). 

@The Research Foundation of the ICFA 9 
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used to compute swap payments are discretely compounded. Solving for the 
fixed rate, Ffi,,,,, , that makes the current swap value zero gives 

n-l  

j=O 

The previous data [abo(l) = 5.0%, ho(l,2) = 5.25% aandh0(2,3) = 5.30%] are converted 
to annual compounding (typically swap contracts require matching actual 
interest cash flows, not quoted interest rates). Hence, assuming annual periods, 
5.0 percent becomes 5.1271 percent; that is, exp (r) - 1 = exp (0.05) - L5 The 
equilibrium fixed swap rates, forward rates, and yield to maturity (based on an 
annuity), given these data with annual compounding, are presented in Table 1. 
Thus, the swap curve lies below the annualized forward curve and above the 
annualized yield to maturity for annuities. 

'Cable 1. Equilibrium Swap and Forward Rates and Yields to Maturity 
Maturitv (years) Swap Rate Forward Rate Yield to Maturity 
1 5.1271% 5.1271% 5.1271% 
2 5.2552 5.3903 5.2132 
3 5.3 145a 5.4430 5.2647 
aThe three-year swap rate is derived as follows: 
5.3145% = ($0.9512294 x 5.1271% + $0.9025781 x 5.3903% + $0.8559871 x 5.4430%)/($0.9512294 

+ $0.9025781 + $0.8559871) = 14.4013528/2.7097946. 

Review of ArbitrageFrse Models. The economic trade-offs when us- 
ing interest rate swaps can be assessed only when we introduce uncertainty 
into the analysis. Several methods have been used to rnodel uncertainty on the 
t e rn  structure. Typically9 uncertainty is modeled by a stochastic differential 
equation. 

The HO and l e e  Model, Ho and Lee (1986) provided one of the first 
arbitrage-free models of the term structure. They described their rnodel as "a 
relative-pricing model in the sense that we price our contingent claims relative 
to the observed term structure; we do not endogenize the t e r n  structure as 
Cox, Ingersoll, and Ross [1985b] and Brennan and Schwartz 819771 do." 

5~ecal l  that 1 plus the annual rate must equal the exponential of the continuously 
compounded rate for a one-year period. 
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Ho and Lee proposed additive, approximately normally distributed shocks 
to the t e rn  structure. The stochastic differential equation can be expressed as 

The mean of the spot price process, y (t), is selected so as to match exactly 
the current term structure. Note that the volatility parameter, o, is in absolute 
terns and is not proportional to rate levels (as it is in most stock price models). 
Also, the tree automatically recombines because of its additive nature. In a 
binomial lattice, the u p  and down-jumps are expressed, respectively, as 

and 

where pt is the drift rate (t denotes a point in time, not y raised to a power). 
One important feature of interest rate models is internal consistency, or 

the no-arbitrage condition. To explain this feature, we introduce the notion of 
state claims. In the binomial setup, at each point in time, n, there are n + 1 
possible states. A state claim is the present value of receiving $1.00 in a given 
state at a given point in time (and receiving nothing else at any other state or 
time). 

To be internally consistent, it must be that 

where S C '  is the current value of receiving $1.08 at g, given that state j has 
occurred. Hence, owning a state claim for each state possible at point in time 
n pays $1.00 for sure at n no matter which state ultimately occurs. Thus, the 
sum of the state claims must equal the current zero-coupon, default-free bond 
price for a bond maturing at a. 

Because g is a risk-neutral probability measure, when n = 1, we know that 

SC; = Pi (1) (1 - qi ) (rates go down), 

SC: = P: (1) q: (rates go up) ; 

hence, 
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n-1 n-1 
SC: = SCO Po ( 1  ) ( I  - q{-l )(rates always down), 

n-1 n-1 n-1 
SG: = SC,,-i P,,-l (1 )q,-~ (rates always up) ,  

n-l . 
S C . ~  = SC,"-~P,"-' ( I ) ( I  - q,"-' ) + SC,:;' PG' (1 )qj-, (~ntermediate ratter ). 

J 

In this analysis, we assumed that the risk-neutral probability is constant at 
1/2 and appropriately adjusted the up- and down-jumps (recall that this 
assumption is arbitrary). 

Another way to model the no-arbitrage condition is 

Arm alternative way to express this equation is to introduce relative prices. In 
the equation below, the prices have been divided by the value of a money- 
market account. On the left-hand side, the value of the money-market 
account is $1.00 (assuming t = O), whereas on the right-hand side, the value 
of the money-market account is $1.00 grossed up by the interest paid for one 
time step [Pi t(1) I .  Thus, we can express this result as 

The relative price at TTis the expected value (with q probability) of the relative 
price in the previous period (T- 1). Formally, under the q probability measure, 
the relative price is said to follow a martingale. Remember, however, that q is 
not the actual probability measure (the actual probability measure is not 
unique but varies from investor to investor). 

The no-arbitrage condition requires that a two-period bond be equal to the 
discounted expected value of a one-period bond one period from now under 
a risk-neutral probability measure or that the sum of the state claims equal the 
initid term structure. The free variable, given the assumption of equally 
probable up- and down-jumps, is the drin rate, p!. 

Solving for the appropriate drift term in the previous example, the first- 
year drift term is 0.255 percent and the second-year drift term is 0.065 
percent, assuming an absolute volatility of 0.01.~ The expected future spot 
rates, under the risk-neutral probability measure, are 5.255 percent and 5.32 
percent, respectively.7 The expected one-period spot prices are $0.948854 

6 ~ e  used the Microsoft Excel (version 5.0) solver routine for these examples. 
75.255% = 0.50(6.255%) + 0.50(4.255%), and 5.32% = 0.25(7.32%) + 0.50(5.32%) + 0.25(3.32'h). 
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and $0.948285, respectively. Figure 2 illustrates the first three points in time 
(t = 0,1,2) in the binomial lattice based on the Ho and h e  model. 

