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FOREWORD
In the complex and dynamic world of finance, the importance of rigorous financial model 
validation cannot be overstated. As financial instruments and markets have become 
increasingly intricate and intertwined, the need for robust models for alpha generation and 
risk management has never been more critical. Today, these models play an indispensable 
role in driving decisions that can have far-reaching ramifications, impacting everything from 
individual investment choices to the stability of the global financial system. Model validation 
is thus a cornerstone of contemporary financial management. When implemented properly, 
model validation entails a meticulous verification of the soundness and reliability of a model’s 
mathematical foundations, assumptions, and outcomes. In an environment where errors can 
lead to significant financial losses and an erosion of client trust, the value of thorough model 
validation cannot be underestimated.

Recognizing the industry-wide need for a framework for conducting proper model validation, 
Joseph Simonian has written a comprehensive guide to the essential practices and principles 
of financial model validation. Simonian brings a wealth of expertise and experience, drawing on 
both his extensive record of investment research and years of investment practice. His insights 
offer a rich and nuanced perspective on all facets of contemporary model validation.

This monograph covers a wide array of topics essential to understanding and implementing 
effective model validation. From foundational approaches to advanced techniques, each section 
is designed to equip the reader with the knowledge and tools necessary to effectively validate a 
wide variety of investment models. The monograph should serve as both a practical guide and 
a compendium of research sources with which investment practitioners can develop their own 
specific model validation processes. Whether one is a seasoned professional or a newcomer to 
the investment world, this monograph should be an indispensable resource for years to come.

Frank J. Fabozzi, CFA
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INTRODUCTION: THE IMPORTANCE 
OF MODEL VALIDATION TO 
FINANCIAL PRODUCT DEVELOPMENT

Investing is generally not considered one of the “healing arts,” but it should be. Just as medical 
practitioners are concerned with the physical well-being of their fellow humans, investment 
managers are focused on improving the financial well-being of individuals and organizations. 
And as is well known, a person’s financial well-being is often intimately connected to their 
psychological and emotional health.

But the analogy between medicine and investing can be carried further. Just as medical 
professionals use pharmaceutical products to help individuals attain physical health, investors 
use financial products to help their clients attain financial health. Building financial products 
is therefore no different from building any other type of product: Great care must be taken to 
ensure that the product delivered to consumers is robust and reliable. While quantitative man-
agers rely on models more heavily than do fundamental managers, the vast majority of portfolio 
management teams use models of some type to help them develop their strategies. However, 
in any application of models, investors must confront model risk: the risk that the models they 
are using are less than robust or are being incorrectly applied in some way.

While there are similarities between pharmaceutical and financial product development, there 
are limits to the parallels that can be drawn. Both financial and pharmaceutical products go 
through lengthy product development cycles, but there is a considerable gap between the level 
of scientific rigor applied to the evaluation of each product type. Pharmaceutical products go 
through an extensive process of testing and approval, culminating in commercial approval by, 
for example, the US Food and Drug Administration (FDA). Along the way, numerous trials and 
studies are conducted, benefiting from multitudes of test subjects that assist pharmaceutical 
companies in developing the drugs they will ultimately bring to the market. In contrast, the 
investment industry has neither the benefit of such an approval process nor a regulator such as 
the FDA that has the ability to pass judgment on whether a given financial product is likely to 
do more benefit than harm (the basic standard that the FDA uses). Instead, most people simply 
assume that investment firms are making good faith efforts to thoroughly and carefully develop 
models and investment products that will ultimately help investors in successfully achieving 
their financial goals.

Our model of Nature should not be like a building—a handsome structure for 
the populace to admire, until in the course of time someone takes away a 
corner stone and the edifice comes toppling down. It should be like an engine 
with movable parts.

