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This review provides a comprehensive survey of recent quantitative research on the pricing of credit risk.
It also explores two types of models commonly used for pricing credit risk—structural models and reduced-
form models. The authors review the contract details and pricing of such popular credit derivatives as
credit default swaps, collateralized debt obligations (CDOs), and basket default swaps. They discuss
models for correlated default risk and supply an example of pricing a CDO using Monte Carlo analysis.

The global market for credit derivatives has exploded in recent years; the International Swaps and Derivatives
Association released a midyear 2006 report giving $26 trillion as the notional amount of credit derivatives
outstanding. In conjunction with the development of credit derivatives markets, research on credit risk has also
increased. The objective of this literature review is to provide an introduction to recent quantitative research on
the modeling and pricing of credit risk.

What Are Credit Derivatives?
Credit derivatives are contracts in which the payout depends on the default behavior of a company or a portfolio
of companies. For example:
• A corporate bond portfolio manager may want to protect his portfolio against the extreme event that more

than three companies in his portfolio go bankrupt over the next five years. A credit derivatives contract could
insure against such a loss in the same way that an out-of-the-money put option could insure an equity portfolio
manager against catastrophic losses.

• The credit risk manager at a commercial bank is concerned about her bank’s level of exposure to a particular
corporate customer, but the lending officer wants to maintain a good relationship with this customer. Credit
derivatives would allow the bank to reduce its credit exposure to that one customer with an off-balance-sheet
transaction. The equity derivatives analogy is selling a forward contract against one stock in a portfolio, which
eliminates the risk but keeps the physical transaction on the books.

• A medium-size commercial bank has concentrated credit risk in a small group of industries (say, manufac-
turing) but almost no customer exposure and no credit risk exposure to another group of industries (say,
consumer products). Credit derivatives allow the bank to reduce its concentrated credit risk and gain exposure
to the other sectors.

• A portfolio manager would like to invest in a group of bonds but is restricted from doing so because of the
bonds’ low credit rating. A credit derivative can repackage the cash flows from these low-rated bonds and
offer the portfolio manager an investment with a higher credit rating.

Many dimensions of credit risk affect the prices of credit derivatives and corporate debt. For example, there is the
risk that an issuer will default. If an issuer defaults, the payout on its bonds or a related credit derivative is uncertain.
Even though an issuer may not default, its credit quality may change, and hence, the price of its bonds can also
change. Researchers have proposed quantitative models that address all of these risks. This literature review begins
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with a discussion of models for predicting default. We discuss two types of models commonly used for pricing
credit risk: structural models and reduced-form models. We then review the contract details and pricing of such
popular credit derivatives as credit default swaps (CDS), collateralized debt obligations (CDOs),1 and basket
default swaps. We conclude with a discussion of models for correlated default risk and an example of pricing a
CDO using Monte Carlo analysis.

Predicting Default
Companies are generally considered to default when they miss a debt payment or file for Chapter 7 or Chapter
11 bankruptcy.2 Altman (1968) developed one of the first quantitative models for predicting bankruptcy. His
Z-score model formalized the more qualitative analysis of default risk provided by ratings agencies such as Standard
and Poor’s and Moody’s Investors Service. Altman identified five key financial ratios and computed a weighted
average of those ratios to arrive at the company’s “Z-score.” Companies with low Z-scores are more likely to
default than companies with high Z-scores. Altman used statistical techniques to determine the best weights to
put on each ratio. The most significant financial ratio for predicting default is earnings before income and taxes
divided by total assets. The next most significant financial ratio is sales to total assets.

Altman’s Z-score model does not incorporate the fact that the characteristics (e.g., financial ratios) of
companies change over time. To address this shortcoming, Shumway (2001) estimated a hazard rate model of
default. Hazard rate models are widely used in the insurance industry to estimate the probability that an event
will happen in a specified period of time—for example, the probability that an auto insurance policy holder will
have an accident in the next year, or in the next five years. If * is the hazard rate for an event (e.g., default), then

 is the probability that the event will occur at or before a time T in the future. For small T,  is
approximately equal to *T. That is, the probability that an event such as default will occur over a short time
period is approximately the hazard rate for default multiplied by the length of the time period under consideration.

In Shumway (2001), the company’s hazard rate (i.e., its probability of default in the next short period)
depended on its current financial ratios as well as such market variables as market capitalization, excess equity
return, and equity-return volatility. Shumway (2001) found that the inclusion of these market-driven variables
improves the predictive ability of hazard rate models. Moreover, he found that the only financial ratios with
predictive power are earnings before interest and taxes to total liabilities and market equity to total liabilities.

Structural Pricing Models
To price a corporate bond or credit derivative, we need to know not only the risk that the company will default
but also the compensation that investors demand for bearing that risk. Black and Scholes (1973) and Merton
(1974) developed the first models for pricing corporate debt. These models are commonly referred to as structural
pricing models because they model the structure of a company’s assets and liabilities. Default occurs in the models
when the company’s assets are not sufficient to meet its liabilities.

A binomial tree example serves to illustrate the intuition behind structural pricing models. Suppose that the
risk-free interest rate is 5 percent and that the value of a company’s assets is $120, but we know that at the end of
one year, the company’s assets will be worth either $136 or $76. With these assumptions, we can calculate the
current price of a one-year, $100 face value zero-coupon bond issued by the company because an investor can
replicate the payoff of the company’s risky bond by purchasing a combination of the company’s assets and a one-
year, zero-coupon risk-free bond.

To determine how much of the company’s assets the investor should purchase, we need to examine the payout
of the company’s risky bond in the two different scenarios. If the company’s assets are worth $136 next period,
then the company will be able to pay the full $100 owed to its debtholders, and if its assets are worth $76 next

1Some market participants consider CDOs to be securities instead of derivatives, but we refer to them as derivatives because their value is
derived from the values of their underlying debt instruments. 
2Davydenko (2005) addresses the question of whether default is triggered by low asset values or liquidity shortages.
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period, then it will only be able to pay $76 to its debtholders.3 An investor can replicate the payoff on this bond
with a portfolio that invests $48 in the company’s assets and $43.43 in a one-period, risk-free, zero-coupon bond.
If the company’s assets are worth $136 next period, then the investor’s portfolio will be worth $100 because $48 ×
($136/$120) + $43.43 × 1.05 = $100. Similarly, if the company’s assets are worth $76 next period, then the investor’s
portfolio will also be worth $76 because $48 × ($76/$120) + $43.43 × 1.05 = $76. If there are no arbitrage
opportunities, the price of the corporate bond must, therefore, be equal to the price of the replicating portfolio,
$48 + $43.43 = $91.43. Black and Scholes (1973) and Merton (1974) formalized this replication argument in a
continuous time setting. Leland (1994) extended the model and allowed the company to optimally choose the time
it defaults (which may be before its debt matures).

