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Foreword 

Classification models have been a standard part of the financial analyst's tool 
kit for several decades. Over the years, applications of empirical prediction 
systems have involved both stocks and bonds (i.e., establishing quality rat- 
ings) and derivative securities (i.e., the exercise decision on convertible debt). 
Nowhere have these models been applied more frequently and successfully, 
however, than in the evaluation of financial distress. From separating bank 
loans into default and nondefault probability classes to dividing publicly traded 
debt issues into investment and noninvestment grades, analysts in the credit 
markets have had a long association with quantitative techniques for assessing 
the likelihood of corporate bankruptcy. 

The usual approach taken in research of this kind is to collapse firm-spe- 
cific accounting measures, such as debt-to-equity ratios and times-interest- 
earned multiples, into statistics that allow companies to be categorized as those 
that will eventually fail and those that will not. Success is then measured by 
contrasting these ex ante classifications with the actual occurrence (or nonoc- 
currence) of a default event. Historically, these prediction models have been 
straightforward linear functions mapping a collection of credit-related inde- 
pendent variables into a single prediction measure. The earliest research along 
these lines started with straightforward multiple logistic regression equations 
and quickly progressed through discriminant analytic procedures. These 
models, however, proved to have both conceptual and practical deficiencies. 
A recent breakthrough came in the form of the recursive partitioning algo- 
rithm (RPA), which is a computer-based, nonparametric technique used to 
recognize data patterns. 

In this monograph, Robert Dorsey, Robert Edmister, and John Johnson 
take this progression to the next level. In particular, they adapt two state-of- 
the-art artificial intelligence techniques to the purpose of bankruptcy predic- 
tion. The primary weapon they use is the artificial neural network (ANN), 
which is a computer model that can be trained to mimic the cellular connec- 
tions in the human brain. That is, by its processing and evaluation of the 
interactions in a complex set of prior data, a "neural net" attempts to assign the 
proper weights to the respective inputs so as to allow for the correct deduction 
of the ultimate outcome. The assignment of these input weights is aided by an 
optimization procedure known as a genetic algorithm (GA), which simulates 
the model's predictive power under myriad scenarios and allows the best 
weighting schemes to "survive and reproduce" from one generation to the 



next. Although the technological demands of these techniques have inhibited 
their practical application until recently, the authors have contributed exten- 
sively to the embryonic literature in this area and are uniquely qualified to 
conduct this research. 

At its most basic level, this study is a simple comparison of the predictive 
abilities of the ANN and RPA methodologies. Perhaps not surprisingly, 
Dorsey, Edmister, and Johnson conclude that their model does a superior job 
of classifying both bankrupt and nonbankrupt firms during the years prior to 
the event. Although their evidence does provide strong corroboration for this 
finding, this comparison is not the most compelling aspect of the study for two 
reasons. First, the juxtaposition of the ANN and RPA procedures, although 
conducted using contemporaneous data, masks the fact that the former is 
considerably more difficult to implement in practice than the latter, even with 
the computer programs that the authors have made available. Second, the 
predictive power of the neural net model fluctuates widely across the periods 
examined; these results are not likely to be directly applicable to the current 
market environment. 

A more important role the authors serve, therefore, is to provide the 
reader----perhaps for the first time--with an in-depth explanation of the me- 
chanics of the ANN and GA technologies, as well as the way they can be applied 
to financial/economic problem solving. Dorsey, Edmister, and Johnson do this 
in two ways. First, in an introductory section of the monograph, they provide 
a thorough, nontechnical explanation of their methodology using both words 
and illustrations. Second, in the appendix, they offer a more technically 
oriented discussion of how their methodology functions. This material is 
neither easy nor transparent, but it is definitely worthwhile reading on a 
general approach that is gaining rapid acceptance as a mainstream predictive 
tool. The Research Foundation is pleased to be able to bring it to your attention. 

Keith C. Brown, CFA 
Research Director 



1. Introduction 

In this study, we explored the applicability of a form of artificial intelligence, 
the artificial neural network (ANN), for predicting bankruptcy of large firms.' 
The emphasis of our study was prediction of firm failure or success based on 
accounting reports, but the same techniques perhaps could be used to reveal 
mispriced bonds. We found that neural net models appear to predict which 
nonbankrupt firms among those priced in the secondary bond market are 
likely to become bankrupt, thus creating profit opportunities for investors. 
Substantial risk remains after prediction with the ANN model, although it 
dominates the recursive partitioning algorithm with respect to predictive 
accuracy. Other significant findings from this research are the following: 

Single-year models fit the estimation data very well but tend to perform 
less well in subsequent years. 

0 Bankrupt firms in 1990 are markedly different from bankrupt firms in 
1989 and 1991. 

0 Bankruptcies occurring in 1990 are far less predictable than those in 
1989 and 1991. 

0 Bankruptcies occurring in 1991 are generally predictable two years in 
advance with the 1989 and 1989-91 models. 

Chapter 2 presents a review of previous bankruptcy-prediction models, 
with particular emphasis on the Frydman, Altman, and Kao (1985) model, a 
state-of-the-art model that provides a bench test for the ANN model developed 
in this research. We discuss the limitations of existing models and propose a 
solution offered by ANN models. ANN models present a difficult research 

? h e  bankruptcy prediction program, all data used in this monograph, and an Adobe Acrobat 
version of the monograph are available via anonymous ftp to sunset.backbone.olemiss.edu/ in 
the /pub/business subdirectory. World Wide Web users point to http://www.olemiss.edu, 
which will put you at the University of Mississippi home page. From the home page, select 
"Departmental Pages" followed by "School of Business." From the business school home page, 
go to "Research in Computational Business," where you will find the bankruptcy prediction 
program page. If you do not have an Acrobat viewer, information on obtaining one at no cost 
is available. Any questions that cannot be addressed by your local Internet provider can be 
directed via E-mail to Dr. John D. Johnson at johnson@bus.olemiss.edu. 
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problem in parameter estimation, the solution to which is described generally 
in Chapter 2 (and rigorously in the Appendix to this volume). 

Chapter 3 contains a discussion of the comparison of the ANN'S results 
against those of the recursive partitioning algorithm from Frydman, Altman, 
and G o .  

Prediction evaluations for a new data set are presented in Chapter 4. 
In-sample Type I and I1 error-rate graphs show that the ANN is excellent for 
sample reclassification. For classifications of samples not used for estimation, 
ANN models--like all statistical models--deteriorate as market conditions 
change. The most accurate models are those estimated with data observed 
over the longest time frame. We combined data for 1989 to 1991 to create a 
relatively long observation period. The 1989-91 model is presented at the end 
of Chapter 4. 

Chapter 5 presents an investment application of ANN models. Bankruptcy 
predictions are combined with yield premiums to provide indications of over- 
and underpriced bonds. The example bond results show how investors might 
undertake analyses intended to identiiy investment opportunities. 



2. Predict tion Models 

The prediction of financial distress through statistical techniques has im- 
proved continuously since Beaver (1966) introduced univariate statistics three 
decades ago. Milestones in the development of models for nonfinancial-firm 
distress prediction include multivariate analysis (Altman 1968), multivariate 
discriminant analysis (MDA) with trend factors (Edmister 1972), logit (Ohlson 
1980), and the recursive partitioning algorithm (RPA) in Frydman, Altman, 
and Kao (1985, hereafter denoted FAK). 

The advantage of RPA relative to MDA and logit is that RPA incorporates 
interactions among variables. Combinations of variables and threshold values 
are evaluated at a large number of potential branching points. In the RPA 
technique, all the possible combinations are evaluated and those with predic- 
tive power are selected. The result is a parsimonious decision model in the 
form of a tree. 

The financial ratios analyzed in FAK encompass the set of ratios previous 
studies had found to be the best financial distress predictors. These ratios are 
compared in Table I. Some of the ratios used in other studies, listed at the 
bottom of Table 1, were not used directly in the FAK model but have a FAK 
counterpart that provides similar information. Because FAK was the most 
comprehensive of the previous models, we focused on its ratio list for the 
purpose of developing the ANN model of financial distress prediction. This 
choice also allows direct comparison with the RPA. 

Problems with Traditional Methods 
Generally, econometricians face a di£Ecult problem when they attempt to 

identify and estimate an appropriate model. In distress prediction, the only 
consensus they have reached on the appropriate functional form is that the 
appropriate model is complex. One true model to predict bankruptcy in firms 
is impossible or unattainable for some of the following reasons: 

Inadequacy of existing estimation techniques. Estimation techniques oper- 
ate as a constraint that prevents econometricians from identifying and estimat- 
ing optimal bankruptcy models. The choice of an estimation technique, more 
often than not, is based on ease of calculation rather than a consideration of 
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Table 1. Financial Information and Ratios Used in Prior Studies 

Ratio 
-. 