—Sir Arthur Stanley Eddington
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When the foregoing assumption proves false and firms use flawed or outdated models, they 
(and their clients) may experience substantial financial losses. By thoroughly validating models, 
portfolio managers and researchers can identify potential weaknesses, biases, or inaccuracies 
in the models’ assumptions and outputs and thus reduce model risk. This process helps in refin-
ing models to better capture the underlying dynamics of financial markets and adapting them 
to changing conditions. In essence, model validation serves as a tool for enhancing the overall 
resilience of investment strategies for client benefit.

Related to model risk is the reputation risk that faulty model validation presents. Validating 
models is imperative to ensure their relevance and performance in real-world scenarios and to 
establish and maintain investor trust. Clients and stakeholders rely on portfolio managers to 
make informed and prudent investment decisions. If the models underpinning these decisions 
are not validated, the integrity of the entire investment process can be called into question. 
Properly validated models provide a transparent and defensible framework for decision making, 
instilling confidence among investors and enhancing the credibility of portfolio managers and 
their strategies.

While clients are undoubtedly concerned with their financial well-being, so are regulators. 
Financial institutions and asset managers are subject to myriad regulations that, explicitly or 
implicitly, demand the use of sound and validated models for decision making. Regulatory 
bodies, such as the US Securities and Exchange Commission (US SEC) and the European 
Securities and Markets Authority (ESMA), have increasingly emphasized that investment firms 
must adhere to best practices and maintain a high standard of due diligence. Failure to do so 
can result in severe legal and financial consequences.

To sum up, firms need to be concerned with developing comprehensive model validation 
processes in order to ensure the highest-quality products for their clients and to protect 
their businesses from financial and legal repercussions. This monograph is designed to 
equip investment professionals with the knowledge and tools that will allow them to 
implement a rigorous approach to model validation by providing a practical yet detailed 
overview of the various model validation methodologies that investment practitioners have 
at their disposal.

Roadmap to the Monograph
•	 The topics covered in this monograph include empirical methods for testing models, both 

traditional approaches and more recent, data science–driven approaches. While model 
validation is often thought to be synonymous with backtesting, it is, in fact, a significantly 
broader component of investment practice than many think.

•	 Accordingly, the discussion of model testing is accompanied by an overview of the most 
important aspects of performance measurement and benchmarking. Because data paucity 
is a major obstacle to conducting proper model validation, this monograph also provides a 
comprehensive overview of the various methods of creating synthetic time series, including 
those based on machine learning techniques.

•	 Rounding out the monograph are examinations of the role of investment theory in model 
validation and the importance of proper documentation of the validation process.
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By providing a comprehensive discussion of the frameworks and techniques that can be used 
to assess the accuracy, reliability, and appropriateness of the models that drive investment 
processes, this monograph seeks to enhance the practice of investment product development. 
Thus, the ultimate beneficiary of this monograph will be the investing public that uses the ser-
vices of professional investment managers.
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1. A WORKING PHILOSOPHY 
OF MODEL VALIDATION
Model validation is the process used to verify and validate financial models to ensure that they 
meet their intended business use and perform within design expectations. There are a number 
of reasons why model validation in finance is more challenging than in the natural sciences. 
One of the primary reasons is that finance does not have the benefit of the rich datasets that 
are available to natural scientists. For example, instead of having hundreds of test subjects 
(e.g., in Phase 3 drug trials) each with their own history, finance has one S&P 500 Index history, 
one Russell 2000 Index history, and so on. The relative paucity of data presents a serious chal-
lenge to the developers of financial products to test and validate the strategies that they will 
ultimately offer to their clients. Moreover, unlike research in the natural sciences, research in 
finance does not have the benefit of closed experiments. This further complicates investment 
researchers’ ability to draw robust and generalizable conclusions from their work. Perhaps the 
biggest challenge for investment research, however, is that unlike phenomena in the natural 
world, the primary drivers of financial markets are human psychology and intentionality, which 
are not mechanistic in the way that many, if not most, natural phenomena are. For these rea-
sons, portfolio managers and researchers are at risk of being easily lulled by initially successful 
results generated by simple backtests. Most investment and trading strategies developed in 
this manner will be “false positive” strategies that ultimately end up collapsing under greater 
scrutiny or real-time testing in an actual portfolio.