Structural pricing models can be difficult to implement for companies with complex debt structures, and they
have enjoyed relatively little empirical success. For example, Collin-Dufresne, Goldstein, and Martin (2001) found
that variation in leverage and volatility account for only a small portion of the variation in a company’s credit
spread. Nevertheless, Schaefer and Strebulaev (2004) found that structural pricing models are useful for hedging
corporate debt with equity.

Structural models also form the basis of Moody’s KMV approach to predicting default. In the Black and
Scholes (1973) and Merton (1974) pricing models, the assets of the company are lognormally distributed or,
equivalently, the logs of the company’s assets are normally distributed. Thus, the continuously compounded return
on the company’s assets is normally distributed. The number of standard deviations between the log of the current
value of the company’s assets and the log of its liabilities is referred to as the company’s distance to default. For
example, suppose that the current value of a company’s assets is $100 and the current value of its liabilities is $60.
If the volatility of the company’s assets is 25 percent, then its distance to default is (log 100 – log 60)/0.25  2.
KMV maintains a proprietary historical database of the percentage of companies with a given distance to default
who defaulted within various time frames. For example, if 0.8 percent of companies with a distance to default of
2 defaulted within one year, then the expected default frequency (EDF) of a company with a distance to default of
2 is 0.8 percent. Interested readers can consult Crosbie and Bohn (2003) and Kealhofer (2003) for more details
on KMV’s approach to predicting default.

A company’s distance to default has also been used in hazard rate models for predicting default. Duffie, Saita,
and Wang (forthcoming) develops a hazard rate model that provides estimates of default probabilities over multiple
future periods. They model the time series of both company-specific and macroeconomic variables and find that
the most influential variable for predicting default is a company’s distance to default.

Reduced-Form Pricing Models
Reduced-form pricing models do not consider the structure of the company’s assets and liabilities; instead, they
directly model the probability of default (and the payoff in default) using the hazard rate approach. In reduced-
form pricing models, the company’s hazard rate is often referred to as its default intensity. Various flavors of
reduced-form pricing models present alternative ways to model the company’s default intensity.

Recall that if a company has a default intensity (or, equivalently, a hazard rate) of *, then the probability that
it will default at or before a time T in the future is 1 – exp(–* × T). For instance, suppose that the default intensity
of the company in the example from the previous section is * = 8.7 percent; the probability that the company will
default within one year is 1 – exp(–0.087 × 1) = 8.33 percent. If the bond pays $76 in the event of default (so that
the loss given default is 24 percent of the face value), then the expected payoff on the bond in one year is 91.67
percent × $100 + 8.33 percent × $76 = $98.

3Note that debtholders are short a put option on the company’s assets struck at the face value of the zero-coupon bond. Alternatively,
equity can be viewed as a call option on the assets of the company struck at the face value of the zero-coupon bond.
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To compute the current value of the zero-coupon bond, we must find the present value of the expected bond
payoff in one year. In financial analysis, we typically discount future cash flows using a discount rate that is
composed of the risk-free rate plus an adjustment for risk (often computed using the capital asset pricing model
or a similar model). To price corporate bonds and credit derivatives, rather than adjust the discount rate to account
for risk, we adjust the default probabilities (or equivalently, the default intensities) to account for risk. These risk-
adjusted default intensities are known as risk-neutral default intensities (equivalently, risk-neutral default proba-
bilities).4 If we compute the expected payoff on the bond in one year using the risk-neutral default intensity (which
contains an adjustment for risk), then we can use the risk-free discount rate (rather than a risk-adjusted discount
rate) to compute the present value of the bond.5

To illustrate the use of risk-neutral default intensities for pricing, suppose that the company in the previous
example has a risk-neutral default intensity of 18.23 percent. Its risk-neutral probability of default within one year
is 1 – exp(–0.1823 × 1) = 16.66 percent, and the risk-neutral discounted expected payoff on the bond is (83.34
percent × 100 + 16.66 percent × $76)/1.05 = $91.43. It is important to remember that the risk-neutral default
intensity that is used to price a company’s risky debt is not the same as the company’s actual default intensity. A
company’s risk-neutral intensity contains an adjustment for risk, and thus it is typically higher than its actual
intensity in order to incorporate investors’ aversion to bearing the risk of default. Intuitively, reduced-form pricing
models use risk-neutral probabilities to essentially pretend that the probability of an undesirable event (such as
default) is actually higher than the true probability.

If we analyze the difference between the actual default intensity and the risk-neutral default intensity, we
arrive at an indicator of how much compensation investors require to bear default risk. If this difference is large,
then investors demand a large premium for bearing credit risk and credit spreads are wide. In the previous example,
the company’s risk-neutral default intensity was 2.1 times higher than its actual default intensity (18.23 percent/
8.7 percent = 2.1). Driessen (2005) and Berndt, Douglas, Duffie, Ferguson, and Schranz (2005) found that this
ratio varies through time and its average value is about 2 for most companies. Elton, Gruber, Agrawal, and Mann
(2001) also provided empirical evidence for the existence of a risk premium on corporate debt.

Note that if the price of the one-period zero-coupon bond is $91.43, then the yield on the bond is 9.373
percent, so the credit spread is 4.373 percent above the 5 percent risk-free rate. The credit spread can be
approximated as the product of the risk-neutral default intensity, 18.23 percent, and the loss given default, 100
percent – 76 percent = 24 percent, which is 0.1823 × 0.24 = 4.375 percent. Intuitively, this approximation works
because the credit spread is determined by the rate of default (the default intensity) multiplied by the amount that
is lost in the event of default. This relationship can, in turn, be used as a back-of-the-envelope calculation to
reverse engineer a company’s risk-neutral default intensity given its credit spread and an assumption about the
percentage of value lost in the event of default. For example, if a company’s credit spread is 7.2 percent and we
assume that the percentage lost in the event of default is 60 percent, then its risk-neutral default intensity is roughly
0.072/0.60 = 12 percent.

In the category of reduced-form pricing models, Jarrow, Lando, and Turnbull (1997), Lando (1998), and
Duffie and Singleton (1999b) provided popular models for risk-neutral default intensities and recovery rates.
Duffie, Pedersen, and Singleton (2003) applied the model in Duffie and Singleton (1999b) to the pricing of
sovereign debt. Duffee (1999) found that a reduced-form pricing model is reasonably successful at pricing the
debt of 161 different companies. The models in all of these studies allow a company’s risk-neutral default intensity
to vary stochastically through time to reflect changes in the company’s credit quality and/or the market’s aversion
to bearing credit risk.