Figure 2. Binomial Lattice Based on the Ho and Lee Model 

~~'(1) = 7.32% 

P,O(I) = $0.951229 P,Z(I) = $0.94819 
r ; ( l )  = 4.255% 

SC;= $1 sc ,Z = $0.451289 
Pi (I) = $0.958343 

An alternative way to value swaps is to use caps and floors. Interest rate 
caps are derivatives that benefit from rising interest rates. They are a portfolio 
of interest rate call options. Hence, the value of an interest rate cap can be 
expressed as 

where Xd is the strike rate and z is the point in time when each state is being 
evaluated. We assume that the cash flows are settled in arrears, or one period 
later, which explains the one-period discounting represented by P,'(1). For 
example, assuming discrete cash flows and a 5.3145 percent strike, a three- 
year cap based on the data from the Ho and h e  method is valued at8 

CM(5.3145%,3-year) = 0.475615(0.939366) (0.064548 - 0.053145) mme 1, State 1) 
+ 0.451289(0.94819) (0.054641 - 0.053145) (Time 2, State 1) 
+ 0.223388(0.92941) (0.075946- 0,053145) (Time 2, State 2) 

= 0.005095 + 0.000640 + 0.004734 
= 1.0469% of NB. 

' ~ igure  2 is in continuously compounded rates, and swaps pay based on an annual rate. 
Hence, at Time 1, State 1, we have 6.4548 percent = exp(0.06255) - 1. 
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Notice that the value of the cap is the payofi in each state mmul~plied by the 
stateclaims value (without the day-count adjustment NAD/NTD) . 

Interest rate floors are derivatives that benefit from falling interest rates. 
Floors are a portfolio of interest rate put options. Hence, the value of an interest 
rate floor can be expressed as 

A 5.3145 percent strike, three-year floor based on the data from the Ho and 
Lee method is valued at 

FLR(5.3145%, 3-year) = l.O(O.951229) (0.053145 - 0.051271) 0, State 0) 
+ 0.475615 (0.95834) (0.053145- 0.043468) Rime 1, State 0) 
+ 0.227901 (0.96735) (0.053145- 0.033757) $Time 2, State 0) 

= 0.001783 + 0.004411 + 0.004274 
= 1.0468% of NP. 

Notice again that the value of the floor is the payoff in each state times the 
state-claims value. It is not a coincidence that the values of the cap and the 
floor are equal (ignoring rounding error) when the strike rate is 5.3645 
percent. Recall that the three-year swap rate is 5.3145 percent. Thus, one way 
to value an interest rate swap is as a combination of a cap and a floor with the 
same strike rate. Specifically, a receive-bed, pay-floating interest rate swap is 
equivalent to being long a floor and short a cap. Conversely, a receive-floating, 
pay-fixed interest rate swap is equivalent to being short a floor and long a cap. 
Solving for the strike rate that yields a combined value of zero, we have 

~ ~ ~ ] ~ s ~ : ~ : ~ ~ ~ r j ; d  r=O NTD j=o - (1) 

The h g ~ o m a l  Model. The lognormal model assumes that interest rates 
follow the same stochastic process as stock prices in the Black-Scholes frame- 
work. In our notation, the stochastic dZerential equation can be expressed as 

dr = p (t)  rdt + ordz, 

or9 

'This equivalence can be verified by a direct application of Ito's lemma. 
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One advantage of this approach is that negative interest rates are not 
possible. Another advantage is that interest rate volatility is proportional to 
rate Ieel.  Hence, in a high-rate environment, interest rates are more volatile 
on an absolute basis than they are in a low-rate environment. This relationship 
appears reasonable based on historical observation. 

One disadvantage of this method is that it ignores the strong mean- 
reverting tendencies of interest rates. The standard deviation is proportional 
to the level of interest rates but is still independent of time. 

The lognormal rnodel implicitly contains assumptions regarding the term 
structure of volatilities. As will be illustrated with Eurodollar futures (EDF) 
data, forward rate volatility is not constant across the term structure; rather, 
it declines. The economic intuition is that current information will affect 
current rates to a greater degree than longer dated forward rates. What does 
the current employment number say about three-month interest rates 10 years 
out? For example, on March 8,1996 (a day when a high employment number 
was announced), the March 1997 EDF was up 59 basis points in rate whereas 
the March 2005 EDF was up only 26 basis points. 

Again, the no-arbitrage condition requires that the sum of the state claims 
equal the observable risk-free zero-coupon bond price. The free variable, 
given equally probable up- and down-jumps, is the drift rate. In this case, the 
volatility measure is proportional, and we chose 20 percent (1%/0.05). 
Because of the lognormality assumption, the up- and down-jumps, respec- 
tively, are represented as 

and 

The first-year drift term is found to be 2.99463 percent, mcl the second-year 
drift term is -0.72527 percent. Note that the expected future spot rates, under 
the risk-neutral probability measure, are 5.2554 percent for Year 2 and 5.3221 
percent for Year 3.1° The expected oneperiod spot prices are $0.948854 and 
$0.44828, respectively. Figure 3 i%%ustrates the first three points in time (t = 0,1,2) 
based on the lognormal model. 

Although this rate tree is distinctly different from that generated by the 
Ho and Lee rnodel, the value of a portfolio that is long a cap and short a floor 
is zero at the equilibrium swap rate; that is, (recall we used discrete rates) 

"5.2554% = 0.50(6.2927%) + 0.50(4.2%81%), and 5.3221% = 0.25(7.6303%) + 0.50(5.1148%) + 
0.25(3.4285%). Recall that a spot rate observed at a point in Time 1 is for Period 2. 
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G'P(5.3145%, 3-year) = 0.475615(0.93901) (0.064949 - 0.053145) (Time 1, State 1) 
+ 0.22330(0.92654) (0.079319 - 0.053145) (Time 2, State 2) 

= 0.005272 + 0.005415 
= 1.0687% of NP, 

and 
B;kW(5.3145%, 3-year) = $1.0(0.951229) ((0.053145 - 0.051271) (Time 0, State 0) 

+ 0.475615(0.95870) (0.053145-0.043083) r i m e  1, State 0) 
+ 0.22799(0.96630) (0.053145 - 0.034880) (Time 2, State 0) 
+ 0.45129(0.95014) (0.053145 - 0.052479) (Time 2, State 1) 

= 0.001783 i- 0.004588 c 0.004024 e 0.000286 
= 1.0681% sf NP. 