As markets have become more saturated with information and data, the challenges to devel-
oping robust investment strategies and building financial products that can withstand the 
multitude of market gyrations, macroeconomic shocks, and political headlines have become 
even greater. These factors can compromise the accuracy and robustness of investment 
models. Anyone who has ever been on a portfolio management or research team and been 
part of the process to develop successful investment strategies has undoubtedly experienced 
these challenges.

Thus, to ensure that asset owners have access to investment products that possess the requi-
site level of robustness, investment firms must have in place a comprehensive model validation 
process. However, as critical as model validation is for the reliability and effectiveness of invest-
ment strategies, it is remarkable how decidedly unscientific investment strategy development 
and model validation often are.

This situation is all the more surprising given the “science envy” that economics and finance 
have had for the last century. How do scientists test models and theories? Their process can be 
summed up in one word: falsification. That is, a scientist will develop a theory or build a model 
and then proceed to subject it to numerous empirical and logical tests in an attempt to falsify it. 
If the theory or model cannot be “broken” despite the scientist’s falsification attempts, then the 
theory or model will be accepted as providing some explanatory value.

In contrast, in the asset management industry, strategy and model development often pro-
ceeds in the opposite manner. Research teams build various versions of a given model, conduct 
some simple historical backtests, and scream “eureka!” when they discover one that works well 
over the specific time period they are using to conduct the analysis. This behavior is known as 

© 2024 CFA Institute Research Foundation. All rights reserved.



Investment Model Validation: A Guide for Practitioners

2    CFA Institute Research Foundation

data snooping and is likely to result in false positive strategies. To achieve the type of model 
development encapsulated in Eddington’s quote that opens this monograph, a much more 
exhaustive and rigorous set of tools must be used.

With these considerations in mind, it could be useful to develop a general approach to model 
validation that is inspired by the concept of prophylaxis from the game of chess.1 This concept, 
which has become an important element of every top chess player’s arsenal, also holds valuable 
lessons for anyone developing and validating investment models. Prophylaxis is the idea that 
one’s moves in a game of chess should not only advance one’s immediate position in the game 
but also serve to prevent an improvement in an opponent’s positioning. Moves that are consid-
ered prophylactic accordingly require a player to think ahead and contemplate an opponent’s 
likely responses to one’s moves. Investment professionals can likewise benefit by considering 
counterarguments and counterexamples to their models. For example, in validating any model, 
it is important to consider potential criticisms relating to the benchmark(s) and performance 
metrics used, the likely impacts of turnover and transaction costs on model implementa-
tion, the number and type of robustness checks used (e.g., cross-validation tests), and the 
consistency of the model with economic and investment theory.

1Notable practitioners of prophylaxis in the history of chess include Aron Nimzowitsch, Tigran Petrosian (world cham-
pion from 1963 to 1969), and Anatoly Karpov (world champion from 1975 to 1985). Petrosian in particular was perhaps 
the most dedicated adherent to prophylaxis in the history of the game. As Bobby Fischer once exclaimed, “He will 
‘smell’ any kind of danger 20 moves before!”
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2. BACKTESTING
Backtesting is a procedure that examines and assesses the historical performance of a model 
by comparing its predictions with actual outcomes. This retrospective analysis helps research-
ers understand a model’s respective strengths and weaknesses in different historical periods. 
It also enables researchers to assess whether a strategy is more likely to make or lose money 
and measure the frequency of wins versus losses, among other relevant statistics. In addition, 
examination of the historical performance of a model helps discern the potential sources of its 
success or failure. For example, was a model able to detect profitable market trends or changes 
in market liquidity? And in what market periods or “regimes” was it most successful? A careful 
study of the historical track record of a trading model can give researchers a good idea of what 
conditions will be beneficial or harmful to a model’s performance in actual market conditions.