4The term “risk neutral” comes from the idea that a risk-neutral investor is an investor that does not require a higher expected investment
return in exchange for investing in riskier securities and, therefore, the investor discounts all cash flows at the same risk-free rate. Obviously,
such an investor does not really exist, but if we use risk-neutral default intensities, then we can present value payoffs using the risk-free
discount rate as if we were a risk-neutral investor.
5In theory, the same risk-neutral default intensity can be used to value all of the company’s corporate debt and any credit derivatives with
payoffs that may depend on whether the company defaults. By contrast, each of these securities may require a different risk-adjusted discount
rate for valuation. This convenience is one reason why risk-neutral default intensities have become the industry standard for pricing.
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In practice, the recovery or loss given default is also uncertain. Altman, Brady, Resti, and Sironi (2005) and
Acharya, Bharath, and Srinivasan (forthcoming 2006) find that recovery rates on corporate defaults tend to go
down during economic downturns when the number of defaults increases. However, most reduced-form pricing
models make the simplifying assumption that investors recover a fixed fraction of face value or market value in
the event of default. For example, a typical assumption is that investors recover 40 percent of the value of the bond
just prior to default.

CDS
Now that we have introduced the models that are used to price credit risk, we can begin to examine the pricing
of credit derivatives. One of the most popular credit derivatives is a credit default swap, or CDS, which serves as
insurance against default by a company. The buyer of this insurance pays an annuity premium until maturity of
the swap or default by the company, whichever event occurs first. In return for this annuity premium, in the event
that the company defaults, the buyer of this default insurance receives the difference between the face value and
the market value of a specified bond that the company has defaulted on. There are many variations on the standard
default swap, but this discussion will focus on this basic version. As with the vast majority of credit derivatives,
CDS are traded in the over-the-counter market (rather than on a financial exchange), and the terms are typically
standardized by the International Swaps and Derivatives Association. Each counterparty is exposed to the risk
that the other will default.6 To mitigate this risk, over-the-counter derivatives typically include netting and
collateral agreements, and most financial institutions limit their aggregate potential exposure to each counterparty.

When there is no default by the underlying issuer, the buyer of protection makes periodic swap payments, S,
until the swap matures at time T. The seller of protection is not obligated to make any payments because the
underlying issuer does not default. When the underlying issuer does default (say, at time ), the CDS terminates
and the seller of protection is obligated to make an insurance payment, I, which is usually required to be the
difference between the face value and the market value (after default) of a specific bond that the company has
defaulted on.

Duffie (1999) showed that the at-market default swap rate (or the insurance annuity premium) for a company
is approximately equal to the credit spread on a par floating rate note issued by the company with the same maturity
as the default swap.7 This pricing relationship exists because one can replicate a short position in a default swap
with a portfolio that is long the company’s par floating rate note and short a risk-free par floating rate note (or,
alternatively, the portfolio borrows at the risk-free floating rate). In periods when the company does not default,
the cash flow from the portfolio is equal to the credit spread, which is the difference between the coupon payments
on the risky par floating rate note and the risk-free par floating rate note. If the company does default, the portfolio
receives the recovery value of the company’s bond and pays the par value of the risk-free loan. Because the initial
value of the portfolio is $0 and it pays the same amount as a short position in the default swap in the event of
default, the default swap rate must be equal to the credit spread. Duffie (1999) illustrated how one can approximate
a company’s default swap rate in situations in which the company does not have a par floating rate note with the
same maturity as the default swap.

A default swap can also be valued using the risk-free yield curve and the company’s risk-neutral default
intensity. Assume that the company’s risk-neutral default intensity is  and the default swap payments are S at
times T1, . . ., TN . A payment of S is due at time Tn if the company has not defaulted by that time. The risk-
neutral probability that the company does not default by Tn is exp(–Tn). If R is the continuously compounded
yield on a risk-free zero-coupon bond that matures at time Tn, then the present value Pn of the swap payment is

6Duffie and Huang (1996) provided a model for valuing over-the-counter derivatives where both counterparties in the contract can default.
7The at-market default swap rate is the required annuity premium so that the value of the swap is zero for both counterparties.
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Therefore, the present value of all the insurance premium payments is

To value the other side of the swap, assume that the buyer of default protection receives a payment I at time Tn
if the company defaults between time Tn–1 and time Tn. The risk-neutral probability that the company will default
between Tn–1 and Tn is

Therefore, the value of all of the possible insurance payments is

Finally, the value of the default swap is the value of the payments received minus the value of the payments made,

At inception of a default swap, the at-market swap rate S* is chosen so that the value of the default swap is zero,

For example, suppose that a company’s risk-neutral default intensity is 0.03, and in the event that the company
defaults, we expect that its bonds will lose 40 percent of their face value. The payments on a semiannual swap are
at times 0.5, 1, 1.5, . . ., 4.5, 5. We can write this more formally as n × 0.5 for n = 1, . . ., 10. If the continuously
compounded interest rate is 6 percent, then the semiannual swap payments on a five-year CDS are

The semiannual swap rate would typically be quoted on an annual basis as 2 × 0.6 percent = 1.2 percent. If
the notional amount on the swap was $1 million, then the buyer of protection would make semiannual payments
of 0.6 percent × $1 million= $6,000 and would receive 40 percent × $1 million = $400,000 in the event of default
(assuming that the company’s bonds lose 40 percent of their face value in the event of default).
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Time-Varying Default Intensities
In many reduced-form pricing models, a company’s risk-neutral default intensity varies either deterministically
or randomly (stochastically) through time. In other words, the company’s risk-neutral default intensity is a function
of time. For example, the company’s risk-neutral default intensity in the first year is (1), and in the second year
it is (2). Because we are allowing  to vary over time, we use the notation (Ti) to denote a company’s risk-
neutral default intensity between time Ti–1 and time Ti. With this notation, the risk-neutral probability that the
company will not default by time Tn is the product of the conditional probabilities that it will not default during
each individual period,

where8

and

T0 = 0.

With this extension, the value of a default swap that matures at time TN is

Similarly, the default swap rate S* at the inception of an at-market default swap is9

This pricing relationship is often used to reverse engineer (or bootstrap) the term structure of the company’s
risk-neutral default intensity for each period from the term structure of its default swap rates. This bootstrapping
procedure is very similar to the procedure that is used to infer the zero-coupon yield curve from the yields on
bonds with different maturities. See Duffie (1999) for more details. Hull and White (2000), Hull and White
(2001), and O’Kane and Turnbull (2003) are other excellent resources for pricing CDS.