Sigure 3. Binomial Lattice: Lognormal Model 

Recall that the value of a swap depends on the market forward rates and 
not on volatility. Hence, the interest rate model used to incorporate volatility 
should leave the value of the swap unchanged. The value attributed to volatiIity 
in the cap market is priced such that it equals the value attributed to volatility 
in the floor market. Therefore, all of the interest rate models developed here 
will yield the same equilibrium swap rates. 

The Bluck, Derman, o ~ d  Toy Model. Black, Demm, md  Toy (1990) 
adopted a lognormal distribution that allows explicitly for time-varying rate 
volatility. Spectfically, the stochastic differential equation can be expressed as 

d r =  y o r d t  + o(t)rdz, 
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where k allows for these parameters to be different across the tern  structure. 
Hence, the current term structure of volatilities, a@), and the current t e rn  
structure of interest rates, p(t), are taken as inputs. This increased flexibility 
has made this model popular. We used this model when we explicitly 
evaluated the risk premium. 

With time-vasying volatilities, the binomial tree does not naturally recom- 
bine. Hence, care must be taken to force it to do so. Three observations are 
made to recombine the tree (assuming q = 1/21. First, the current zero-coupon 
bond prices m s t  be obtained. Second, the volatility at each node at the same 
point in time must be the same; that is, the model assumes time-varying but 
not state-varying volatility. Third, the current t e rn  structure of volatility is 
given. With these three observations, the tree can be made to recombine and 
satisfy the original inputs. 

The u p  and down-jumps, respectively, are expressed as 

and 

where the t superscript denotes time. Time-varying volatility offers no 
assurance that the middle node at t = 2 will recombine. To force this result (to 
avoid an exploding tree), we allowed for different drLft rates in the two subtrees 
emanating out of Time 1. We could csnstmct the tree by jointly solving for the 
two drift rates and requiring the middle node to recombine. We assumed o" 
equals 20 percent and a2 equals 18 percent. 

The first-year drift term is 2.99463 percent, and the second-year drift terms 
are -2.03431 percent (up) and 1.96569 percent (down). Note that the expected 
future s p ~ t  rates under the risk-neutral probability measure are 5.2554 percent 
and 5.3189 percent, respectively.1' The expected one-period spot prices are 
$0.948854 and $0.94829, respectiveIy. Figure 4 illustrates the first three points 
in time (t = 0,1,2) based on the Black, Derman, and Toy model. 

Again, the cap equals the floor when the strike rate equals the equilibrium 
swap rate; that is, 

CAP(5.3145%, 3-year) = 0.475615(0.93901) (0.064949 - 0.053145) Vime 1, State 1) 
+ 0.22330(0.92884) (0.076613 - 0.053145) (Time 2, State 2) 

= 0.005272 + 0.004867 
= 1.0139% of NP, 
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and 
P;eR(5.3145%, 3-year) = $1.0(0.951229) (0.053145 - 0.051271) 0, State 0) 

+ 0.475615 (0.95870) (0.053145 - 0.043083) (Time 1, State 0) 
+ 0.22799(0.96471) (0.053145 - 0.036585) (Time 2, State 0) 
+ 0.45129(0.94980) (0.053145 - 0.052851) (Time 2, State 1) 

= 0.001783 + 0.004588 + 0.003642 + 0.000126 
= 1.0139% of NP. 

Figure 4. Binomial Lattice: Biack, Deamam, and Toy Model 

~~'(1) = 7.3820% 

The Black and Karasi~sRi Model. Black and Karasinski (1991) extended 
the work of Black, Deman, and Toy by explicitly incorporating a mean- 
reversion parameter, K. Black, Deman, and Toy took the term structure of 
interest rates and the term stmcture of volatilities as observable values. Black 
and Karasinski also took these values as observables, but they needed one 
additional value to parameterize the mean-reversion parameter. They as- 
sumed the availability of a complete set of at-the-money caps. The stochastic 
differential equation can be expressed as 

dr  = ~ ( t ) ( l n [ y ( t ) ]  - ln[r(e)j )rdt + o( t ) rdz .  

Once again, care must be taken to assure that the binomial tree recom- 
bines. One way to accomplish this recombination is to allow the time step to 
vary. That is, the time step is selected to satisfy the restriction on kappa as 
well as to assure that upthen-down leads to the same place as down-then-up. 
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The up and down-jumps, respectively, are as follows: 
t+1 

ri+, ( I )  = r i t ( l )exP{~' [ ln(pt)  - l n ( r t ) ] ( t s )  + (T'Js) 

and 

The Hull and White Model, Hull md White (1996) demonstrated that their 
general framework is widely applicable. Their trinomial tree is similar to the 
binomial tree except the trinomial version has three arcs at each node. Their 
general stochastic differential equation is (where x could be r or any other 
factor) 

If x equals log(r), a equals a(t), and o equals o(t), we have the Black and 
Karasinski model. If x equals log(r) and a(t) equals -ar(t)/o(t), then we have 
the Black, Deman, and Toy model. 

The choice of probability of up-, middle-, and down-jumps is constrained 
to be related to the size of the jumps. Null and While adopted a method that 
keeps all the vertical distances between each node equal. (For more details, 
see Hun and White and references therein.) 

The Iieath, Jarrow, and Morton Model. The Heath, Jarrow, and Morton 
(6992) model aElows each forward rate to change based on its own sensitivities 
to the underlying factors. Thus, the t e r n  structure can twist and turn in a wide 
variety of ways. The initial inputs consist of forward rates and forward rate 
volatilities. With these inputs correctly specified, one can derive the appropri- 
ate spot rate process, as well as the stochastic process, for bond prices. The 
stochastic differential equation of the family offonvard rates can be expressed 
as 

The level of complexity is clearly related to the number of factors required to 
appropriately spec@ the stochastic behavior of the term structure. F o r  
further explanation of the details, see Jarrow 1996.) 