FAK ROE EIA WAB EBD JAO CVZ 

Cash flow/total assets b' b' b' 

Cash/total sales b' b' b' 

Cash flow/total debt b' b' b' I /  

Current assets/current liabilities b' b' b' b' 

Current assets/total assets b' b' 

Current assets/total sales I/ b' 

EBIT/total assets b' b' 

Retained earnings/total assets b' b' 

Net income/total assets 

Total debt/total assets 

Total sales/total assets I/ b' 

Working capital/sales b' I" 

Working capital/total assets b' b' I/ b' b' 

Quick assets/total assets b' b' 

Quick assets/current liabilities b' b' b' 

Quick assets/total sales b' b' 

Equity mkt. value/total capitalization b' 

In (total assets) 

ln(interest+l5) 

Cash/current liabilities b' b' 

Current liabilities/equity b' 

Inventory/sales 

Equity/sales 

Equity market value/total debt 

Income/total capitalization b' 

Note:The abbreviations in the column headings refer to the following studies: FAK-Frydman, Altman, and 
Kao (1985); ROE-Edmister(l972); EIA-Altman (1968); WAB-Beaver (1966); EBD-Deakan (1972); 
JAO-Ohlson (1980); CVZ-4avgren (1983). 

any "true" functional relationship. For instance, in single-equation models, 
linearity is often imposed, not because a thorough investigation has been 
conducted with respect to the true relationship between the dependent and 
independent variables but because a feasible estimation procedure is readily 
a~ailable.~ 

2 See Caporaletti, Dorsey, Johnson, and Powell (1994). 

4 



Unrealistic restriction of error terms. Standard parametric estimation meth- 
ods are usually subject to underlying distribution assumptions on the popula- 
tion. Many studies, however, have found that the financial variables used for 
forecasting insolvency do not conform to the standard distribution assump- 
tions. 

Insuficiency of mtio tra~sforwzations. Accounting ratios do not adequately 
represent contingent interrelationships. Nonparametric methods, which may 
not require distribution assumptions, are sometimes difficult to interpret and 
are often problem specific. 

Limitations of expert systems. Expert systems (ES) attempt to capture the 
essence and thus mimic the decision-making ability of human experts. Al- 
though ES have been successfully applied to many important decision-making 
tasks, many other tasks are beyond their scope because of their limitations. 
These limitations include the difficulty of programming and maintaining the 
system (the Fiegenbaum, or programming, bottleneck), the inability of an ES 
to use inductive learning and inference to adapt to changing relationships in 
the decision environment (the learning problem), and the enormous amount 
of time and effort required to extract the knowledge base from human experts 
and translate it into the "if-then" rules upon which an ES is based (the 
knowledge-engineering bottleneck) .3 

Artificial Neural Networks 
The functional form used in this study was generated by using a multilay- 

ered feedfonvard ANN. ANNs are simplified models of the interconnections 
between cells of the brain. Wasserman and Schwartz (1988) defined them as 
"highly simplified models of the human nervous system, exhibiting abilities 
such as learning, generalization, and abstraction." Such models were devel- 
oped in an attempt to examine how the brain processes information. These 
models have, in concept, been in existence for many years, but the computer 
hardware requirements of even the most rudimentary systems exceeded 
existing technology.4 Recent technological advances, however, have made 
ANN models a viable alternative for many decision problems, and they have 
the potential for improving the models of many financial activities such as 
forecasting financial distress in firms.5 

The ANN has been shown to approximate any Bore1 measurable functional 

3 See Hawley, Johnson, and Raina (1990). 

4 ~ e e  Hawley, Johnson, and Raina (1990). 

5~ general description of neural networks is found in Rummelhart, Hinton, and Williams 
(1986a and b) . 
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mapping from input to output at any degree of desired accuracy if sufficient 
hidden layer nodes are used.6 The Bore1 measurable functional mapping is 
sufficiently general to include linear regression, logit, and RPA models as 
special cases. ANN§ are also free of distributional assumptions, avoid prob- 
lems of colinearity, and are a general model form (or universal approximator). 

Consequently, a financial analyst familiar with the structure of a problem 
selects only the proper inputs and outputs for an ANN model. The weights 
assigned to each input and the functional form of each of the relationships are 
determined by the neural network, as opposed to the expert's (e.g., statisti- 
cian's) explicit a priori a s ~ u m ~ t i o n s . ~  

With regard to the specification of the functional form, the neural network 
does not impose restrictions such as linearity because it "learns" the underly- 
ing functional relationship from the data themselves, thus minimizing the a 
priori nonsample information that is required. Indeed, a major justification for 
the use of a neural network as a completely general estimation device is its 
function-approximation abilities-that is, its ability to provide a generic func- 
tional mapping from inputs to outputs-thus eliminating the need for exact 
prior specification. With a neural network, a financial analyst has a tool that 
can aid in function approximation in the same way a spreadsheet aids "what 
if' analysis.8 This capability is a major advantage of ANNs in bankruptcy 
applications. 

Because of the function-approximation ability of the ANN, one can com- 
pute a-Pzy continuous &nction using linear summations and a single, properly 
chosen n~nlinearity.~ In other words, the arrangement of the simple nodes into 
a multilayer framework produces a mapping between inputs and outputs 
consistent with any underlying functional relationship regardless of its true 
functional form. The importance of having a general mapping between the 
input and output vectors is evident: It eliminates the need for the unjustified a 
priori restrictions so commonly used to facilitate estimation (e.g., the Gauss- 

6 See Hornik, Stinchcombe, and White (1989). 

7 ~ e e  Caporaletti et al. (1994). 

'see Hawley, Johnson, and Raina (1990). 

'The most commonly cited proof of the function-approximation ability of an ANN is the 
superposition theorem of Kolmogorov (1957) and its improvements by Sprecher (1965); 
Lorentz (1976); and Hornik, Stinchcombe, and White (1989). The connection between these 
results and ANNs has been pointed out by Hecht-Nielsen (1987). Hecht-Nielsen (1990) also 
discussed several function-approximation results of the ANN. 
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Markoff assumptions in regression analysis).10 Also, without the a priori 
restrictions, decision makers are allowed to involve, to a greater extent, their 
decision-making expertise (or intuition) in the analysis of problems. 

A neural network can approximate arbitrary nonlinear functions to any 
degree of desired accuracy, given a sufficiently large number of hidden layer 
nodes. The number of nodes need not be very large, however. Dorsey, 
Johnson, and Mayer (1994) and Gallant and White (1992), among others, have 
shown that very complex functions (e.g., chaotic series) can be approximated 
with a high degree of accuracy by using five or fewer hidden nodes. 

The ANN used in this bankruptcy-prediction project is an extension of the 
perceptron of Rosenblatt (1958), which is a very simple artificial neuron 
structure, as illustrated in Figure 1. This structured node sums the weighted 
inputs £rom its neighbors, compares this sum with its threshold value, 8, and 
passes the result through a function referred to as an interaction rule. The 
value of a typical node, Y ,  is given by 

where 8 is the threshold activation level, known as the offset. As is shown in 
Figure 1, each node, y, can be represented as a function of n weighted inputs. 
These perceptrons can be arranged in multiple, fully interconnected layers, 
producing a multilayered perceptron as illustrated in Figure 2. In this network, 
the input nodes are linked to the output nodes through one or more intercon- 
nected hidden layers. The multilayered perceptron is referred to as a feedfor- 
ward network because inputs are fed into the bottom (or input) layer and 
propagate forward through the network topology to the output layer. 

Although a number of different structures and transfer functions have been 
proposed, we used a single-hidden-layer feedforward structure similar to the 
one shown in Figure 2. The bottom layer of nodes represents the observations 
on the input variables. At each hidden layer node, a weighted sum of the inputs 
is computed, and the output from the hidden layer node is a nonlinear 
transformation of this weighted sum. The logistic function we used is de- 

10 Note that if these assumptions hold, the neural network model will yield a similar solution, 
because the image of any underlying mapping can always be projected into a perfectly flexible 
mapping. The appropriateness of ordinary least squares is an empirical question that cannot 
be settled in general for any finite number of observations. Thus, a test of the assumptions must 
become a routine part of any potential application. 



Bankruptcy Prediction Usittg Adgcial Neural Systems 

Figure 1. A Typical Artificial Neuron 

scribed in Equation 1. Thus, each line in Figure 2 connecting the nodes 
represents a weight, mi*. The output from the kth hidden layer node is given 
by Equation 1, where j is the number of input variables. The output from the 
network is the weighted sum of the outputs from the hidden nodes. 

Training Methodologies 
The function-approximation ability of the ANN provides a method for 

making forecasts of future financial events such as financial distress within 
certain firms. If properly optimized, the ANN should provide a method for 
making forecasts of future financial events that is more reliable than previous 
methods. 

A primary difficulty with using ANN models has been the lack of a means 
for correctly optimizing the network. Virtually all researchers are currently 
using the backpropagation algorithm or a variation of it.'' Current research at 
the University of Mississippi has demonstrated that the backpropagation 
algorithm is highly prone to stopping at a suboptimal location. An alternative 

1 %aditionally, ANNs are trained using the backpropagation training algorithm of Werbos 
(1974), Parker (1985), LeCun (1986), and Rumelhart, Hinton, and Williams (1986a, 1986b). 



Figure 2. The Multilayered Perceptron Net 

Output 
Layer 

Input 
Layer 

Hidden 
Layer 

____) 

algorithm, the genetic algorithm, has been adapted for optimizing the ANN, 
and it achieves the global optimum more consistently than does backpropaga- 
tion. 

Problems with the backpropagation training algorithm have been outlined 
by Wasserman (1989) and Hecht-Nielsen (1990). These problems include the 
tendency of the network to become trapped in local optimums, to suffer from 
network paralysis as the weights move to higher values, and to become 
temporally unstable---that is, to forget what it has already learned as it learns 
a new fact. Because the flexibility theorems (mapping and function approxi- 
mation) depend upon the selection of the proper weights, the utility of back- 
propagation as a learning rule for producing a flexible mapping is questionable. 
Therefore, we used a neural network training algorithm based on a modified 
version of the genetic algorithm. 