Simulating Default Times
When interest rates and default intensities vary through time (and, therefore, are not constant), computing default
probabilities and prices in closed form can be difficult. In these situations, it is convenient to use Monte Carlo
simulations for computations.10 Monte Carlo analysis requires that one be able to simulate a random default time
 from a given time-varying intensity (·).11 The following algorithm can be used for these simulations:
1. Simulate a random number U that is uniformly distributed between 0 and 1.

8Note that in the special case that the default intensity is constant [i.e., (Ti) =  for all i], we have 

9This formula assumes that interest rates are constant across maturities. Interest rates often differ, however, with the time to maturity (i.e.,
the yield curve does not have to be flat). To incorporate this possibility, we can replace RTn in this formula with R (Tn)Tn, where we have
used the notation R (Tn) to denote the continuously compounded yield on a zero-coupon bond that matures at time Tn.
10The last section in this literature review provides a more detailed example of pricing a credit derivative using Monte Carlo analysis.
11We use the notation (·) to indicate that the company’s risk-neutral default intensity can be a function of time (and, therefore, it does
not need to be constant).
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2. Set the default time  depending on what the value of the random number U is in the previous step.

• Set  = T1 if

• Set  = T2 if

• In general, set  = Tm if12

Figure 1 illustrates this procedure for choosing the correct default time  that corresponds to each interval for the
uniform random number U.

Duffie and Singleton (1999a) is a good resource on simulating default times. 

Example of Simulating Default Times
To illustrate this simulation procedure, consider the following example. Suppose that we are interested in three
periods: T1 = 1, T2 = 2, and T3 = 3. The company has a default intensity of (1) = 10 percent during the first year,
(2) = 14 percent during the second year, and (3) = 8 percent during the third year. We would like to simulate
a default time  for the company such that  = 1 if the company defaults in the first year,  = 2 if the company
defaults in the second year, and  = 3 if the company defaults in the third year.
1. First, generate a random number U that is uniformly distributed between 0 and 1 [in Microsoft Excel, use

the function RAND(.)].
2. Next, compute the following values:

3. Finally, assign  according to the following values of U:

If 0.274 < U  1, then the company does not default during the first three periods.

12Recall that 

Figure 1. Simulating Default Times from Uniform Random Numbers
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Intuitively, one can see that the algorithm works because the size of the interval for U that corresponds to
each value of  is exactly the probability of default during that period. For example, the size of the interval for U
that corresponds to  = 2 is

CDOs
Collateralized debt obligations, or CDOs, are another popular class of credit derivatives. A CDO tranches out
the default risk in an underlying portfolio of bonds or loans to junior and senior investors.

To illustrate the concept of tranching, consider a portfolio of 10 bonds, each of which has a face value of $100
(the total face value of the portfolio is $1,000). An investor in a mutual fund containing 10 bonds shares the default
losses in proportion to his or her ownership of the fund. In a CDO containing 10 bonds, however, the default
risk exposure is allocated differently. If a CDO is tranched into a senior tranche of 80 percent and a junior tranche
of the remaining 20 percent, then investors in the junior tranche own the first loss piece or equity tranche and they
suffer all losses up to 20 percent (or $200 in face value of the bonds). An investment in the junior tranche is
typically a high-risk, high-reward proposition. If losses because of defaults are less than $200, then investors in
the senior tranche receive $800 at maturity. If losses because of defaults are more than $200, then investors in the
senior tranche will begin to experience losses to their principal.

In a typical CDO, the underlying pool of assets is split into four or five tranches, but the same waterfall
method of apportioning losses in the underlying portfolio applies. The equity tranche absorbs the first losses; then,
the losses flow down to the middle, or mezzanine, tranches. Finally, if the underlying portfolio suffers catastrophic
losses, then investors in the senior and super-senior tranches will suffer losses to their invested principal. Investors
in senior tranches seldom suffer any losses, and thus the yields on these tranches are often very close to the yields
on highly rated corporate debt.

The Impact of Correlation on CDO Prices
Duffie and Gârleanu (2001) provided an excellent discussion of pricing CDOs. The two most important concepts
in CDO pricing are tranching and default correlation. These two factors affect the junior and senior tranches
differently. For example, suppose that the portfolio underlying a CDO is composed of just two bonds, each with
a face value of $100, and there is a 50 percent senior tranche and a 50 percent junior tranche. If we assume that
there is no recovery in the event of default, then an investor in the senior tranche will lose principal only if both
bonds default together. To illustrate the impact of default correlation on the prices of the two CDO tranches, we
consider two extreme values for the correlation between default times of the bonds in the portfolio, –1 and 1.

If default correlation is 1, then both companies tend to default or not default together. The senior tranche is
only affected if both companies default together, so default correlation of 1 is detrimental to senior tranche holders.
Instead, if default correlation is –1, then the companies rarely default together and it is more likely that only one
company defaults. This situation benefits investors in the senior tranche, who lose principal only if both companies
default together, but it hurts investors in the junior tranche, who need only one company to default in order to
lose their principal.

We need to mention two final points. First, the level of correlation between bonds is seldom negative, yet the
intuition of the previous example still holds: Low correlation is bad for investors in the equity tranche, and high
correlation is bad for investors in the senior tranche. Moody’s has developed a measure called the diversity score,
which is used to estimate the correlation in the portfolio of debt instruments underlying a CDO. The diversity
score is essentially the number of uncorrelated debt instruments that would have the same distributions of losses
as the actual (correlated) portfolio underlying the CDO. Second, the impact of correlation on the middle, or
mezzanine, tranches is ambiguous. Depending on how the specific CDO has been configured, the mezzanine
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tranches may not be affected by correlation at all, or they may be only slightly affected by correlation in either a
beneficial or harmful way. This effect contrasts with the effect of correlation on the price of the first loss and senior
tranche prices, where the correlation effect is systematic and unambiguous.

Credit Indices
Most CDO transactions to date have been customized transactions put together by investment banks. The bank
decides which names to include in the underlying portfolio (usually more than 50 names), sources the credit
exposure by purchasing bonds or by entering into CDS transactions, defines the tranching scheme, and then sells
the tranches to various categories of investors. The equity tranche is often sold to hedge funds, and the senior
tranche is often sold to pension funds and insurance companies.