The Ritchken and Sa~kamsabmmanian Model. By transforming the 
Heath, Jarrow, m d  Morton spot rate process, Ritchken and Sankarasubrarna- 
nian (1995) and Li, Ritchken, and Sankarasubramanian (1995) demonstrated 
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that the transformed process can be modeled with a binomial lattice. Hence, 
they were able to keep track of the entire term structure contained within a 
binomial lattice. By assuming the following functional form for volatility, the 
actual volatility curve cannot be fit exactly: 

0 ,  (j, j  + 1) = or,'(l)Ye-"j; 

where y is a power term on the spot rate governing the sensitivity of volatility 
to the spot rate level and K is a constant that governs the exponential 
dampening of volatility across maturity. Ritchken and Sankarasubrmanian 
showed that the spot rate process is given by 

dr = p ( I ,  @, t) dt t b y t  (lIYdw (t) , 
where 

and 

d@@d = ( ~ ~ [ r ~ ( 1 ) ) 3 ~ -  2~@(t ) )d t ,  

wherefO(t) is the value of a forward rate starting at t and observed at t = 0 and 
the other variables are as previously defined. (For more details on 
implementing this model, see Etchken 1996.) 

Pvlciag versus Applyiaag Interest Rate Swaps. Our empirical re- 
search focuses primarily on the consequences of using interest rate swaps 
rather than on pricing them, but the way interest rate swaps are priced is 
directly linked to whether they are applied in a particular circumstance. 
Interest rate swaps are usually explained following three steps. Campbell and 
Kracaw (1993) defined the procedure as follows: 

Step 1. Determine the best guess of the floating rate applicable to each future 
settlement date in the swap. 
Step 2. Use the zero-coupon yield curve to calculate the present value of the 
expected future floating-rate payments under the swap. 
Step3. Calculate the annuity that has the same present value as determined 
in Step 2. 

The most difficult task in interest rate swap valuation is Step 1, determining 
the appropriate values related to the future floating-rate cash flows. Campbell 
and KIacaw explained, 

. . . we know that the market's best guess of these rates (the floating rates) 
is embedded in longterm rates or in the yield curve. Hence, we can turn to 
the yield curve and extract the implied fornard rates for each settlement 
date. We know. . . that the forward rate contains the market's best guess of 
the future spot rate, though it may also contain a liquidity premium. 
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To further delineate this general approach to valuing interest rate swaps, 
Dattatreya (1992) stated, 

. . . as far as valuation is concerned, we are indifferent between the unknown 
floatingrate cash flows or the known cash flows represented by forward 
rates. Once the floating side has been so " f ~ e d , "  its present value is first 
computed simply by discounting each flow to the present. The swap rate can 
then be easily computed by determining that fxed-rate which will have the 
same discounted present value as the floating side. 

The key phrase here is "as far as valuation is concerned." Dealers in forward 
rate agreements (FRAs)-the building blocks to valuing swaps-know that 
the cost to hedge a particular future floating-rate exposure is the current 
forward rate. The main focus of our research, therefore, is on the behavior of 
FRAs. Specifically, are there theoretical reasons that FRAs can deviate 
substantially from the expected future spot rate? If potential deviations exist, 
what has been their magnitude historically? Obviously, large deviations of 
F W  rates from the expected future spot rate will result in interest rate swaps, 
on average, having a nonzero expected return. 

Two different costs are related to interest rate swaps. The first cost is the 
deviation of the market F M  rate from the expected spot rate. Considerable 
evidence suggests that, in fact, market FW rates deviate, at least at times, 
from the expected spot rate. For example, Ho (1995) observed that 

. . . during 1993, the yield curve was historically steep (positively sloped). As 
a result, forward rates rose rapidly with maturity. Many investment profes- 
sionals awributed the steepness of the curve to a significant imbalance of 
supply and demand in the bond market, and they, therefore, viewed the 
forward rates as very poor predictors of the rates that would be realized in 
the future. 
Because interest rate swaps are valued based om arbitrage with FRAs, if 

the above observation is true, then in 1993, receive-hed interest rate swaps 
offered significant return opportunities and receive-floating interest rate 
swaps would prove very costly. That is, in 1993, a speculator could have 
profited tremendously by just entering a receive-fixed interest rate swap (of 
course, short-term interest rates did run up in 1994). 

The second cost related to interest rate swaps is the deviation of the 
investor's view from the FM. That is, the current FRA h e d  rate may be 8.0 
percent, but the investor believes this rate will subsequently be 6.0 percent. 
Thus, the FRA may be biased 50 basis points higher than the expected future 
spot rate of, say, 7.5 percent, but an investor would still bear the cost of 650 
basis points in expected return by hedging a floating-rate exposure with an 
FRA. Ho expressed this second cost in the coa~text of interest rate options as 
follows: '" . . when the forward curve differs from the investors' predicted rates, 
part of the cost of the interest rate option value is the 'hedge cost'." 
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Although this second cost is vitally important when using interest rate 
swaps, we focused only on the first cost, the cost of any bias in FRAs embedded 
in interest rate swaps. 

The Risk Premium within the Term Structure of Interest 
Rates 
The traditional methods for valuing interest rate contingent claims in a 
multiperiod, discrete-time setting involve replacing actual probabilities with 
"risk-neutral" or "pseudo" probabi~ities.~~ For our objectives, this step is 
extremely important, especially if a firm's aversion to interest rate risk is 
distinctly different from the one implied by market equilibrium. 

For example, a life insurance company with long-maturity liabilities may 
actuallypreferto invest in long-maturity assets, and overall market equilibrium 
results in longer maturity assets receiving a higher yield. Market equilibrium 
may result in a rising forward curve, even though interest rates are not 
expected to change, because of a risk premium. In this case, the risk premium 
is paid to investors willing to hold long-maturity, fixed-rate debt. Thus, even 
though no arbitrage exists under risk-neutral valuation, different market 
participants will have very clear preferences regarding their own particular 
strategy. 