The genetic algorithm, first proposed by Holland (1975), is a global-search 
algorithm that continuously samples from the total parameter space while 
focusing on the best solution so far. It is loosely based on genetics and the 
concept of survival of the fittest. The optimization process involves determin- 
ing the set of weights to be used for the interconnections. Dorsey, Johnson, 
and Mayer (1994) demonstrated that the error surface for the ANN is fre 
quently characterized by a large number of local optimums. Thus, derivative- 
based search techniques such as the commonly used backpropagation 
algorithm are subject to becoming trapped at local solutions. Dorsey and 
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Mayer (1994,1995) showed that the genetic algorithm can be used as a global 
search algorithm on a wide variety of complex problems and that it achieves 
a global solution with a high degree of reliability. We followed the protocol 
developed by Dorsey, Johnson, and Mayer (1994) and used the genetic 
algorithm for optimization of the neural network.12 

Because the genetic algorithm does not use the derivative of the network 
output to adjust its weight matrixes, as do gradient methods (e.g., the back- 
propagation training algorithm), the derivative (of the objective function) need 
not exist, and thus the network can use any objective function.13 This property 
also implies that the network paralysis problem can be overcome. The paraly- 
sis problem occurs with backpropagation as the node outputs are forced to 
their extremes, forcing the weight adjustments to become increasingly smaller 
and thus paralyzing the network. Temporal instability is overcome because 
the network is trained in a batch mode; that is, weights are only changed at 
the end of each complete sweep through the data. In addition, the network is 
less likely to become trapped in a local optimum, because the genetic algo- 
rithm provides a global search. Dorsey, Johnson, and Mayer (1994) empiri- 
cally showed that the genetic algorithm performs very well on a large class of 
problems with generic network architectures. In fact, they used one hidden 
layer and six hidden layer neurons for each problem. Thus, they demonstrated 
that the genetic-algorithm-based training method for the selection of the 
appropriate weight matrixes overcomes the shortcomings of backpropagation 
and can achieve the desired flexibility. 

The training of the neural network begins when a population of candidate 
solutions is randomly chosen. Each candidate solution is a vector of all the 
weights for the neural network. For this study, the population consisted of 20 
vectors. The weights constituting each vector are sequentially applied to the 
neural network, and outputs are generated for each observation of the inputs. 
Outputs are then compared to known values in the data set, and a sum of 
squared errors is computed for each vector of weights. 

The sum of squared errors represents how well each candidate vector does 
at modeling the data and is used to compute its fitness value. A probability 
measure is then computed for each vector based on the vector's fitness value. 
The smaller the sum of squared errors, the larger the fitness value relative to 
the other vectors and the larger the probability measure. A new population is 
created by selecting 20 vectors from the former population. The selection is 

12 For a detailed discussion of the genetic algorithm used for global optimization, see Dorsey 
and Mayer (1994,1995). 

13see Dorsey and Mayer (1994,1995). 
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made with replacement, and the probability that any particular vector is 
selected is based on its probability measure. Thus, those vectors that generate 
the lowest sum of squared errors will be replicated more often in the next 
generation. The vectors of the new population are then randomly paired. A 
point along the vector is randomly chosen for each pair. The pairs are broken 
at that point, and the upper portion of each pair of vectors is swapped to form 
two new vectors, each with elements from the original vectors. 

The final operation before applying this new set of vectors to the neural 
network and repeating the above process for another generation is mutation. 
Each element of each vector of the new population has a small probability of 
mutating. Should mutation occur, the element is replaced with a random value 
drawn uniformly from the parameter space. The process of mutation allows 
the genetic algorithm to escape a local maximum and move to another area of 
the error surface. After mutation, fitness values are computed for the new 
population of vectors and the process is repeated. The complete process is 
repeated for thousands of generations and terminates when improvement in 
the sum of squared errors diminishes. This process can be summarized in the 
following steps: 

Step 1: Generation of initial population. Values are randomly drawn for the 
weights to be used in the neural network. Each set of values makes up a single 
vector. A population of 20 such vectors constitutes the initial population. 

Step 2: Calculation of error. For each of the 20 weight vectors (strings), the 
training input (data) vectors are fed into the network and the ANN'S corre- 
sponding output vectors (estimates) are compared with the training (or target) 
output vectors. An error value (sum of squared errors) is calculated for each 
of the 20 strings. 

Step 3: Reprod~ction. Each of the 20 vectors is assigned a selection prob- 
ability, which is inversely proportional to its error value calculated in Step 1 
above. A new set of 20 weight vectors is selected from the 20 old strings. Each 
of the 20 old strings has a probability of being selected (with replacement) into 
the new set. 

Step 4: Crossover. The 20 new weight vectors are randomly organized into 
ten pairs. For each pair, one of the elements of the vector is randomly selected. 
At this element, each of the vectors of the pair is broken into two fragments. 
The pair then swaps the vector fragments. 

Step 5: Mutation. Whether any element of the 20 vectors should be 
changed is randomly determined. For each element of the 20 weight vectors, 
a random number is selected and a Bernoulli trial is conducted. If the Bernoulli 
trial is successful (with probability equal to the mutation rate) then the element 
is replaced with the random number; otherwise, the element remains un- 
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changed. This procedure is carried out for every element of every weight 
vector. With the resultant 20 weightvectors, or new generation, the calculation 
of error begins again. 

As in natural systems, the new offspring inherit a combination of parame- 
ters (traits) from their parents. The key to this process is selectivity. Not all 
population members from the previous generation are given an equal chance 
of producing progeny to fill the pool of the present or future population of 
possible solutions. Thus, only a select few population members are likely to 
contribute; those with the highest probability of surviving to the next genera- 
tion possess parameters favorable to solving for the optimum of the specific 
objective function, and those least likely to survive to the next generation 
possess parameters that yield unfavorable solutions. In this way, a new popu- 
lation of candidate solutions (the second generation) is built from the most 
desirable parameters of the initial population. As iteration continues from one 
generation to the next, parameters most favorable in finding an optimal 
solution for the objective function thrive and grow, while those least favorable 
die out. 

Mutation may also occur at any stage of the progression from one genera- 
tion to the next. By randomly introducing new parameters into the natural- 
selection process, mutation tests the robustness of the population of possible 
solutions. As with parameters included in the vectors of the initial population, 
if these newly introduced parameters add favorably to the ability of their 
recipients to optimize the specific objective function, the new parameter will 
survive and grow. Otherwise, the effect of the mutation will die out. Eventually, 
the initial population evolves to one that contains an optimal solution and the 
evolutionary process terminates. 

As the decision surface is selected, a trade-off always arises between Type 
I errors (classifying bankrupt firms as nonbankrupt) and Type I1 errors 
(classifying nonbankrupt firms as bankrupt). Traditional methods treat this 
trade-off by modifying the costs of the types of errors. We will show in Figure 
4 that this trade-off can be seen directly on the output of the neural network 
by adjusting the threshold of the output. As can be seen in the figures in 
Chapter 4, varying the threshold value above which the firm will be forecast 
as bankrupt changes the number of Type I and Type I1 errors directly. Judging 
the appropriate level of error is discussed in Chapter 4. 



3. Prediction Accuracy 

Two primary goals of this study were to compare the neural network with a 
well-known financial distress forecasting tool and to evaluate it from the 
perspective of a financial analyst. To benchmark the accuracy of the ANN, we 
compared it with the RPA using data reported in FAK. We found that the ANN 
model compares favorably with RPA, as measured by a reduced reclassifica- 
tion error rate. The FAK error rates compared very favorably with those of all 
previously reported studies. FAK reported that the RPA, a nonparametric 
technique, significantly outperforms multiple discriminant analysis (MDA) . In 
turn, MDA outperforms multiple regression for failure prediction. Thus, RPA 
provides a powerful benchmark for evaluating the ANN. 

The FAK Study 
FAK were the first to apply the RPA to bankruptcy prediction. WA was a 

significant improvement in methodology relative to parametric methods be- 
cause it relaxed the restrictions imposed by parametric estimators. FAK used 
20 financial ratios for 200 firms. Of those firms, 58 were bankrupt and 142 were 
not bankrupt. 

FAK reported two examples of parsimonious trees that resulted from the 
RPA analysis. In the smaller tree, they were able to use four financial ratios to 
classify the firms. These ratios are shown in Table 2. Because the ANN is a 
completely flexible mapping, it should be able to at least match the classifica- 
tion performance of RPA for any set of variables. We therefore used the four 
variables identified in the FAK model to train the ANN. 

FAK limited reporting classification accuracies in the four- variable model 
to misclassification cost weights of 50 to 1.14 For this case, the errors they 
reported were 5 bankrupt firms misclassified as nonbankrupt and 15 nonbank- 
rupt firms misclassified as bankrupt. Thus, the reclassification error rate for 
firms predicted nonbankrupt was 3.8 percent (5 of 132), and for firms the model 
predicted to be bankrupt, the error rate was 22.1 percent (15 of 68). These 
error rates are remarkably low for a severely restricted (four-ratio) model. 