The iTraxx indices have become popular standard credit benchmarks (see Duffie and Yurday 2004). It is
possible to enter into a CDS transaction on the index, which gives the same credit risk exposure as owning this
diversified portfolio outright. The iTraxx indices also have tradable, standardized CDO tranches. An investor can
enter into a transaction to gain the same risk exposure as if he or she had actually invested in a CDO with an
investment bank. The investor does not actually put up the investment funds that would be required for a traditional
CDO tranche investment, so these standardized transactions are called synthetic tranches.

Basket Default Swaps
Basket default swaps are another class of credit derivatives that provide protection for defaults in an underlying
basket of debt instruments. In a first-to-default swap, the buyer of protection pays a periodic fee in exchange for
an insurance payment equal to the default loss on the first bond to default in the underlying portfolio. An investor
in the equity tranche of a CDO on the same underlying portfolio also absorbs the first losses of the portfolio, so
first-to-default protection can mitigate much of that risk.

An nth-to-default swap is a variation on a first-to-default swap that works exactly as one would expect: The
insurance payment is triggered when the nth company in the underlying portfolio defaults instead of when the first
company defaults. As with CDO prices, rates on nth-to-default swaps are sensitive to the default correlation
between the bonds in the underlying portfolio. If the default correlation is high, then there is a greater chance that
a large number of companies will default together. Therefore, if n is large relative to the number of bonds in the
underlying portfolio, then the nth-to-default swap rate, or insurance payment, is also large when default correlation
is high. Conversely, if default correlation is low, then it is more likely that there will be scenarios in which one (or
more) of the companies in the portfolio defaults, but in each such scenario, the total companies that default are
limited to a small number because of the low correlation. Because the frequency of scenarios in which at least one
company defaults is high when default correlation is low, the first-to-default swap rate (and nth-to-default swap
rate for small n) will be relatively high. Intuitively, for small n, the nth-to-default swap rate has a similar sensitivity
to default correlation as the equity tranche of a CDO, whereas for large n, the nth-to-default swap rate has a similar
sensitivity to correlation as the senior tranche of a CDO. As with the mezzanine CDO tranches, the impact of
correlation on the nth-to-default swap rate is ambiguous for intermediate values of n. Hull and White (2004)
provided an excellent discussion of the effect of correlation on CDO prices and n-to-default swap rates.

Models of Correlated Default
The credit risk models that we have reviewed up to this point address the default risk of a single company. As we
have shown, prices of such hot credit derivatives as CDOs and nth-to-default swaps are sensitive to the correlation
in default risk between companies. Hence, much of the leading edge research in credit risk addresses models of
correlated defaults.

There are two popular approaches to modeling correlated defaults. Duffie and Singleton (1999a) described
models in which the default intensities of companies are correlated with one another. Alternatively, Li (2000) and
Schöbucher and Schubert (2001) used copula functions (discussed in more detail later in this section) to overlay
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a correlation structure directly onto the default times of various companies. Each of these modeling choices has
benefits and trade-offs. Although it is intuitively appealing to allow companies to have correlated default
intensities, it can be challenging to implement these models. Copula functions do not have an easy economic
interpretation, but it is easier to compute prices of many credit derivatives in these models.

We begin with an examination of correlated risk-neutral default intensities. In a model for the risk-neutral
default probability of a single company, we allow its default intensity to move around randomly by supplying a
volatility parameter. A model of the joint risk-neutral default intensities of many companies requires that we also
supply the correlation between the risk-neutral default intensities of each pair of companies. For example, if there
are 10 companies, then there are 45 different pairs of companies, each of which requires a correlation parameter.
Duffie and Singleton (1999a) provided examples of how to model the risk-neutral default intensities of each
company so that they are correlated through time.

Once we have a model for the correlated risk-neutral default intensities of the companies, we can jointly
simulate the default times 1, . . ., 10 of the 10 companies as though we have 10 separate models.
1. Simulate the 10 paths of correlated default intensities 1(·), . . ., 10 (·) and 10 independent random numbers

U1, . . ., U10 that are uniformly distributed between 0 and 1.
2. For each j = 1, . . ., 10,

• Set j = T1 if

• Set j = T2 if

• In general, set j = Tm if13

The simulated default times j are correlated across companies because the default intensities of the companies
are correlated. For example, if the default intensities 1(·) and 2(·) are perfectly correlated, then the probability
that default occurs in any period will be the same for both companies. However, it is important to realize that the
default times 1 and 2 themselves are not perfectly correlated because the uniform random numbers U1 and U2
are drawn independently.

The algorithm for simulating correlated defaults using copula functions is the same as above except that:
1. The uniform random numbers U1, . . ., U10 are correlated rather than independent. A copula function

determines the correlation between the uniform random numbers.
2. The risk-neutral default intensities 1(·), . . ., 10(·) are deterministic, and therefore, they are not correlated.
A copula is something that connects or ties things together.14 In statistics, a copula function joins together
individual, independent uniform random numbers into correlated uniform random numbers. In practical terms,
copula functions are frequently used to generate correlated uniform random numbers. Li (2000) and Schöbucher
and Schubert (2001) both used the Gaussian copula, which translates correlated Gaussian (or normal) random

13Again, recall that  Also, note that the specific value of Tm depends on j (·) and Uj ; hence, it can

differ for each j = 1, . . ., 10.
14In linguistics, “copula” is a word that connects the subject and predicate of a proposition.
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variables (which can be easily simulated) into correlated uniform random variables.15 Das and Geng (2004)
examined how well the Gaussian, Gumbel, Clayton, and Student’s t copulas fit the joint default process of
companies and found that the Clayton copula fits best.

In the copula modeling approach, the default times 1, . . ., 10 are correlated because the uniform random
numbers U1, . . ., U10 are correlated. The reason for this is that, all else equal, if Uj is small for the jth company,
then that company’s default time j also tends to be small (and vice versa). Thus, if U1 and U2 are positively
correlated, then U1 tends to be small when U2 is small (and vice versa); 1 and 2 are also positively correlated
because 1 tends to be small when 2 is small (and vice versa).

To recap, the two most popular methods for modeling correlated defaults are as follows:
1. In one method, the risk-neutral default intensities of the companies are correlated with one another, but the

uniform random numbers are not correlated with each other. Duffie and Singleton (1999a) provided examples
of this modeling approach.