Building upon the Black, Deman, and Toy model, we assumed that the 
data for five years, presented inTable 2, are currently observable in the market 
(or are beliefs held by a market participant). Setting the drift terms so that the 
tree recombines, making sure that the sum of the state claims equals the initial 
zero-coupon bond price, and achieving the appropriate level of local volatility, 
we found the rate tree and related statistics shown in Table 3.I3The subjective 
probability of an upjurnp was derived so that the original expected rate would 
be matched. For example, assuming a 37.68996 percent chance of an upjump 
in the first time step, produces 

6.2927(0.3768996) + 4.2181 (1 - 0.3768996) = 5.0 percent. 

Thus, the subjective probabilities are applied to the risk-neutral rate tree. The 
important observation at this point is that nothing is logically inconsistent with 
expected rates deviating from either forward rates or expected rates under a 
risk-neutral probability measure. This rate tree permits calculation of the state 
claims shown in Table 4. 

''see, for example, Jarrow (1996) or Ritchken (1996). 

13bcal volatility is ~n [rif( 1 )IT:-I( 1) 112. 
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Table 2. Hypsthetlcal FlvemYear Data 
Inputs Outputs 

Maturity Expected Forward Zero-Coupon Forward 
(years) Rate Rate Volatility Price Price Swap Rate 

Table 3. Hypothetical Rate Tree and Related Statistics by Tlme Point 
State 0 1 2 3 4 

0 5.0000% 6.2927% 7.3820% 8.5637% 9.7571% 
1 4.2181 5.1502 6.0954 7.0851 
2 3.5932 4.3385 5.1449 
3 3.0880 3.7359 
4 2.7129 
Probability of up-jurnp 37.68996 45.26836 46.21416 46.08812 
Expected rates 

Subjective 5.0000 5.0000 5.0000 5.0000 5.0000 

Table 4. Hypothetical State Claims by Tlme Poimt 
Slate 0 1 2 3 4 
0 $l.OOOOCa $0.47561 $0.22330 $0.10371 $0.04760 

Sum $1.00000 0.95123 0.90258 0.85599 0.81156 

By design, the sum of the state claims equals the zero-coupon bond price. 
To consider the impact of a risk premium, we examined the cash flows from 
a receive-fixed, pay-floating, five-year interest rate swap. From Table 2, the 
equilibrium five-year swap rate is 5.37729 percent (discretely compounded). 
Table 5 gives the actual cash flows (discounted one period because we assume 
settlement in mears) from this swap for each slate at each point in time 
assuming annual resets and $1 million in notional principal. 
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Table 5. Hypothetical Cash FEows by Time Point 
State 0 1 2 3 4 
0 $2,379.80 $-10,494.19 $-21,214.51 $42,712.67 $-44,188.42 
1 10,248.15 875.07 -8,539.99 -18,304.83 
2 16,581.01 9,032.53 928.72 
3 21,729.55 15,130.89 
4 25,569.91 

For example, the single-period rate at t = 0 is 5.12711 percent (discrete). 
The swap pays the difference between the swap rate md the single-period rate 
settled in arrears. Thus, the difference (5.37729% - 5.12711%) musk be dis- 
counted based on the current one-period bond price of $0.951229. Because we 
assume $1 million notional principal, we have 

$1,000,000 ($0.1951229) (0.0537729 - 0.0512711) = $2,379.80. 

A brief glance at the hypothetical cash flows may lead to the conclusion 
that, in fact, interest rate swaps are "fair" in the sense that sometimes you lose 
and sometimes you win. This analysis, however, quickly changes once you 
consider the subjective probabilities of each outcome. Table 6 gives both the 
subjective probabilities and the risk-neutral probabilities. For each case, the 
expected cash flows for each point in time are computed along with the sum 
of the expected cash flows. 

Table 6. Hypothetical Cash Flows and Expected Cash Flaws by 
Time Point 

State 0 1 2 3 4 

Subjective probabilities 
0 lOo.OOO@h 37.69000h 17.061Wo 7.884YA 3.6340% 
1 62.3100 48.8351 31.7455 18.8818 
2 34.1033 42.0269 36.4840 
3 18.3428 31.1113 
4 9.8889 

Rsk-neutral 
probabilities 
0 100.0000 50.0800 25.0000 12.5000 6.2500 
1 50.0000 50.0000 37.5000 25.0000 
2 25.0000 37.5000 37.5000 
3 12.5000 25.0000 
4 6.2500 

Expected cash flows 
from five-year swap 
Subjective $2,379.80 $2,430.37 $2,462.47 $2,491.48 $2,512.76 
Risk-neutral 2,379.80 -123.02 -720.84 -1,188.19 -1,608.87 
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Table 6 is extremely revealing. For exarsaple, consider a firm that will soon 
issue either floating-rate debt or he-year, fixed-rate debt. The realization that 
issuing fixed-rate debt will cost, on average per year, 23-25 basis points more 
than issuing Boating-rate debt rnzy alter the firm's decision. In this context, 
undersbnding how higher rates affect the firm is important. For example, if 
the firm has a low debt-to-asset ratio, a strong profit margin, and sales that are 
not sensitive to interest rates, then 25 basis points may be too much to pay to 
fix its interest cost for five years. A highly leveraged, rate-sensitive firm, 
however, may prefer to lock in the fixed rate despite the premium. 

The EmpirieaB Evidence 
The magnitude of the risk premium within the existing term structure of 
interest rates is an empirical issue. We examined historical data on the 
Eurodollar cash and futures markets. IdI;BBBR has emerged as the interest rate 
of choice among swap dealers, largely because of its close relationship to the 
dealers' cost of funds and its high Ievel of liquidity. The EDF markets are a 
good prow for forward rates for shod-maturitgr contracts. 

The primary data cover the period October 21,1986, to March 29,1996, 
with daily observations on three-month LIBOR and the first eight 9@day EDF 
contract settle prices. The data also include monthly observations on the (all 
urban, not seasonally adjusted) consumer price index (CPI) . 