14 Frydrnan, Altrnan, and Kao (1985), Figure 1, p. 272. 
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Table 2. FAK Ratios in Four and Six-Variable Models 

Ratio Definition Four-Variable Model Six-Variable Model 

Cash flow/total debt v' v' 

Retained earnings/total assets v' 

Cash/total sales v' 

Total debt/total assets d 

Market value of equity/total capitalization 

Log (interest coverage c15) 

Quick assets/total assets v' 

Estimation arad Validation Dzlta 
By using the FAK data and comparing the results for the ANN with the 

results the RPAachieved, we provided the strongest possible test for the neural 
network. To evaluate the neural network's ability to generate useful forecasts, 
we created additional data sets for three successive years, 1989,1990, and 1991. 
The financial information was taken from compact Disclosures'M. The data sets 
consist of financial ratios for the year before and an indicator of whether the 
firm failed in the given year; for example, the 1989 data set consists of firms' 
financial ratios for the year ending December 31, 1988, and an indicator of 
whether they failed in 1989. These data replicate the problem financial analysts 
face: using current financial information to predict financial distress in the 
coming year. We selected the Compact Disclos~res data base, in part, because 
of its ready availability to financial analysts. 

We searched for companies that were in financial distress, defined as a 
firm that has entered bankruptcy under chapters 7 or 11 of the U.S. Bankruptcy 
Code, and excluded those for which financial data for the previous year were 
unavailable. We then randomly selected nonbankrupt firms-approximately 
50 percent more nonbankrupt firms than bankrupt firms---eliminating those 
with incomplete data. The final data sets had slightly larger numbers of 
nonbankrupt firms than bankrupt firms. 

Table 3 shows the variables we collected from the data base to construct 
the data set for this study. These variables were used to generate the financial 
ratios listed in Table 4. 

Compact Disclosures frequently codes information as "NA," or not avail- 
able. We changed all NA entries to zero because we believed that this desig- 
nation refers to nonexistent accounts rather than unknown values. For 
example, preferred stock is NA because the firm does not issue preferred 
stock; hence, the value of preferred stock is zero. 
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Table 3. Variable Cdes and Names 

Compact Disclosxres 
CODE CD Variables Sample Program Title 

Company name 

Cash 

Inventories 

Total current assets 

Total assets 

Total current liabilities 

Total liabilities 

Net sales 

Interest expense 

Income before tax 

Net income 

C/F operating income (loss) 

Net sales/ Working capital 

Retained earnings 

Shareholder equity 

Name 

Cash 

Inventories 

Total current assets 

Total assets 

Total current liabilities 

Total liabilities 

Net sales 

Interest expense 

Income before tax 

Net income 

C/F operating income 

Net sales/ Working capital 

Retained earnings 

Shareholder equity 

The denominator of some ratios is zero because Compact Disclosures 
reports either a zero value or NA. Consequently, some ratios are not finite. In 
this study, observations with infinite ratio values were infeasible and were 
therefore deleted. Possible sources of infinite values are ratios with the follow- 
ing variables in the denominator: total assets, total current liabilities, total 
liabilities, net sales, and working capital. Nonfeasible observations were rela- 
tively infrequent. 

The FAMAIN Conrpa~l-n 
We compared the ANN and FAK classification accuracies by controlling 

for two types of errors. In the first, ANN I, the neural net matches the FAK 
Type I errors, and in the second, ANN 11, the neural net matches the FAKType 
I1 errors. The results of the four-factor comparison are shown in Table 5. In 
our estimation, the nearest ANN I match is four errors for ANN and five errors 
for FAK. In this case, the ANN incorrectly classified four bankrupt companies 
as nonbankrupt and four nonbankrupt companies as bankrupt. Thus, the ANN 
Type I error rate is 6.9 percent (4 of 58), a favorable comparison with the FAK 
rate of 22.1 percent. 
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Table 4. Data Set Ratio Definitions 

Ratio Definition 

CASB/TA 

CASH/TS 

CF/TD 

CA/CL 

CMTA 

CMTS 

EBITITA 

LOG(INT+15) 

LOG (TA) 

MVE/TK 

NI/TA 

QA/CL 

QMTA 

QA/TS 

RE/TA 

TD/TA 

TS/TA 

W T A  

m/TS 

Cash/Total assets 

Cash/Net sales 

C/F operating income/Total liabilities 

Total current assets/Total current liabilities 

Total current assets/Total assets 

Total current assets/Net sales 

(Interest expense + Income before tax)/Total assets 

LOG((Interest expense + Income before tax)/Total assets + 15) 

LOG(Tota1 assets) 

Shareholder equity/(Total assets -Total current liabilities) 

Net income/Total assets 

(Total current assets - Inventories)/Total current liabilities 

(Total current assets - Inventories)/Total assets 

(Total current assets - Inventories)/Net sales 

Retained earnings/Total assets 

Total liabilities/Total assets 

Net sales/Total assets 

(Total assets/Net sales)/(Working capital/Total assets) 

I/ (Net sales/ Working capital) 

The nearest ANN I1 match is 9 errors for ANN and 15 errors for FAK. 
Indeed, the largest number of errors on bankrupt firms is nine for ANN, 
irrespective of the number of Type I errors. In this case, ANN misclassified 
one bankrupt firm as nonbankrupt and nine nonbankrupt firms as bankrupt. 
The ANN Type I error rate is 0.7 percent (1 of 142), much lower than the FAK 
rate of 3.8 percent. 

In summary, after controlling for Type I and I1 errors, the ANN model 
generated far fewer errors than the FAK model. The ANN model, restricted 
to four variables, reduced prediction errors for bankruptcy by 73 percent (11 
of 15) relative to the FAK model. Furthermore, the ANN model dominated the 
FAK model even when Type I or I1 errors were not controlled. For the 
four-variable model, by any of the three measures used in the FAK analysis, 
the ANN model created substantially fewer reclassification errors. 

FAK also reported on a more complex model derived with RPA from an 



Table 5. Comparison of FAK and ANN Results Using the Same Four 
Ratios 
(percentages in parentheses) 

Predicted Predicted 
Bankrupt Nonbankrupt 

Model Correct Type I1 Errors Correct Type I Errors 

FAK 53 (77.9) 15 (22.1) 127 (96.2) 5 (3.8) 

ANN I 54 (93.1) 4 ( 6.9) 138 (97.2) 4 (2.8) 

ANN I1 49 (84.5) 9 (15.5) 141 (99.3) 1 (0.7) 

initial set of 20 variables. This model consisted of the six variables listed in 
Table 2. With this model, FAK were able to improve their forecasts signifi- 
cantly using a misclassification cost of 20 to 1. Their results are summarized 
in Table 6. This model misclassified only two bankrupt firms as nonbankrupt 
and misclassified ten nonbankrupt firms as bankrupt. When the same six 
variables were used to develop a neural network model, the nearest ANN I 
match was nine errors compared with the ten errors for FAK. Thus, when the 
neural network misclassified nine nonbankrupt firms as bankrupt, it correctly 
identified all of the bankrupt firms. The ANN Type I1 error rate of 0.0 percent 
(0 af 50) compares favorably with the FAK error rate of 4.0 percent. 

When the ANN I1 and FAKType I1 errors were matched at two, the ANN 
misclassified six of the nonbankrupt firms as bankrupt. Thus, the error rate of 
4.0 percent (6 of 150) compares favorably with the FAK error rate of 7.1 
percent. 

In summary, after controlling for each type of error, the ANN model 
generated far fewer errors than the FAK model using the six variables of the 

Table! 6. Comparison of FAK and ANN Results Using the Same! Six 
Ratios 
(percentages in parentheses) 

Predicted Predicted 
Bankrupt Nonbankrupt 

Model Correct Type I1 Errors Correct Type I Errors 

FAK 48 ( 96.0) 2 (4.0) 140 (92.9) 10 (7.1) 

ANN I 50 (100.0) 0 (0.0) 141 (94.0) 9 (6.0) 

ANN I1 48 ( 96.0) 2 (4.0) 144 (96.0) 6 (4.0) 
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RPB model. Furthermore, the ANN models dominated the FAK model even 
when Type I and 11 errors were not controlled. For the six-variable model, the 
ANN model created substantially fewer reclassification errors than FM. 

FAK reported results for optimal models selected by the WA from the 20 
ratios.15 They provided reclassification rates relative to naive models for 
selected error cost ratios. An examination of their results indicates that Type 
I errors ranged from 19 to 34 and Type I1 errors were 3. Thus, total errors 
ranged from 22 to 37 for the reported cost ratios. 

To reduce overfitting, FAK selected subsets of the 20 variables. As we have 
shown, for any specific set of variables, the neural network can provide a more 
accurate forecast of the relationship between the variables and the likelihood 
of bankruptcy. Furthermore, the problem of overfitting the data is consider- 
ably different for the neural network. The capacity to overfit the data is 
influenced more by the number of nodes in the hidden layer thm the number 
of variables being used. Thus, an interesting exercise is to examine the degree 

-" -- -- 
15 Frydman, Altman, and Kao (1985), Table IIIa, p. 284. 

Fiigurca 3. ANN Type I @ad Type II Reclas%if"lezltlon Earars far 
g(b-Variable Modlei 
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Type I Errors 



to which the neural network can improve the classifications if all 20 variables 
are used. To examine this case, the size of the neural network is held constant 
to minimize the problem of overfitting the data. The results for the resulting 
20-variable model are shown in Figure 3. 

Clearly, using 20 variables substantially improved the classification of the 
data. Figure 4 shows the effects of varying the cutoff threshold that distin- 
guishes the bankruptcy or nonbankruptcy forecast. ANN Type I errors totaled 
four and Type I1 errors did not exceed two, adding to six total errors. The 
maximum errors for the ANN model were 73 percent fewer than the fewest 
errors reported in FAK. In addition, the results were remarkably robust to the 
threshold value. Thus, errors in estimating the unknown prior probability of 
bankruptcy had only minimal effect on the outcome of the classification. 