At the outset, it is important to note that backtesting is not only used to test a finalized model 
in the validation phase of model development but is also often used in the earlier stages of 
product design. For example, based on some economic reasoning or observed regularity in the 
market, researchers often subject their initial “toy” models to a basic backtest. Moreover, as a 
model is further refined, it is generally subjected to backtests on a continual basis.

Thus, backtesting is among the basic validation tools used throughout the model’s development; 
rather than a static “one-shot” process, it is dynamic in nature. As market conditions, economic 
and political variables, and investor behavior evolve over time, regular backtesting allows portfo-
lio managers to adapt their models to changing market developments, ensuring that the models 
remain relevant and accurate. This iterative process of validation and adaptation is essential for 
staying ahead of market trends and maintaining a competitive edge over competing firms. Taking 
a proactive approach to backtesting acknowledges the inherent uncertainties in financial markets 
and seeks to enhance the robustness and reliability of investment models. As the financial land-
scape continues to evolve, the importance of rigorous and detailed backtesting will only grow, in 
lockstep with the need for more informed and resilient investment decisions.

Aside from helping determine the potential effectiveness of a given investment model, back-
tests can also provide insight into the challenges that investors may encounter when trying to 
implement their models in live trading. For example, the impact of transaction costs, which are 
the direct or indirect costs of trading a portfolio, can be studied in a backtest. Direct transac-
tion costs include trading fees and commissions. Indirect transaction costs include the costs 
stemming from bid–ask spreads and market impact, the latter being the difference between the 
actual price of the security and the price of the security in the absence of the transaction. It is 
sometimes the case that a particular investment model provides useful information yet shows 
itself to be unprofitable in practice due to the costs associated with implementing it. If transac-
tion costs erode performance to a significant extent, the model may be deemed too impractical 
to implement in practice.

Another implementation issue could be related to the types and sizes of trades that the model 
uses to produce any observed performance. For example, imagine a trading model that pro-
duces superior results in a backtest spanning multiple decades, but upon further examination, it 
is revealed to have generated the majority of its gains from a small number of trades scattered 
over the life of the backtest. This finding could indicate that the model is not actually identifying 
any systematic and exploitable pattern in the markets but is merely capitalizing on a few “lucky” 
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trades. If this is the case, then it is unlikely that it will produce superior performance in the 
future. Or consider a case where an equity model’s performance is based on successfully trad-
ing a small subset of its investment universe. If the model is only informative regarding a small 
handful of stocks, it could indicate that the model is not generalizable to a sufficient degree. 
Moreover, such a strategy, if implemented in a live investment product, could subject clients to 
undue concentration risk.

A final implementation issue that backtests can help resolve is related to the impact of various 
operational time lags on a strategy’s real-world effectiveness. When an investment model is 
developed, it is important to examine its effectiveness in realistic operational conditions where 
the ideal of “instantaneous trading” is jettisoned. As known from experience, such ideal condi-
tions do not exist during live trading. Rather, delayed execution, for market and firm-specific rea-
sons, is the norm. It is inadvisable to assume that a signal received at time t can also be used to 
trade at t. It is more realistic to assume that the trade occurs at t + 1 or t + 2. Delays in execution 
can also arise due to lagged releases of data that are pertinent inputs to a model. For example, 
macro data are often released with a lag. If a model’s effectiveness in a backtest is materially 
reduced when one assumes that such execution delays occur, then it would be an indication 
that the model is not tenable as a commercial product.

Of course, even if a model demonstrates its viability in a backtest, it is not guaranteed that it 
will perform well in the future. As discussed in later chapters, because of the risk of producing 
“false positive” strategies based on sole reliance on historical data, backtests cannot be the 
only tool for model development and validation. Indeed, the validation procedures discussed 
later are designed to measure models’ predictive power and robustness in ways that backtests 
cannot. However, as a way to filter and weed out models and strategies that have performed 
poorly over the long term, a backtest is an invaluable tool.