Figure 5 illustrates cash HBOW and a one-year moving average of the CPI 
for the entire sample period. LIBOR started and ended this period at about 6 
percent. The latter part of the 1980s exhibited higher and more volatile rates 
than did the early 1990s. The highest rate duringthis period was 10.625 percent 
on Mxch 21,1989, and the lowest rate was 3.125 percent on October 2,1992. 

Although inflation and interest rates are clearly related, they are far from 
perfectly correlated: The come1atio11 coefficient for this period was 0.66. Of 
course, interest rates are forward looking, whereas inflation rates are histori- 
cal. Tne average three-month LILIIBOR rate was 6.27 percent with a standard 
deviation of 32 percent (annualized), and the average CPI percentage change 
was 3.65 percent with a standard deviation of 17.7 percent (mnualized) . 

EuaodolBisPr Futures and Daaterest Rate Swaps. One result of the 
ma~king-to-market feature of EDFs is that the implied futures rate deviates 
from the fornard rate. Because our primary data are on EDFs and our focus 
is interest rate swaps, we examined .the magnitude of this difference. 
Burghardt and Hoskins (1994,1995a, B995b) and Meulbroek (1992), among 
others, have studied this financing bias (the EDFgains are invested and losses 
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Figure 5. Cash Three-Month LIBOR amd Pevcentage Change In the 
Consumer Price Index, October 2%, 1986, to Uareh 29,1996 

must be financed because of the daily mark to market) or the convexity bias 
(interest rate swap values have a convex relationship to interest rates because 
they are not marked to market). Changes in interest rates have the same effect 
on interest rate swaps as they do on regular bonds; that effect is negative with 
positive convexity. The relationship between interest rates and EDFs is linear, 
$25.00 per basis point per contract. 

Our objective was not to reassess this bias but to evaluate its effect. 
Although Bwghardt and Hoskins (1995a) asserted that "the bias can be 
huge," they focused on longdated interest rate swaps. For two-year swap 
rates, the convexity bias accounts for approximately 3 basis points in the swap 
rate, and for an individual forward rate agreement, the convexity bias is 
approximately 1 basis point. The empirical evidence indicates that the histor- 
ical premium in two-year swap rates has been roughly 50 basis points. We 
used EDF data because of its high liquidity and precision, but we chose to 
ignore the convexity bias because it is a relatively minor factor for the issue 
we addressed. Also, when market participants became aware of this bias is 
unclear. 

lll~otratioms af the Risk Premium. We illustrate here the relationship 
between cash LIBOR and the rate implied by an EDF (sometimes called the 
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basis) over a two-year period. We selected two time periods: one when LIBOR 
rates were rising (June 1993 to June 1995) and one when rates were falling 
(June 1991 to June 1993). 

Figure 6 is particularly interesting because of the behavior of the EDIF. 
Between June 1993 and June 1995, cash LIBOR rose from the low 3 percent 
range to the 6 percent range. The unbiased expectations hypothesis would 
assert that an unbiased forecast of the three-rnonth LIBOR rate in June 1995 
would be the forward rate implied in the 6/95 EDF contract observed in June 
1993. We might be tempted to argue that in June 1993, the 6/95 EDF was a 
fairly good predictor of three-rnonth LIBOR in June 1995. During this two-year 
period, the estimates were at times too low and at other times too high, but 
on average, the forecasts were fairly accurate, which is not usually the case. 
h alternative explanation would be that rates rose higher than expected so 
the risk premium was dissipating. The convergence of the futures rate to cash 
LIBBR is rapid during the last 90 days of the contract. Hence, we argue that 
the EDF rate two years out contains at least two major factors: the market's 
forecast of rates and a risk premium. 

Figure 8. lllustratlosp of Basis. June 1993 to June 1995 

Days to Maturity 

Figure 7 illustrates the same phenomenon for June 1991 to June 1993 
except that cash LIBOR rates were generally falling. In June 1991, an unbiased 
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forecast of LIBOR in June 1993 was 8.5 percent. Figure 7 illustrates the typical 
pattern of a dissipating risk premium. 

Figure "8 IIlwstration of Basis, June 899P to June 3993 

9 I 

. . ...*... I . .--... .. - 7 - . _ : - - . .  

Cash LIBOR 

Days to Maturity 

Analysis of Overall Period. This section presents an analysis of the 
average forward rate implied by the EDF data, rate volatility and related 
factors, the swap premium, and the behavior of the basis average by weeks to 
maturity. The period of observation is October 21,1986, to March 29,1996. 

The data consist of the daily cash LIBOR rates and settle prices for eight 
EDFs. For the "nearby9' EDF (closest to maturity on the observation date), 
the days to maturity range anywhere from 1 day to about 92 days. Hence, the 
nearby EDF rate is observed, on average, onehalf a quarter (46 days) from 
maturity. 

Figure 8 illustrates the average rates implied by the eight EDF contracts 
during the entire shady period. The average forward rates start at 6.3 percent 
for the nearby contract and rise monotonically to 7.6 percent for the eighth 
contract. Ira terms of historical forward rates, the difference between the 
nearby contract and the two-year contract has been 138 basis points. 

The dzerence between rates is 13 basis points between the first and 
second contracts, 19 basis points between the second and third, 23 basis points 
between the fourth and fifth, and 15 basis points for the seventh and eighth 
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Rgure 8. Average Quarterly Femrard Curve, October 21,1986, to 
March 29.1998 

contracts. A standard one-tailed t-test indicates that each nearby pair of 
quarterly bases is statistically different at the 1 percent level, which is strong 
evidence in favor of a significantly positive basis. Thus, the risk premium 
clearly is a function sf maturity. 

Figure 9 illustrates the behavior of the annualized standard deviation in 
percentage (volatility) of these eight EDF contracts and cash LIB OR.'^ The 
volatility is clearly a declining function of maturity. Also, the relationship 
appears to be nonlinear. Hence, the leveling out of volatility is consistent with 
the leveling out sf the average forward rates. 