2. In another method, a copula function is used to generate correlated uniform random numbers but determin-
istic default intensities are used. Li (2000) and Schöbucher and Schubert (2001) provided examples of this
modeling approach.
Both of these modeling approaches require as input a correlation value between each company. In theory,

this correlation could differ for each pair of companies; however, practitioners typically use the same correlation
for all pairs of companies. There is also the question of which correlation to use. For models of correlated default
intensities, there is a direct relationship between the correlation in credit spreads between companies and the
correlation between their risk-neutral default intensities. Hence, one can estimate the historical correlations
between credit spreads for each pair of companies and use these estimates as the correlation between their default
intensities. There is no such direct relationship for models that use the copula approach, and practitioners instead
often use the correlations estimated from the asset returns of the companies.

The prices of credit derivatives are also frequently used to infer the implied correlation input. That is, models
of correlated default are calibrated to match the market prices of common credit derivatives. For example, the
market prices of the synthetic tranches on the iTraxx indices are completely transparent, and traders can use the
price of each tranche to infer the risk-neutral default correlation between the issuers in the underlying portfolio
(just as options traders use market prices to infer option-implied volatilities). The implied default correlation can
vary dramatically depending on which tranche price is used to infer the correlation. This difference in implied
default correlation is not consistent with the model because the underlying portfolio of companies is the same for
each tranche and, therefore, the correlation between the companies should not change. This “implied correlation
smile” problem is a major subject of current research efforts.

It can be computationally intensive to price credit derivatives that depend on a large number of correlated
defaults, and much has been written on efficiently computing prices. Chen and Glasserman (2006) provided a
method for valuing default swaps using Monte Carlo simulations and a technique called importance sampling to
speed up the necessary computations. Much of the literature on computing prices of credit derivatives uses factor
copulas that almost provide closed-form solution for prices. A factor copula can be used to generate 10 correlated
normal random numbers X1, . . ., X10 as follows:
1. Generate a normal random number Z and 10 independent normal random numbers 1, . . ., 10.

2. Set . The correlation between Xi and Xj (for i  j) is .
The Gaussian copula is then used to translate the correlated normal random variables X1, . . ., X10 into

correlated uniform random variables U1, . . ., U10. This approach to generating correlated normal random numbers
is particularly useful because, conditional on the common value of X, the default times of the companies are
independent of each other and, therefore, the prices of many credit derivatives can be computed in closed form

15More formally, for correlated normal random variables X1, . . ., X10, the Gaussian copula generates correlated uniform random numbers
U1, . . ., U10 by setting Ui = N(Xi), where N(·) is the cumulative distribution function of a standard normal variable.
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(again, conditional on the value of X). Two popular approaches to iterating over the range of values of X to compute
the unconditional price of a credit derivative are transform analysis, used by Laurent and Gregory (2005), and the
bucketing approach, used by Andersen and Sidenius (2005) and Hull and White (2004).

Collin-Dufresne, Goldstein, and Helwege (2003) documented that marketwide credit spreads increase when
companies default, and Das, Duffie, Kapadia, and Saita (forthcoming 2007) find that defaults are more clustered
than would be implied by the standard model of correlated default intensities. Collin-Dufresne et al. (2003) and
Giesecke (2004) provided general models of correlated default intensities in which one company’s default can
affect the probability of default and credit spread of other companies in the economy.

Pricing a CDO by Monte Carlo Analysis
Monte Carlo analysis is a popular method for pricing credit derivatives, such as CDOs. To illustrate this approach,
suppose that the portfolio underlying a CDO contains 10 zero-coupon bonds that each matures in three years. If
an issuer defaults before maturity, then the bond pays $50 in Year 3; otherwise, it pays the full face value of $100.
The CDO has a junior tranche that absorbs the first 20 percent of portfolio losses and a senior tranche that absorbs
any losses greater than 20 percent. The following algorithm can be used to compute the price of the junior and
senior tranches using Monte Carlo analysis:
1. Simulate 10 correlated default times 1, . . ., 10 using either the copula approach or correlated risk-neutral

default intensities.16

2. Compute the payoff to each tranche of the CDO. If there are no default times less than three years, then the
junior tranche receives $200 and the senior tranche receives $800. If there are four defaults before Year 3, then
the junior tranche receives $0 and the senior tranche receives $800. If there are five defaults before Year 3,
then the junior tranche receives $0 and the senior tranche receives $750. In general, if there are n defaults
before Year 3, then the junior tranche receives $200 – min(n, 4) × $50 and the senior tranche receives
$800 – max(n – 4, 0) × $50.

3. Repeat Steps 1 and 2 a large number of times (e.g., 50,000) and compute the average payoff to the junior and
senior tranches. As the number of simulations gets large, the average payoff becomes a close approximation
to the risk-neutral expected payoff.

4. Discount the risk-neutral average payoffs (computed in Step 3) by the three-year risk-free rate to obtain the
prices of the junior and senior tranches.

A supplemental spreadsheet (available online) that accompanies this literature review demonstrates how to use
the copula approach and correlated risk-neutral default intensities to price credit derivatives, such as CDOs.

Summary
In this literature review, we discussed credit risk modeling and the pricing of such credit derivatives as CDS and
CDOs. There are two broad approaches to modeling the credit risk exposure of a single company:
• In structural models, the company’s assets are assumed to vary randomly over time. Default occurs when (if)

the value of the company’s assets dips below some level (e.g., the amount of debt the company has outstanding).
• In reduced-form models, the probability of default is modeled directly using the company’s hazard rate or

default intensity. A company’s risk-neutral default intensity can vary randomly over time and is closely related
to the credit spread that the company pays to borrow money.
Reduced-form pricing models are predominantly used in the industry for pricing derivatives. In a reduced-

form pricing model, the company’s risk-neutral default intensity is used to model the company’s probability of
default. The company’s risk-neutral default intensity is usually higher than its actual default intensity. This
difference reflects investors’ risk aversion to holding the company’s debt in the event that it defaults. We provided
a simple algorithm for simulating the default behavior of a single company based on either its actual or risk-neutral
default intensity.

16One could also use a combination of these two approaches.
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We reviewed credit risk models and credit derivatives based on a portfolio of companies. We illustrated the
effect of default correlation on CDO prices and basket default swap rates. We discussed the two popular approaches
to modeling correlated default risk:
• The risk-neutral default intensities are correlated with one another.
• A copula function is used to overlay a correlation structure directly onto the default times.

Copula functions are frequently used in practice because they allow prices of many credit derivatives to be
easily computed (although these models do have some inconsistencies, such as the “implied correlation problem”).
We briefly reviewed the factor copula models that have been used to speed up the pricing computations. Finally,
we illustrated how to use these two approaches to simulate correlated default times and price a CDO by Monte
Carlo analysis.
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This empirical paper finds that temporary liquidity shortages can trigger default when outside financing
is not available. Additionally, the study finds that low asset levels increase the probability of default.