This comparison of the ANN with RPA demonstrates that when using the 
exact same data, the ANN consistently outperforms the RPA for classifying 
bankruptcy in firms. In addition, it demonstrates the improvement potential of 
incorporating a richer data set for training the neural network. 

Figure 4. ANN Six-Variable Model Thresholds and Erram - 

Threshold 



4. Prediction Evaluation 

In the previous chapter, we found that ANN consistently improves bankruptcy 
forecasts. By using the data and results reported in FAK, our comparisons 
were not tainted by the possible misapplication of the RPA algorithm. In other 
studies, we have compared the ANN with other well-known estimation tools. 
The ANN compared favorably both in sample and out of sample with discrimi- 
nant analysis; logit; and a nonparametric technique, K-Nearest Neighbor.'' 
The ANN predicts better than logit and WA.'~ 

This chapter presents ANN models estimated with financial data for the 
1989-91 period obtained from Compact Disclosures. The tests in this chapter 
provide an indication of the information content of Compact Disclosures data in 
predicting bankruptcy among large firms. 

We dated models by the year following reported financial information; that 
is, the model year is the potential bankruptcy year, not the period preceding 
bankruptcy. The period preceding bankruptcy ranges from one to three years. 
Initially, we estimated ANN models with data from the prior year. These 
one-year models are for 1989 (1988 financial ratios with 1989 bankruptcies), 
1990 (1989 financial ratios with 1990 bankruptcies), and 1991 (1990 financial 
ratios with 1991 bankruptcies). 

The one-year models fit the data (in sample) better than two- and three-year 
models. Prediction accuracy beyond the sample period (out of sample), how- 
ever, decreased as the estimation period of the initial models decreased. We 
suspect that business conditions causing financial difficulties for certain firms 
in one year may change in the next year. The new business conditions may 
now cause difficulties for a totally new set of firms. To examine how well a 
one-year model applies to another year, the model optimized for the financial 
data in 1989 predicting 1990 bankruptcies was applied to 1988 financial data to 
forecast 1989 bankruptcies and to 1990 financial data to forecast bankruptcies 
in 1991. 

Next, we investigated whether the model improved if estimated with more 

16 See Dorsey, Huang, and Boose (1994) and Huang, Dorsey, and Boose (1994). 

17.§ee Lin, Dorsey, and Boose (1994). 
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than one year of financial information. We combined the 1989 and 1990 data 
sets and then optimized the ANN model to forecast 1991 bankruptcies. Then, 
to develop a general model, we estimated the parameters with three years of 
data. In our opinion, the three-year model is the most reliable for out-of-sample 
forecasts for this application.1s 

For each estimate, we graphed Type I and Type I1 error rates against 
threshold values. Predictions depend on values ranging from 0 to 1 computed 
by the model. The threshold values separate bankruptcy and nonbankruptcy 
predictions. For example, if the model generates values of 0.32,0.48, and 0.80 
for three firms and the threshold value is 0.30, then all firms are predicted as 
bankrupt; they would all be predicted as nonbankrupt ifwe select the threshold 
value as 0.85. As the threshold value varies, the numbers of Type I and Type 
I1 errors vary. Typically, the threshold point will be set at the prior probability 
of bankruptcy. Thus, if 40 percent of the firms in the study are banluupt, the 
threshold will be set at 0.40. We have provided a full range of thresholds to 
reveal the trade-off between error types I and 11. 

Another common technique used in bankruptcy studies is to assign pen- 
alty weights for Type I and Type I1 errors. The weights are determined relative 
to misclassification costs, which are typically expressed as ratios, one type of 
error to the other. For example, if incorrectly forecasting a bankrupt firm as 
solvent is 50 times more costly than incorrectly forecasting a solvent company 
as bankrupt, then the misclassification cost for the Type I error would be set 
at 50. The total cost of misclassification is given by 

TC = C,(Number of Type I errors) + C2(Number of Type I1 errors), 

where C, is the cost of a Type I error and C2 is the cost of a Type II error. 
Graphically, this relationship could be seen as a line with slope -(C,/C,). A 
line with this slope tangent to the curve shown on the graph would represent 
the lowest total cost of misclassification. 

In-Sample Models 
Separate models were estimated for each of the data years 1989,1990, and 

1991. In addition, models were estimated by using data from the paired years 
1989-90 and 1989-91. This approach allowed the models to be compared both 
on the basis of how well they forecast the bankruptcies within this estimation 
period and also on the years that were not used for the estimation. 

1 ? h e  application examples in Chapter 5 are based on the three-year model. 
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1989 Model. The data for the 1989 model consisted of 130 bankrupt 
and 242 nonbankrupt firms. The Type I and Trpe I1 errors are graphed in 
Figure 5. Type I1 errors ranged from approximately 80 percent with no Type 
I errors to 0 percent when the Type I errors climb to about 75 percent. The 
Type I and Type 11 errors were equal at approximately 18 percent. At that point, 
the complement of the error rate, the accuracy ratio, is 82 percent. As can be 
seen, the curve relating Types I and I1 error rates is somewhat U-shaped and 
thus the minimum total cost for most values of misclassification costs will 
occur for threshold values near the middle. For aType I error at the 20 percent 
level, theType I1 error rate is 16 percent, so the chance of investing in bankrupt 
firms is reasonably low.'' Thus, the model provides a good fit of the data for 
the in-sample year 1989. 

19 The 20 percent Type I error rate, which implies an accuracy of 80 percent, was selected for 
exposition across all validation discussions. An accuracy level of 80 percent is a reasonably 
difficult objective for the prediction of large-firm failure in any given year. 

Figure 8. Qpe I and Type II Errors for In-Sample 1989 Observations 

Percentage of Bankrupt Incorrect 



1990 Model. The 1990 data comprise 127 bankrupt and 370 nonbank- 
rupt firms. The trade-off between Type I and Type I1 errors relative to the 
threshold is graphed in Figure 6. TheType I1 errors reach a maximum of nearly 
90 percent when the Type I errors are held to 0 percent, and when the Type I1 
errors went to 0 percent, the Type I errors increase to more than 90 percent. 
Type I and Type I1 errors are the same at approximately 25 percent. When 

Figure 6. Type I and Type I1 Enors for InSampls 1990 Observations 

Type I errors are at the 20 percent level, the Type I1 error rate is 30 percent. 

1991 Model. The 1991 data consisted of 155 bankrupt and 215 non- 
bankrupt firms. The Type I and Type I1 errors are graphed in Figure 7. This 
model clearly performs the best of the three models. Type I1 errors are below 
45 percent when Type I errors are 0 percent, and Type I errors are less than 
60 percent when the Type I errors are 0 percent. Type I errors are equal to 
Type 11 errors at approximately 10 percent, and when the Type I error is at the 
20 percent level, the Type 11 error rate is 3 percent. The chance of not investing 
in nonbankrupt firms is extremely low. 
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Figure 7. 'fype I and Type II Errors for Inearnpie 1991 Observations 
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1989-90 Model. When the 1989 and 1990 data sets were combined, the 
resulting sample totaled 257 bankrupt firms and 656 nonbankrupt firms. The 
model was reestimated on the combined data. Figure 8 shows the trade-off 
between the Type I and Type I1 errors for the combined sample as the 
threshold is varied. The presence of the 1990 data set appears to affect the 
predictive accuracy of the ANN model. The Type I and Type I1 percentages 
are equal at approximately 30 percent. When the percentage of Type I errors 
is 20 percent, the percentage of Type I1 errors is approximately 36 percent. 

1989-91 Model. The model estimated with a complete data set was 
created by combining observations for 1989,1990, and 1991. This resulted in 
a total of 414 bankrupt firms and 1,026 nonbankrupt firms. Because this sample 
includes the total data set, out-of-sample cross-validation was not possible; the 
only error measurement possible was an in-sample analysis. The error rates 
are a combination of the separate years. The combined-sample error rates are 
higher than the individual-year error rates in 1989 and 1991 and lower than the 
individual-year error rates for 1990. As Figure 9 shows, Type I and Type I1 
errors are the same at about 30 percent. 
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Figure 8. Tym I and farln-Sample i 
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CrosslGlalidation Predictions 
Cross-validations are tests of models using data different from the evalu- 

ation period. One set of data is used for estimation and a second set of data for 
validation. The sets differ in both time and businesses. Thus, the tests are the 
most robust available. 

1989 Prediction Based on 1990 Weights. To explore the effective- 
ness of the 1989 model, we applied it to the 1990 data set, which included 127 
bankrupt and 370 nonbankrupt firms. Results of cross-validation predictions- 
percentage errors for firms entering bankruptcy one year after reporting 
financial ratios-are shown in Figure 10. 

The 1989 one-year model does not predict well for 1990. As can be seen, 
the trade-off between Type I and Type I1 errors is almost linear, in both cases 
rising to nearly 100 percent when the other type of error falls to 0 percent. The 
two types of errors are approximately equal at 45 percent, and when the Type 
I error is 20 percent, the cross-validation Type I1 error is 70 percent. Compared 
with the in-sample error of 16 percent, the cross-validation error is very 
substantial. 