To isolate the factors leading to declining volatility, we considered the 
following representation of the ith forward rate: 

i I 

4 =fo+C~,-/,-Il =.fo+Zs,. 
~ = 1  I= 1 

whereh is cash LIBOR and s denotes the difference between nearby forward 
rates, or a spread. The ith forward rate can be viewed as cash LIBOR plus the 

l4T%e daily standard deviation was computed and multiplied by the square root of 252, the 
annual number of trading days. 

@The Research Foundation of the ICFA 29 



Interest Rate Modelizg and t h ~  Risk Premiums in Interat Rate Swaps 

Figure 9, Volatility of Fewward CCUVV~,  Octaber 211, %986, to March 29, 
1996 

Maturity (in quarters) 

incremental spread between forward rates moving out on the term structure. 
Thus, the variance of the ith forward rate can be expressed as 

where a$ denotes the variance of cash LIBOR, o is the standard deviation, 
and p is the relevant correlations. 

Table 7 provides the statistics necessary to decompose the variance of the 
ith forward rate into its component parts. ' R e  average spread rises and then 
falls. The standard deviation peaks at Quarter 2 and monotonically declines 
thereafter. Mso, the spreads are not highly cowelated. Hence, the more- 
distant forward rates are less volatile than the nearer rates, partly because of 
this portlolis effect. That is, the forward rate can be viewed as a podolio of 
cash LIBOR and spreads. Tbe negative correlation between cash LIBOR and 
the spread is intuitive; when interest rates are high, on average, the term 
structure is flatter (perhaps because pal-a-icipants expect rates to fall). 
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Table 7. StaPlstlcssn LIBOR aasd Quafievly Spread (First Difference) 
on the Basis, BctoMr 2i, 1986, to March 29,1998 

LIBOR 1 2 3 4 5 6 7 8 

Average 6.265% 0.031% 0.139% 0.188% 0.216% 0.226% 0.203% 0.174% 0.152% 
Standard 

deviation 31.58 3.36 4.71 3.24 2.57 2.59 2.47 2.19 2.08 
Correlations 

LIBOR 1.00 -0.20 -0.33 -0.48 -0.57 -0.60 -0.63 -0.59 4.59 
1 1.00 0.60 0.43 0.15 0.01 -0.05 -0.03 -0.10 
2 1.00 0.63 0.44 0.12 0.27 -0.004 0.04 
3 1.00 0.52 0.47 0.29 0.57 0.13 
4 1.00 0.57 0.60 0.41 0.73 
5 1.00 0.62 0.66 0.48 
6 1.00 0.60 0.68 
7 1.00 0.58 
8 1.00 

To understand how rising forward rates affect swap rates, we estimated 
the swap curve based on the average forward rates. We approximated the 
quarterly forward rates by linear interpolation. Table 8 presents the results of 
this analysis. The second column presents average quarterly forward rates 
based on this data set. The first quarter was based on the average cash LIBOR 
rate. We assumed that the nearest EDF was, on average, one-half of a quarter 
from maturity and that the second nearest EDF was one and a half quarters 
from maturity. Using linear interpolation, we computed the average forward 
rate for a one-quarter maturity contract. The third column presents the swap 
rates using the same valuation approach described earlier. The fourth column 
presents the swap premium measured as the difference between the swap rate 
m d  the average LIBOW rate (Quarter 1 forward rate of 6.27 percent). The &&h 
column lists the annual savings from entering a receive-fixed and pay-floating 
interest rate swap per $1 million notional principal (which translates into 
$100.00 times the swap premium) .I5 A rising f o m d  curve translates directly 
into a rising swap curve. With a consistently rising swap curve, swaps are a 
nonzero average payoff transaction when a risk premium exists. 

For example, consider a large corporation that will maintain the duration 
of its liabilities either at about three months or at two years. The Tonger- 
duration strategy provides more stability for the firm, but it is costly in the 
long run. Table 8 shows that the average cost is 57.6 basis points, or $5,760.00 
per $1 million. Instead of locking in 6.84 percent for the two years (via the 

lSThe numbers are slightly diierent because of rounding of fithe swap premium. 
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swap), the corporation could have paid an average of 6.27 percent for this 
period. Historically, firms would have been much better off by issuing floating- 
rate debt as opposed to fixed-rate debt if the debt could have been issued at a 
constant spread to LIBOR. 'This conclusion obviously assumes that interest 
rates cannot be forecast md that issuance costs are approximateIy the same 
for each type of debt. 

Table 8. Swap Cruwe k v i v d  em Averssge mtuws Rates, Odaber 21, 
1988, =k@ la- 29,1996 

Quarter - Forward Rate 
f 6.27% 
2 6.53 
3 6.73 
4 6.95 
5 7.17 
6 7.35 
7 7.52 
8 7.67 

Swap Rate 

6.27% 
6.32 
6.39 
6.47 
6.56 
6.66 
6.75 
6.84 

Swap Premium 
(basis points) 

0.0 
4.8 

11.8 
20.3 
29.6 
39.2 
48.6 
57.6 

$ Savings 
($1 million/year) 

$ 0  
483 

1,179 
2,026 
2,955 
3,915 
4,856 
5.760 

To understand the risk premium (futures rate minus the expected spot 
rate) better, we examined the basis (futures rate minus the current spot rate) 
on a weekly basis. On any given day, if the nearest EDF contract matures in 
less than 7 days, all eight EDFs are classified as being in the first week; if it 
matures in less than 14 days (but more than 7 days), then they are in the 
second week. Figure 10 illustrates the average basis for the 13 weeks in a 
quarter for the eight contracts-h-om the nearest contract at the bottom of the 
graph to the farthest at the top. Notice that the basis increases from Week 1 
to Week 13. The nearest contract has an average of 10 basis points in the 13th 
week; the second nearest has 30 basis points, a difference of 20 basis points. 
The difference between the seventh and eighth contracts is only 12 basis 
points in the 13th week. figure 10 provides strong evidence of a dissipating 
risk premium, although the rate sf dissipation is not constant. 