Dor, Arik Ben, Lev Dynkin, Jay Hyman, Patrick Houweling, Erik van Leeuwen, and Olaf Penninga. 2007.
“DTSSM (Duration Times Spread).” Journal of Portfolio Management, vol. 33, no. 2 (Winter):77–100. [added
April 2008]

“The authors study the behavior of spread changes and recommend a new approach, Duration Times
Spread (DTS), to measuring risk in credit portfolios, which measures the sensitivity to a relative change
in spread. After analyzing the spread behavior of corporate bonds, the authors examine whether DTS
or spread duration is better for measuring the excess return volatility of credit securities. The authors
conclude that the DTS methodology accurately represents the impact of spread changes on excess
return.” [Ahmed Olayinka Sule, CFA, CFA Digest, August 2007]

Driessen, Joost. 2005. “Is Default Event Risk Priced in Corporate Bonds?” Review of Financial Studies, vol. 18,
no. 1 (April):165–195.

Expected corporate bond returns are decomposed into default, liquidity, and tax components. This
empirical study is one of the first to examine the ratio of risk-neutral to actual default intensities.

Duffee, Gregory R. 1999. “Estimating the Price of Default Risk.” Review of Financial Studies, vol. 12, no. 1
(Spring):197–226.

This empirical article estimates a reduced-form pricing model for corporate bonds and finds that it
is reasonably successful at fitting yields.

Duffie, Darrell. 1999. “Credit Swap Valuation.” Financial Analysts Journal, vol. 55, no. 1 ( January/February):73–87.

The author reviews the contract details and pricing of credit swaps.

Duffie, Darrell, and Nicolae Gârleanu. 2001. “Risk and Valuation of Collateralized Debt Obligations.” Financial
Analysts Journal, vol. 57, no. 1 ( January/February):41–59.

This article examines the effects of correlation and tranching on the pricing of CDOs.

Duffie, Darrell, and Ming Huang. 1996. “Swap Rates and Credit Quality.” Journal of Finance, vol. 51, no. 3
( July):921–949.

This theoretical article presents a model for valuing derivatives in which both counterparties in the
contract can default.

Duffie, Darrell, and Kenneth Singleton. 1999a. “Simulating Correlated Defaults.” Working paper, Stanford
University (21 May).

The authors describe approaches to modeling and simulating correlated default times.

———. 1999b. “Modeling Term Structures of Defaultable Bonds.” Review of Financial Studies, vol. 12, no. 4
(Special):687–720.

The authors develop a popular reduced-form model for pricing defaultable bonds. The model assumes
that in the event of default, investors receive a fraction (or, equivalently, lose a fixed fraction) of what
the claim was worth immediately prior to default. This tractable assumption is referred to as recovery
of market value.
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Duffie, Darrell, and Erin C. Yurday. 2004. “Structured Credit Index Products and Default Correlation.” Stanford
Graduate School of Business Case F-269.

This case study examines the prices of tranches on the iTraxx indices.

Duffie, Darrell, Lasse Heje Pedersen, and Kenneth J. Singleton. 2003. “Modeling Sovereign Yield Spreads: A
Case Study of Russian Debt.” Journal of Finance, vol. 58, no. 1 (February):119–159.

This article extends the reduced-form pricing model in Duffie and Singleton (1999b) to the pricing
of sovereign debt. The model is estimated using Russian dollar-denominated bonds.

Duffie, Darrell, Leandro Saita, and Ke Wang. Forthcoming. “Multi-Period Corporate Default Prediction with
Stochastic Covariates.” Journal of Financial Economics.

This empirical study estimates the conditional probabilities of default over multiple future periods.
The hazard rate model depends on the dynamics of company-specific and macroeconomic variables.
The most influential variable for predicting default is a company’s distance to default.

Elton, Edwin J., Martin J. Gruber, Deepak Agrawal, and Christopher Mann. 2001. “Explaining the Rate Spread
on Corporate Bonds.” Journal of Finance, vol. 56, no. 1 (February):247–277.

The authors document evidence of a risk premium on corporate bonds over and above expected losses
because of default.

Fabozzi, Frank J. 2007. Fixed Income Analysis, Second Edition. Charlottesville, VA: CFA Institute Investment
Series. [added April 2008]

“This fully revised edition covers the fixed-income marketplace, the risks associated with investing in
fixed-income securities, and the fundamentals of valuation and interest rate risk. This book also
examines the valuation of fixed-income securities with embedded options, the features of structured
products, and the principles of credit analysis. Rounding out the discussion, Fixed Income Analysis, Second
Edition demonstrates how to construct a portfolio that is in line with your investment objectives.” (p. 1)

Giesecke, Kay. 2004. “Correlated Default with Incomplete Information.” Journal of Banking & Finance, vol. 28,
no. 7 ( July):1521–1545.

The author develops a structural model of multicompany default. Default times are correlated because
when one company defaults, investors learn more about the default boundaries of other related
companies in the economy.

Hull, John, and Alan White. 2000. “Valuing Credit Default Swaps I: No Counterparty Default Risk.” Journal of
Derivatives, vol. 8, no. 1 (Fall):29–40.

This article is the first of a two-part study on valuing CDS.

———. 2001. “Valuing Credit Default Swaps II: Modeling Default Correlations.” Journal of Derivatives, vol. 8,
no. 3 (Spring):12–22.

The second part of a two-part study, this article focuses on modeling default correlation and addresses
the pricing of basket CDS and CDS with counterparty risk.

———. 2004. “Valuation of a CDO and nth to Default CDS without Monte Carlo Simulation.” Journal of
Derivatives, vol. 12, no. 2 (Winter):8–23.

This article values CDOs and nth-to-default swaps using a factor copula model and a variation of the
bucketing method presented in Andersen and Sidenius (2005).
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Jarrow, Robert A., David Lando, and Stuart M. Turnbull. 1997. “A Markov Model for the Term Structure of
Credit Risk Spreads.” Review of Financial Studies, vol. 10, no. 2 (Summer):481–523.

The authors develop a popular reduced-form pricing model in which a company’s default intensity
(hazard rate) depends on its credit rating. This model is especially useful for valuing credit derivatives
with payoffs that depend on a company’s credit rating.