Hgure 9. Tyw I and Pyps I1 Erram for I ple 1913-1 - *bns ---- 
100 r I 

" 0 20 40 60 80 100 

Percentage of Nonbankrupt Incorrect 

1990 Prcadictions Based on 1991 Weights. We suspect that bank- 
ruptcies were less predictable in 1990 than in other years. We evaluated this 
conclusion by using weights computed with observations in the year after 
bankruptcy (1991) to predict bankruptcy. If postbankruptcy weights are good 
predictors, then we can reject the hypothesis that 1990 is not a particularly 
unusual year. The postbankruptcy weights were not good predictors, however. 
Figure 11 shows high Type I and Type 11 errors for a wide range of observa- 
tions. This finding adds strength to our conclusion that 1990 is less predictable 
than 1989 or 1991. 

2989 Predictions Basd on 1991 Weiats. Apotentially more chal- 
lenging cross-validation test of the 1989 model is for it to forecast bankruptcies 
two years after the data used to estimate the model. These results are shown 
in Figure 12. This graph shows the percentage errors for firms entering 
bankruptcy in 1989 based on the model estimated with the 1991 data. The 1989 
model clearly works well in this case. Although the Type I errors rise to more 
than 90 percent as the Type I1 errors go to 0 percent, the Type I1 errors only 
reach the mid-40 percent range as the Type I errors go to 0 percent. Both Type 
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I and Type I1 errors are approximately the same near 33 percent. When Type 
I errors are 20 percent, Type I1 errors are approximately 40 percent. These 
results provide further evidence that 1990 is inconsistent with the other two 
years, 1989 and 1991. 

1991 Predictions Based on 1990 Weiats. The result from using 
the model developed with the 1990 data set and forecasting the 1991 bankrupt- 
cies is shown in Figure 13. Although the model again deteriorates somewhat, 
reflecting the difference in the 1990 conditions, it still predicts better than the 
1989 to 1990 combination. The Type I and Trpe I1 errors are approximately 
equal at the 32 percent level. For our baseline Type I error comparison at 20 
percent, the cross-validation Type I1 error is 58 percent. The cross-validation 
error is substantially below the comparable error of 70 percent for 1990 
predictions based on one-year-earlier weights. The 1990 anomaly is further 
confirmed by the results shown in Figure 13 for 1991. 
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Figure 11. CrowValidation of 1990 Predictions Based on 1991 
Weights 
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1991 Predictions Based on 1989-90 Weights. The two-year 1991 
model (estimated based on the combined two-year data set for 1989 and 1990) 
was used to forecast 1991 business failures and nonfailures. The purpose of 
developing the two-year model was to explore whether the model is less 
sensitive than one-year models to time-varying financial ratios. If this model 
exhibits less sensitivity, the cross-validation error would be expected to be less 
for this model than for a single-year model. 

The results are shown in Figure 14. As can be seen, the model does not 
perform particularly well. The baseline Type I error (20 percent) intersects 
with Type 11 errors at the 85 percent level. Compared with the single-year 
estimation period results of 58 percent, the two-year estimates are substantially 
less reliable. Contrary to our prior expectation, estimates using extended data 
proved less reliable than only the most recent information. Consequently, we 
concluded that changing conditions require reestimation of parameters on an 
ongoing basis. 

Extreme Out-ofaample Observations. Cross-validation tests for the 
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Figure 12. CrowValidation of 1989 Predictions Based on 1991 
Weights 
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1989-90 period indicated that reclassification with out-of-sample observations 
results in lower accuracy than with in-sample observations. Furthermore, the 
passage of time after estimation may cause further degradation in predictive 
accuracy. The application of the ANN model is likely to be subject to both 
out-of-sample and delayed-estimation limitations. Consequently, estimation of 
extreme out-of-sample accuracy is important for validating the model, A sec- 
ond reason for conducting an extreme out-of-sample test arose in the bond 
evaluation example discussed in Chapter 5. Because none of the firms in the 
bond example was predicted to be bankrupt, a question arises about the 
validity of the prediction model. 

The extreme out-of-sample observations were obtained independently 
from all the other samples. The sample consists of Compact Disclosure firms 
that reported the words "Chapter 11." The word search returned 208 firms for 
reports dated on or before the end of 1992. Of the 208 firms, 68 were inactive, 
111 were active, and the remaining 19 were unknown. 

For each company, the 1989-91 ANN model was used to compute the ANN 
output value. The criterion value of 0.40 was applied to predict bankrupt and 
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nonbankrupt companies. Year-end 1992 financial statements were used to 
compute financial ratios. 

Of the 208 companies, 51.8 percent were predicted to be bankrupt. That 
is, the Type I1 error is 48.2 percent. Predictive accuracy was also measured for 
the active and inactive subsamples. Bankruptcy predictions were 46.6 for 
active and 61.4 percent for inactive companies. The difference is significant at 
the 1 percent level. Because the inactive companies are more severely dis- 
tressed than the active companies, the predicted failure rates of inactive 
companies would be expected to be higher than that of the active companies. 
Thus, the subgroup analysis by company status further confirmed the predic- 
tive power of the ANN model. The results again confirm that the ANN model 
makes reasonably good predictions of Chapter 11 involvement based on the 
financial characteristics of the firm. 
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5. Investment Applications: 
Bond Evaluation 

Applications for which ANN bankruptcy models might be appropriate include 
lending to large borrowers, contracting with large firms to supply products 
and services, risk-arbitraging bonds, renegotiating junk bonds, and risk-rating 
bonds. This chapter presents an example of one such application: evaluating 
yields of a nonrandom sample of bonds. 

How does the neural network model improve existing bond selection? 
Bond quality and risk-adjusted yield evaluation depend on estimates of bank- 
ruptcy potential. If the bond market over- (under-) estimates default risk, then 
bond prices will be lower (higher) than the intrinsic value of the bond. Buying 
(selling) bonds with market prices that are lower (higher) than intrinsicvalues 
will lead to superior performance as market prices converge with intrinsic 
values. The convergence occurs over time as information becomes available 
to the bond market. 

Evaluating new bond issues for rating and pricing purposes depends, in 
part, on measuring issuer bankruptcy potential. Models like the one presented 
here reduce measurement error. Consequently, new issues can be evaluated 
closer to their intrinsic values. Closer pricing benefits issuers by reducing the 
risk of receiving less than fair value for new bond issues. Moreover, improved 
pricing contributes to the reputation of the issuer's investment banker and 
rating agency. 

The willingness to extend trade credit is often constrained by minimal 
information and evaluation tools. Frequently, the amount of credit extended is 
relatively small, but the profit potential resulting from trade credit is relatively 
large. The economics of trade credit imply that a relatively modest amount can 
be spent to evaluate the borrower. The type of model presented here provides 
a low-cost evaluation tool that potential lenders can apply to publicly available 
information. Hence, it has the potential to be an ideal evaluation tool for trade 
credit risk measurement. 

The process of bond evaluation involved several steps: 

Selection of companies from the Wall Street Journal, New York Stock 
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Exchange, or American Stock Exchange bond listings 

Calculation of the default risk premium 

Prediction of distress 

Observation of anomalies 

The following sections detail how we applied these steps in our example. 

Data Acquisition. The data for our example are from Wall Street Jour- 
~ a l  bond listing and pricing data.20 w e  selected bonds traded on the New York 
and American Stock Exchanges. The selection process consisted of selecting 
one bond for each corporation listing on the selected date. When multiple 
bonds were listed for a corporation, the bond trading at the lowest price was 
selected; low prices were a selection criterion to avoid call option effects. Only 
coupon-bearing bonds were selected. As a result, bonds with low and high 
current yields, with investment and junk bond ratings, and from both the NYSE 
and Arnex were included. The sample consisted of 17 bonds. The extraction 
process for Compact Disclosures financial data was followed. 

Moody's Investors Service credit ratings are described inTable 7. Our data 
set encompassed both investment and noninvestment grades. The five most 
frequent ratings were B, 21.2 percent; Bb, 18.6 percent; Baa, 16.81 percent; A, 
14.2 percent; and not rated, 15.9 percent. The distribution of the ratings was 
not stratified but resulted from the selection process described above. 

Default Risk Premium. The term "default risk premium" was defined 
as bond yield minus U.S. Treasury bond yield to maturity. Bond yield to 
maturity was approximated as the current yield plus amortized discount or 
premium to maturity. The U.S. Treasury bond yield to maturity was approxi- 
mated from a loglinear curve fit to the U.S. Treasury bond yields as of the same 
date. Consequently, the default risk premium is an approximation subject to 
some computation error and bias from call option rights. The approximations 
are not significant relative to the risk premiums and do not adversely affect the 
example. 

Bond yields ranged from 5.6 percent to 18.4 percent. After subtracting the 
upward-sloping U.S. government bond yields, we observed default risk premi- 
ums ranging from -0.87 percent to 13.19 percent. The average risk premium 
is 3.42 percent. 

20 September 29,1993, p. C16. Quotations are for September 28,1993. 



Table 7. Mody's Credit Quality Raings 

Credit Quality of Securities Rating 

Best quality/smallest credit risk 

High grade or high quality 

Upper medium grade 

Medium grade 

Medium grade with some speculative elements 

Lower medium grade 

Poor standing/may be in default 

Speculative/often in default 

Lowest grade speculative securities/poor prospects 

Defaulted securities and securities issued by firms that have 
declared bankruptcy 

Aaa 

Aa 

A 

Baa 

Ba 

B 

Caa 

Ca 

C 

Not rated 

Sozerce: Moody's Investors Service. 