Figure 11 illustrates the standard deviation of the basis by week to 
maturity. The standard deviation a d  the average basis are clearly directly 
related. The rapid increase in the basis for the nearby contract corresponds 
to a rapid increase in standard deviation. This observation supports the notion 
that the fisk premium is related to the comesponding Kisk. 

Figure 12 illustrates the positive relationship between the average basis 
and the standard deviation of the basis. For the longer maturities, the results 
are clustered based on the specific quarterly contract. Figure 62 presents 
strong evidence that the basis is, in fact, compensation for risk bearing, if risk 
is measured as the standard deviation. 
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Rgure f 0. Average Weekly Basla for Eight EDFGoatracts, October 21, 
2986, to March 29,1896 

1 3 1 2 1 1 1 0 9  8 7 6 5 4 3  2 1 

Week 

Analysis of Subpedods. Figure 13 illustrates the average daily basis by 
year (excluding partial years 1996 and 19861, again with the nearest contract 
on the bottom. With the exception of 1989 and 1990, the pattern consistently 
shows an increasing basis for longer maturity EDF contracts. In the years 1989 
and 1990, rates initially were relatively high but fell sharply over the year. 
Figure 13 provides strong support for the assertion that a receive-fixed, pay- 
Boating interest rate swap is a positive-dollar-return proposition. 

Figure 14 illustrates the standard deviation of the basis by year. This 
pattern is much less consistent than that for the basis itself. For the whole 
period, the standard deviation is monotonically increasing, but for many years, 
this relationship does not hold. 

Table 9 helps interpret the information contained in Figures 13 and 14. 
This table provides some statistics, including the R2 of a time-series regres- 
sion, by year, for cash LIBOR. For example, in 1994, cash LIBOR rose from 
3.4 percent at the beginning of the year to 6.5 percent at the end of the year. 
An R2 of 0.92 suggests that the trend was nearly linear-92 percent of the 
variation is explained by time. A glance back at Figure 5 codinns this result. 
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Figure %I.. Stamdad Dewiatioa of Weekly Basis far Eight EDF 
Contracts, October 26.1986, to March 29,1996 
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As Figure 13 shows, even in a strongly rising interest rate market, such as 
1994, the average basis is monotonically increasing. In 1993, the market was 
trendless (R2 010.23 in Table 9), yet the basis is still monotonically increasing. 
In 1992, the interest rate market fell sharply and had more volatility than the 
rising market of 1994; the basis is also monotonically increasing. The rising 
markets of 1987 and 1988 also record the consistently increasing basis. 

Table 10 examines the average basis by calendar month. The average 
basis is the lowest in the last three months of the yew md the highest in 
January, March, and April. The largest month-to-month change in the average 
basis for the eighth EEDF contract (eight quarters to maturity) is December to 
January, for which the average basis rises from 112 to 154. After April, the 
basis falls steadily until the end of the year. 

Summaw 
This study addressed the return side of the decision to use either interest rate 
swaps or other interest rate contingent claims. On average, the receive-fixed 
interest rate swap resulted in net receipts during the sample period. The U.S. 
interest rate market offers a significant risk premium. Thus, the decision to 
use interest rate swaps has a direct conseqaence for expected return. 
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Fl$lure 12. Analysis @F Weekly Basis, October 2P,9986, ta Marsh 29, 
1996 
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Using the Black, Derrnan, and Toy (1990) model, we illustrated theoreti- 
cally the economic consequences of a risk premium. The risk premium is 
defined as the difference between the current forward rate and the expected 
-luture spot rate. Through a numerical example, we showed how an at-market 
swap with the existence of a risk premium can have a signiticant impact on 
the expected return from using the swap. The main insight is that whereas 
valuation is based on "risk-neutral," no-arbitrage relationships, expected 
returns are based on subjective probabilities (unadjusted for risk). 

Considerable evidence favors a dissipating risk premium. The average 
forward rate implied in Eurodollar futures rises with maturity. Specifically, 
during this entire period, the difference between the shortest maturity 
contract and the two-year contract was 130 basis points. Second, the dissipat- 
ing risk premium appears to be a nonlinear function of maturity, and most of 
the dissipation occurs between six months to one and a half years to maturity. 
This finding corresponds to anecdotal evidence sf a humped fornard volatil- 
ity curve observed frequently in the cap-and-floor market. An analysis of 
subperiods reveals that these results are fairly consistent over time. 
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Figure 13. Average Daily Basis by Year 
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Figure 14. Standard Deviatlow a# Basls by Year 
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Table 9. Analysis of Cash LlBOR by Calendar Year 
Standard High minus Open minus 

Year Open High Low Close Average Deviation Low Close RZ 
1987 6.3% 9.3% 6.1% 7.4% 7.2% 0.65% 3.2% -1.1% 0.70 
1988 7.4 9.6 6.6 9.3 8.0 0.84 3.0 -1.9 0.91 
1989 9.3 10.6 8.3 8.4 9.3 0.60 2.3 0.9 0.65 
1990 8.4 8.8 7.6 7.6 8.3 0.21 1.2 0.8 0.45 
1991 7.6 7.7 4.3 4.3 6.0 0.72 3.4 3.3 0.91 
1992 4.2 4.4 3.1 3.4 3.8 0.37 1.3 0.8 0.56 
1993 3.4 3.5 3.2 3.4 3.3 0.09 0.3 0.1 0.23 
1994 3.4 6.5 3.3 6.5 4.8 0.90 3.3 -3.1 0.92 
1995 6.5 6.5 5.6 5.6 6.0 0.19 0.9 0.9 0.80 
Average 6.3 7.4 5.3 6.2 6.3 0.5 2.1 0.1 0.70 

Table 10. Average Monthly Basis by EDFCorefsact, January 1989 through 
December 1995 

Month 1 2 3 4 5 6 7 8 

January 6 23 
February 5 2 1 
March 14 35 
April 15 39 
May 5 28 
June 3 25 
July 2 28 
August 1 25 
September 7 21 
October -2 -4 
November -1 -11 
December -6 -3 
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