The Building Blocks of Backtests
Backtests are a type of empirical study over a specified historical period. Choosing which 
historical period to use in a backtest, however, is not as simple as it may seem. Because invest-
ment research is data poor relative to the natural sciences, the first instinct of any researcher 
is to try to obtain the longest time series possible. Accessing the largest data sample is under-
standable from a purely statistical standpoint. But in an economic or financial study, doing so 
is not always advisable because economic phenomena change more rapidly than natural phe-
nomena, which may result in very long time series containing information that is not relevant 
to understanding contemporary markets. For example, consider that as late as the 1930s, the 
horse and buggy were still in use, albeit rapidly declining in popularity due to the rise of the 
automobile. Is such an economic world relevant to today’s markets? The technological land-
scape may be less relevant for the modeling of some asset classes, such as commodities, but 
for most asset classes, including equities, technological considerations are important. In addi-
tion, fixed-income markets are continually evolving because of changing fiscal and monetary 
policies. Thus, no universally appropriate time-series length exists. Proper model validation, 
however, must account for the economic relevance of the data or risk implementing models 
that are insufficiently responsive to contemporary market behavior.

In this monograph, the term “backtest” generally refers to out-of-sample tests. These are back-
tests where a model is developed using a subsample that is separate from and chronologically 
prior to the subsample used to evaluate the efficacy of the model. In contrast, in-sample refers 
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to tests in which the data used to develop a model are the same as those used to evaluate it. 
Such tests are a form of “cheating” because they do not provide an objective and unbiased 
method of validating the effectiveness of a model. Further, they do not provide any useful infor-
mation regarding the likelihood of a model performing successfully on new sets of data.

While it is common for researchers to conduct backtests over one long, contiguous time hori-
zon, it is also often useful to split a time series into a sequence of economically meaningful 
subsamples. One rigorous way to do this is to use what are known as regime-switching models. 
While the forecasting power of most regime-switching models has been poor,2 they can be 
used as effective tools for classifying time-series data in econometrically identifiable ways. 
For example, consider the regime-switching framework presented by Filardo (1994), which is an 
extension to Hamilton’s (1989) well-known regime model. Filardo followed Hamilton in setting 
up his model as an autoregressive process:

	 y y yt S t S t St t t
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where pi,j,t is the probability of transitioning from regime i to regime j in period t. However, 
Filardo extends Hamilton’s model by also allowing for exogenous regressors to influence transi-
tion probabilities:
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In Equation 3, bi,j represents the coefficients that relate the transition probabilities to a vector of 
exogenous regressors xt-1. Using macro variables to classify regimes is common—for example, 
using the change in gross domestic product (GDP) as an endogenous regressor with the 10-year 
yield as the exogenous regressor.3 Figure 1 shows sample output from the latter model using 
quarterly data from 1978 to 2023.

2See Simonian and Wu (2019) for an in-depth discussion of this point.
3According to the Federal Reserve Bank of St. Louis, change in GDP is proxied by “Real Gross Domestic Product, Percent 
Change, Quarterly, Seasonally Adjusted Annual Rate” and the 10-year Treasury yield is proxied by the “Market Yield 
on U.S. Treasury Securities at 10-Year Constant Maturity, Quoted on an Investment Basis, Percent, Quarterly, Not 
Seasonally Adjusted.”
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In addition to determining the time frame over which data should be drawn and how the 
historical data being used should be classified, it is also important to ensure that the data being 
used are free of error. The quality and accuracy of input data are critical because they form the 
foundation of the backtesting process. While most data provided by vendors are usually rela-
tively error free, errors may be introduced into time series once they are processed by a firm 
internally by various systems and personnel. Thus, it is important to review each time series 
for missing, duplicate, and/or erroneous values. One way of doing so could be to compare the 
same time-series data provided by different vendors (e.g., S&P 500 price levels). If there are dis-
crepancies between them, they should be investigated and resolved. Today, much of this work 
can be automated.