Distress Prediction. The ANN models that could be used to predict 
distress are the 1989, 1990, 1991, 1989-90, and 1989-91 models. The most 
recent model is 1991, and the most comprehensive is 1989 to 1991. For reasons 
discussed earlier, both models have advantages and disadvantages. This 
example computes predictions using the 1989-91 model, which is regarded as 
the most stable over time. 

Observation of Anomalies. Potentially profitable anomalies were de- 
fined as being of two types: 

Type A Bonds with high bankruptcy potential and low default 
risk premiums 

Type B Bonds with low bankruptcy potential and high default 
risk premiums 

Examine Table 8 for profit Types A and B. For Type A, look for ANN values 
greater than 0.4. For the bonds listed in the table, none of the ANN values is 
greater than 0.4, suggesting that no Type A profit opportunity exists among 
these bonds. 

Next, look for large yield premiums. Notice that the top three bonds (Stone 
Container Corporation, Presidio Oil Company, and Westbridge Capital Corpo- 
ration) are priced to yield large premiums. Thus, they present a Type B profit 
opportunity. The profit arises from a yield in excess of the ANN-predicted 
bankruptcy risk. An investor would realize a market value gain if market 
expectations for the bonds improve or when maturing bonds are repaid at par 



"table 8. AHual Yield Premiums and ANN Bredl~Iions 

Issuer Yield Premium 
ANN Predictions 

1989-91 

Stone Container Corp. 18.36 

Presidio Oil Co. 12.16 

Westbridge Capital Corp. 11.25 

Maxxam Inc. 10.76 0.26 

Chrysler Corp. 10.67 

Wainoco Oil Corp. 10.67 

Chiquita Brands International 10.53 

Bethlehem Steel Corp. 9.67 

Turner Broadcasting System Inc. 9.60 0.26 

Borg Warner Corp. 8.58 0.26 

Safeway Inc. 8.34 0.33 

Pennzoil Co. 8.33 0.24 

Ethan Allen Interiors Inc. 8.02 0.26 

-" 

American Cyanarnid Co. 7.90 0.10 

value. In the case of Stone Container, market expectations improved after the 
study date (September 29,1993) and the market price rose substantially. 

This example demonstrates that the ANN model can be applied to a 
practical investment decision. Similar applications are recommended for ac- 
counts receivable and bank loans. 



Appendix: Neural Net Structure 
and Genetk Algorithm 
Estimation 

Parameters of the classification model were estimated with a training algo- 
rithm. A number of training algorithms for the neural network have been 
explored in the literature. The most commonly used algorithms are versions 
of the backpropagation algorithm developed by Rummelhart, Hinton, and 
Williams (1986a). The backpropagation algorithm and its many refinements 
are gradient search techniques. They typically start at a randomly chosen point 
(set of weights) and then adjust the weights to move in the direction that will 
cause the errors to decrease most rapidly. These types of algorithms work well 
when the transition toward the point of minimum error is smooth. Unfortu- 
nately, the error surface of the neural network is not smooth; it is characterized 
by hills and valleys that cause techniques such as backpropagation to become 
trapped in local minimums. To get around this problem, we used a global 
search technique, the genetic algorithm. The genetic algorithm samples 
points uniformly over the total weight space while generally moving in the 
direction of the minimum value. In this manner, the genetic algorithm is less 
likely to become trapped in a local minimum. Empirical tests have indicated 
that the chances of avoiding local minimums are statistically less with the 
genetic algorithm than with backpropagation. 

Genetic Algorithm 
The genetic algorithm uses the following definitions:" - 
2, = A subset of the k-dimensional Euclidean space. - 
cj = The jth set (a subset of the real line) in the Cartesian product - - E,xE,x..-xa,=z. 
6 = A k-dimensional vector that is an element of E. The first 

subscript on a 6 indicates a particular vector; superscripts ',", 
and "' are also used for this purpose. 

2 %is discussion of the genetic algorithm is taken from Dorsey, Johnson, and Mayer (1994). 



5.. ZI = Thejth component (a scalar) of the vector ci. 
f(.) = A scalar-valued function defined on E. 
3 (.) = A strictly increasing function from the range off(.) into the 

nonnegative real line. 
As indicated in Chapter 2, the genetic algorithm iterates from one genera- 

tion of candidate solutions to another. For the problem 

rnaxf(5) such that 5 E E, 

let Gg denote the set of m candidate solutions (vectors of E) corresponding to 
the gth generation. The iteration process can be written schematically as 
follows: 

where convergence is achieved in the cth generation. Iterations are terminated 
by a stopping rule such as: Stop when 

and 

which hold for g = c - p, . . . , c: where 6, E, and p are prespecified numbers. 
Each iteration (e.g., 6' + G2) consists of the following eleven basic steps: 
Step 1: Select m (an even number) weight vectors 5,' . . . ,em from 2, and 

construct the set G' = 5,, . . . ,5,. Use these m vectors 5,, . . . , em from the set 
G' as parameters in the feedforward network. 

This step initiates the algorithm and is the only step not repeated in 
subsequent iterations. The user selects m vectors from E to serve as the first 
generation of candidate solutions. The choice of G1 might reflect a priori 
information on the behavior off(.). Such information can enhance computa- 
tional efficiency, but it is not critical for eventually attaining convergence. 
Alternatively, the initial selection of vectors from Z can be purely random. This 
is in contrast to algorithms based on Newton's method, quadratic hill climbing, 
or some form of gradient descent, which often break down when their starting 
values are erroneous. The user also selects m. the number of candidate 
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solutions in the first and each subsequent generation. The number m must be 
even to accommodate the pairing of vectors in Step 9. Generally, the larger the 
value of m, the more thorough the search and, therefore, the smaller the 
probability of convergence at false peaks. As one might suspect, however, 
computational cost rises as the value of m increases. For bankruptcy predic- 
tion, we set m equal to 20. 

Step 2: Obtain the first training pair from the collection, (In,,,, In,,,, . . . , 
InMI,&, TI,,, T,,,, . . . ,TMOrk), of all training pairs (i.e., all observations of input 
and their respective output [target] vectors), where k is the observation 
number (k = 1,2, . . . , N), N is the total number of observations, MI is the 
number of inputs (In), MO is the number of outputs (targets), MH is the 
number of hidden nodes, and s  is the index of the hidden node. 

Step 3: Produce a trial output using the first of the m weight vectors from 
G'. This operation begins with the introduction of the input vector (InI,k,In,,k, 
. . , InMI,&) to the nodal equations from the first to the hidden layer that are 

given by 

where 
p1 = (s- I)(MI+ I) + 1 
$3, = s(MI + 1) 
1 r s r M H  

and where %i,MI+l? %I,~(MI+I), . . . ,6i,(MH-l)(MI+l), ~~, (MH)(MI+~)  are the 
node thresholds from the standard backpropagation network and g(.), the 
iteration rule, is assumed to be the sigmoid logistic function given by 

The outputs of the hidden layer (the y,,,'s) are then used as inputs to the 
nodal equations in the output layer, which are given by 

la, 1 



where 
p3=MH(MI+ 1) + (q- 1)(MH+ 1) + 1 
g ~ ,  = MH(MI + 1) + q(MH + 1) 
I r s s M O .  

Step 4: Go to Step 2 and repeat for each of the N inputs. 
Step 5: Compare each of the k target vectors, (TI,,, T,,,, . . . ,TMo,J, (T,,,, T,,,, 

. . . ,T,,,J, . . . ,(TI,,, T,,,, . . . ,TMOpk), to its respective trial output vector, (Out,,,, 
Out,,,, ,Out,,,,),(Out,,,, Out,,,, . . . ,Out,,,,), . . ,(Out,,,, Out,,, . . ,Out,,,,), 
and calculate the value of the objective function f(E,J. As an exaiple, f(cJ could 
be the sum of squared errors given by 

As was mentioned earlier, because the genetic algorithm does not use the 
derivative of the network output to adjust its weight matrixes proportionately, 
as with gradient descent methods, the derivative (of the objective function) 
need not exist and thus the network can use any objective function, fc) , as long 
as its value can be readily computed. 

Step 6: Go to Step 2 and repeat for each of the m weight vectors from G1. 
Step 7: Compute the selection probabilities: 

3 MSj>l 
prob, = , 

'Phis step gives direction to the search. In particular, the selection probabilities 
determine which members of G' contribute offspring to the second generation, 
G2, through Steps 8, 9, and 10. The ci most likely to contribute are those 
corresponding to the largest values of prob,. Recall that 3 (.) is required to be 
strictly increasing and nonnegative. The nonnegativity requirement ensures 
that the probabilities are well defined. The requirement that 3 (.) is strictly 
increasing ensures that the most promising members of G1 [the largestf(5,) I 
are given the best chance of contributing to G2.,, 

Obviously, many dBerent specifications of 3 (.) satisfy both requirements. 

22 Note that if the sum of squared errors is the appropriate objective function, we are actually 
maximizing the negative of the sum of squared errors as shown in Step 5 above. 
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A fairly simple but often productive specification is 

In practice, this specification is sometimes modified to enhance computational 
efficiency. We will discuss these modifications after presenting the remaining 
four steps. 

Step 8: Select a vector from G1 with the probability of drawing ti equal to 
pvob, i = 1, . . . ,m. Repeat this selection process m times. Lett,', . . . ,Em' denote 
the resulting vectors; construct the set H' = { t i ,  . . ,541. 