Jorion, Philippe, and Gaiyan Zhang. 2007. “Good and Bad Credit Contagion: Evidence from Credit Default
Swaps.” Journal of Financial Economics, vol. 84, no. 3 ( June):860–883. [added April 2008]

“The authors examine the correlation of credit default swap spreads and equity prices for companies
in a common industry during an extreme credit event. Findings indicate that contagion effects
contribute to positive correlations around Chapter 11 filings and other large, unanticipated credit
events. Negative correlations and competitive effects prevail amid Chapter 7 events. The findings
offer insight toward constructing better diversified, credit-sensitive portfolios that are more resilient
to extreme events.” [Michael Kobal, CFA, CFA Digest, November 2007]

Kealhofer, Stephen. 2003. “Quantifying Credit Risk I: Default Prediction.” Financial Analysts Journal, vol. 59,
no. 1 ( January/February):30–44.

The author reviews the KMV approach to predicting default using a company’s distance to default
and its EDF.

Lando, David. 1998. “On Cox Processes and Credit-Risky Securities.” Review of Derivatives Research, vol. 2,
nos. 2–3:99–120.

This article develops the basis for reduced-form pricing models and generalizes the model in Jarrow
et al. (1997)

Laurent, Jean-Paul, and Jon Gregory. 2005. “Basket Default Swaps, CDOs and Factor Copulas.” Journal of Risk,
vol. 7, no. 4 (Summer):103–122.

This theoretical article uses factor copulas and transform analysis to price basket default swaps and
CDO tranches.

Leland, Hayne E. 1994. “Corporate Debt Value, Bond Covenants, and Optimal Capital Structure.” Journal of
Finance, vol. 49, no. 4 (September):1213–1252.

The author extends the standard structural pricing model of Black and Scholes (1973) and Merton
(1974) and allows companies to optimally choose the time they default.

Li, David X. 2000. “On Default Correlation: A Copula Function Approach.” Journal of Fixed Income, vol. 9, no. 4
(March):43–54.

This seminal article uses copulas to model correlated defaults. This study was the topic of a front page
article by Mark Whitehouse in the Wall Street Journal entitled “How a Formula Ignited a Market That
Burned Investors” (12 September 2005).

Lin, Mingyan, and Jean-Christophe Curtillet. 2007. “Another Look at the Relation between Credit Spreads
and Interest Rates.” Journal of Fixed Income, vol. 17, no. 1 (Summer):59–71. [added April 2008]

“The authors find that different risk components in the credit spreads may have different relationships
with the interest rate. They present a statistical model that captures the short-term dynamics of credit
spreads. In particular, they find that whether credit spreads widen when the Fed raises its target rate
depends on the lagged response of the yield curve. On a long-term basis, credit spreads widen in
response to crises, significant financial events, and recession but are not determined by interest rates.”
[Deborah Kidd, CFA, CFA Digest, February 2008]
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Longstaff, Francis A., Sanjay Mithal, and Eric Neis. 2005. “Corporate Yield Spreads: Default Risk or Liquidity?
New Evidence from the Credit Default Swap Market.” Journal of Finance, vol. 60, no. 5 (October):2213–2253.
[added April 2008]

“The authors use bond prices and credit default swap premiums to determine the composition of
corporate yield spreads. Although default risk accounts for most of the spread, there is also a significant
time-varying nondefault component directly related to liquidity effects. The results extend earlier
research that considers the market price of credit risk to be higher than implied by select structural
models.” [Christopher J. Sullivan, CFA, CFA Digest, February 2006]

Merton, Robert C. 1974. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates.” Journal of
Finance, vol. 29, no. 2 (May):449–470.

This seminal paper developed the structural model for pricing corporate debt subject to default risk.

O’Kane, Dominic, and Stuart M. Turnbull. 2003. “Valuation of Credit Default Swaps.” Lehman Brothers
Quantitative Credit Research Quarterly, vol. 2003-Q1–Q2 (April).

This article is a practitioner-oriented survey on the pricing of CDS.

Papageorgiou, Nicolas, and Frank S. Skinner. 2006. “Credit Spreads and the Zero-Coupon Treasury Spot Curve.”
Journal of Financial Research, vol. 29, no. 3 (Fall):421–439. [added April 2008]

“An investigation into the relationship between credit spreads and both the level and slope of the Treasury
yield curve suggests that they are negatively correlated, so that an increase in either the level or slope of
the curve accompanies a decrease in credit spreads. This relationship is found to be relatively stable over
time, and although the responsiveness of credit spreads to interest rates does increase with maturity, it
does not vary according to credit quality.” [Gerard Breen, CFA, CFA Digest, February 2007]

Schaefer, Stephen M., and Ilya A. Strebulaev. 2004. “Structural Models of Credit Risk Are Useful: Evidence from
Hedge Ratios on Corporate Bonds.” Working paper (May).

This empirical paper shows that structural pricing models are useful for hedging corporate debt
with equity.

Schöbucher, Philipp J., and Dirk Schubert. 2001. “Copula-Dependent Default Risk in Intensity Models.”
Working paper (December).

This seminal paper uses copulas to model correlated defaults. The paper uses the Gaussian, Clayton,
and Gumbel copulas.

Shumway, Tyler. 2001. “Forecasting Bankruptcy More Accurately: A Simple Hazard Model.” Journal of Business,
vol. 74, no. 1 ( January):101–124.

The author estimates a hazard rate model for predicting default and finds that market size and past
stock returns help to predict default.

Spentzos, George. 2006. “Using Credit Derivatives to Enhance Return and Manage Risk.” CFA Institute
Conference Proceedings Quarterly, vol. 23, no. 3 (September):44–51. [added April 2008] 

“The credit derivatives market is growing rapidly in size as well as importance. Credit default swaps,
the building blocks in the market, have several advantages over corporate bonds and asset swaps—not
least of which is the ability to disaggregate the interest rate component from the credit component. The
predominant strategies that hedge funds and other managers use to optimize credit portfolios are basis
trades, curve trades, index trades, options trades, capital structure trades, and correlation trades.” (p. 44)
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Wallison, Peter J. 2009. “Everything You Wanted to Know about Credit Default Swaps: But Were Never Told.”
Journal of Structured Finance, vol. 15, no. 2 (Summer):20–30. [added February 2010]

“Recent articles have characterized credit default swaps (CDS) as sources of risk for institutions that
use them, potential contributors to systemic risk, and the underlying reason that such companies as
AIG had to be bailed out. The author asserts that these assessments are incorrect and reflect a
misunderstanding of how CDS work and how they contribute to risk management. To counteract the
misguided assertions and explain the positive benefits of CDS, he presents an assessment of the current
situation and then recommends what should and should not be done to remedy the financial
landscape.” [Frank T. Magiera, CFA, CFA Digest, February 2010]