Step 9: Draw two vectors 51, tSr at random from H . Select an integer, I, 
from 0 to k at random. Create a third and forth vector by crossing over trr and 
E,' at the Ith position as follows:23 
-e 

5: = (5r:,', . . .95r,;, 5,,,,', . .,e.k') 
5; = (ts,,', . . . ,Ss,;, Sy,l+,'9 . . . ,Sr,kl). 

DO not replace 5: and tSr in HI. 

Step 10: Repeat ~ t e i 9  until HI is empty (m/2 times) and, thereby, generate 
the m vectors &", i = 1, . . . , m . Construct the set G2 = {?&", . . . , 5;). 

Steps 8,9, and 10 are commonly referred to as "reproduction and cross- 
over" in the genetic algorithm literature. Through these steps, the desirable 
traits of 6' are passed on to G ~ .  Step 8 selects the members of 6' to contribute 
offspring to G2. The set H' is called the "reproduction pool." The probability 
that ti is selected, pvob, varies directly with its value, f(?, relative to the values 
generated by the other members of 6' (see Step 7). This bias gives direction 
to the search for a solution. The draws in Step 8 are with replacement, and 
therefore, a given ci can be listed more than once in HI. 

In Steps 9 and 10, the members of the reproduction pool H1 are paired and 
then mated through the "crossover operation." Crossover combines the traits 
of each pair to create two offspring solutions. In Step 10, the offspring are 
collected in the set G2, which is subject to further modification in Step 11. 

Step 11: For each of the mk vector components 5; of G2, pick a scalar 
5; at random from Ey Let Ybe the outcome of a Bernoulli trial, and specify y 
= Prob (Y, = 1) and 1 - y = Prob (Y;: = 0). Generate mk observations on Y. Replace 
5; in G2 with 6; if and only if Y = 1 on the corresponding trial. 

Step 11 is called "mutation." Reproduction and crossover determine the 

23 As it stands, this operation obviously breaks down if one dimensional. One-dimensional 
problems are typically handled by transforming into an equivalent multidimensional space of 
binary vectors (Base-2 numbers). 



path taken through the parameter space in the search for a solution. The 
purpose of mutation is to check randomly the appropriateness of that path, and 
if necessary, to redirect it. By randomly introducing new information into the 
search, mutation tests the robustness of what has evolved. The mutation 
probability, y, is typically set to 10 percent or less. Larger values result in slower 
convergence rates; as y approaches 100 percent, the search loses direction 
altogether and becomes purely random. An important consideration for muta- 
tion is the dimension of the weight vector, Ci). In particular, the probability that 
a given vector is altered, 1 - (1 - Y)~, is an increasing function of k (holding y 
constant). Therefore, for given choices of y and the population size m, a search 
on a large-dimensional parameter space will be subject to more mutation and 
thus less guidance than a search on a smaller parameter space. For this reason, 
as the number of nodes in the network increases, y must be decreased to 
maintain a given level of mutation. 

Enhancing Computational Efficiency 
Two potential convergence problems are associated with the genetic 

algorithm. First, premature convergence can occur if an early generation has 
a small number of members that give much larger values off(.) than the other 
members of the generation. The danger here is that the few exceptional 
members might dominate all subsequent reproduction pools before the pa- 
rameter space has been adequately searched. 

The second problem arises during later generations. As the algorithm 
approaches convergence, within each generation, the average value off(.) will 
tend to be close to the best values off(.). Therefore, if the suggested specifi- 
cation of 3 (.) in Step 7 is used, the selection probabilities for the best members 
will differ little from the average. If this result occurs, the algorithm could take 
a long time to converge. 

Appropriately modifying 3(.) at various stages of the search can help 
mitigate these problems and, thereby, enhance computational efficiency. The 
basic idea is to make the selection probabilities more homogeneous relative 
to the computed values off(.) during early generations and relatively more 
heterogenous during later generations, which can be accomplished by scaling 
down the largest values off(.) (relative to the average value) during early 
generations and scaling up the largest values during later generations. 

Backpropagation 
The backpropagation learning mechanism involves the continuous adjust- 

ment of the nodal weights as the system is repeatedly exposed to inputs and 
desired outputs. This learning mechanism is a supervised, iterative, gradient 



search technique.24 To describe the backpropagation learning algorithm for- 
mally, let 

The system would "learn" by repeating the following steps: 
Step 1: Initialize the connection weights (aJ and node thresholds (ei) to 

small random values. 
Step 2: Obtain the first training pair from the collection (In1,,,In2,,, . . . , 

InPdI,,,T,,,,T2,,, . . . ,T,,,d of all training pairs (i.e., all observations of input and 
their respective output [target] vectors), where k is the observation number 
(k = 1,2, . . . , N), N is the total number of observations, MI is the number of 
inputs, In, and MO is the number of outputs (targets). 

Step 3: Produce a trial output using the initialized connection weights, oii, 
and node thresholds, 8,. This operation begins with the introduction of the 
input vector, In,,,, In,,,, . . . , InMI,,, to the nodal equations from the first to the 
hidden layer that are given by 

where g(.), the interaction rule, is assumed to be the sigmoid logistic function 
given by 

The outputs of the first hidden layer, the yj,,, are then used as inputs to the 

24 Backpropagation is very similar to the "stochastic approximation method" of Robbins and 
Monroe (1951). For an interesting comparison of neural network learning and statistics, see 
White (1989). 



nodal equations in the output layer that are given by 

which yields the trial output vector, Out,,,,Ou~,,, . . . ,Out,,,,. 
Step 4: Compare the trial output vector, Out ,,,, Ouh,,, . . . . ,Out,,,,, to the 

target vector, T,,k,T',k, . . . ,T,,,,, and compute the value of the objective function 
f(Q) for this observation, k, of N. As an example, f(Q) could be the sum of 
squared errors given by 

As will be shown, because the backpropagation algorithm uses the derivative 
of the network output to adjust its weight matrixes proportionately, the deriva- 
tive (of the objective function) must exist and thus the objective function, f(.), 
as well as the network output, must be differentiable. 

Step 5: Determine the magnitude of 6. If node q is in the output layer, then 
6, is determined by: 

= (T,,, - 0utq,k)Out,,,(l - Out,,,). 

This means that we know how a change in the total input, a,,,., to the output, 
Out,,,, will affect the objective function f(Q) . If, however, nodes is in an internal 
hidden layer, then the effect is 
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Step 6: Adjust the connection weights in proportion to the derivative of the 
objective function to the weight in question. That is, calculate 

and 

The weights are then adjusted in proportion to this derivative as with other 
gradient descent methods, which yields: 

where q S ( t  + 1) represents the weight from the node i (in the input layer) to 
a hidden layer, node s, at time period t + 1; 6, is the error term from the nodes 
produced in Step 5; and r\ is a gain term. In other words, the new weight 
between the node from the current level and its higher level neighbor is equal 
to the old weight plus the error from said neighbor times a gain term times 
the node's current activation level. If the current node is inhibitory (assuming 
r\ > O), the weight between it and its higher level neighbor decreases if Sj > 0, 
increases if Sj < 0, and is unchanged if 6j = 0. The opposite is true if the current 
node is excitatory. The node threshold values are updated using a similar 
method by "assuming they are connection weights on links from auxiliary 
constant-valued inputs" (Lippmann 1987). 

Step 7: Repeat the process from Step 2 with another training pair. 
Step 8: Go to Step 2 and iterate until convergence. 



The training process can be slow for multilayer perceptron nets. Many 
cases must be processed to train the net completely. The object of the network 
training process is to minimize the error surface f(Q) . Each value of the weight 
vector R results in a different value of the objective function f(Q) . The problem 
with backpropagation and other gradient-descent methods is that they can 
become stuck in local optima of the error surface. It is, therefore, desirable to 
make separate training runs with different sets of initial random weights. This 
process minimizes the possibility of the algorithm finding a local minimum 
rather than the global minimum. 

Optimal Decision Rules 
The general statistical framework of pattern recognition is based on the 

search for the optimal decision rule, the one that best discriminates between 
the groups in the sample. Formally, a decision rule is defined as a test condition 
that partitions the sample space into distinct regions, Q ,  i = 1,2, . . . , G, where 
G is the number of groups. A sample point, x, is classified as coming from group 
mi ifx is in the region Qi. The boundaries between regions are called decision 
surfaces. For the financial distress case, we restricted ourselves to two groups: 
bankrupt and nonbankrupt. 

We also confined ourselves to the Bayes minimal-risk decision rule, which 
is sometimes called the Bayes optimal decision rule.25 Following the discus- 
sion in Hand (1981), a Bayes minimal decision rule was established to mini- 
mize the total expected misclassification cost, which is 

where p(oJ is the prior probability of group i and 

where p(xloJ is the class-conditional probability density function of group oi 
and C,. is the cost of misclassifying a sample point, x, from group i into region 
RZ By assuming that C,, = C2, = 0, the Bayes minimum-risk rule can then be 
expressed as 

25 Several special cases of this rule have been used in the literature. For a detailed discussion 
of these decision rules, see for example, Hand (1981). 
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where p (ai) is the known prior probability. 
Because C,,, C,,, p (03, and p (a,) are predetermined, Equation (2) can be 

generalized as 

where Cis a constant representing relative costs and h (x) is a general function 
of attributes of x. This formulation is a very general structure of discriminant 
functions. 
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