Running a Backtest
Once the preliminary setup has been accomplished, running a backtest is relatively simple. 
The basic requirements are as follows:

•	 One or more signals: If a model is driven by more than one trading signal, each can be 
tested independently or in unison with the other signals. Indeed, it is often useful to test 
signals individually and in various groupings to see how they perform on their own and in 
different combinations with other signals. It is often the case that a given signal will show 
itself to be relatively uninformative on its own yet highly informative when used as part of 
a set of signals. Discovering such “informational synergies” can be an important part of the 
model development process.

•	 The establishment of entry/exit rules: Often a signal is broadly directional and must be 
refined in order to function in practice within an actual commercialized strategy. Part of this 
refinement involves determining when assets will be bought or sold based on the signal(s) 
emanating from a model. It is often an iterative process. Through continued testing, the 
optimal thresholds for opening and closing trades can be found, which will generally 
involve consideration of various performance and risk metrics, operational feasibility, and 
transaction costs.

Figure 1. Example Regime-Switching Model Output: Probability 
of Low-Growth Regime (y-axis) over 180 Time Periods (x-axis)
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Source: Data from the Federal Reserve Bank of St. Louis.
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•	 Trade sizing and rebalancing rules: Signals and entry/exit rules tell you what and when to 
trade, but they do not tell you how much. Backtests should also look at how a model per-
forms under various trade sizing protocols. In a backtest, if a model is observed to gener-
ate sufficient returns only with large, concentrated trades, a strategy that is driven by the 
model might be subject to significant downside risk, suffering large losses in the event 
that a particular trade does not work out. Related to trade sizing is rebalancing, which is 
the process of realigning a portfolio’s asset weights to a predetermined benchmark or ref-
erence weighting. Rebalancing ensures that a portfolio’s positions do not drift too far from 
what are deemed to be their longer-term or “strategic” portfolio weights, which are gener-
ally selected in accordance with the risk and return objectives of the strategy in question. 
Backtests can be useful in providing insight into the impact of different rebalancing rules on 
a model’s performance. There is no fixed rebalancing frequency to which portfolio managers 
must adhere. However, a set of acceptable rebalancing frequencies is usually a stated or 
predetermined part of a portfolio management team’s overall investment process.

Possible Pitfalls in Backtests
While backtests are useful tools for model validation, they can also lead researchers astray, 
namely by imbuing them with more confidence in a given model than is justified. Thus, various 
pitfalls and challenges are associated with backtesting that need careful consideration. One 
major risk is the potential for overfitting the strategy to historical data. Overfitting occurs when 
a strategy is tailored too precisely to past market conditions, performing exceptionally well in 
historical tests but failing in new, unseen market scenarios.

In statistical terms, a model that is overfitted has low bias (error) but high variance. There is 
generally a tradeoff between bias and variance in a model. Bias measures how well a model cap-
tures the regularities in the training data, the data used to develop a model. Variance measures 
how well a model responds (generalizes) to new data. Overfitting occurs when the model fits 
the training data, possibly including noisy data, too well. While ideal models would have both 
low bias and low variance, this situation is generally not possible. Rather, the better one can fit a 
model’s parameters to past data, the less the model will typically generalize to new data.

Another potential sample-related pitfall is called inception point risk. Many readers will be 
familiar with fund presentations showing the backtested compound returns of a given strategy 
over a given historical period. These types of exercises must by definition begin compounding 
at a specific point in time. While there is nothing inherently wrong with doing that, the use of 
a different inception point may materially impact the backtested performance and reveal that 
the strategy’s success depends on the point at which investing begins. To ensure inception 
point robustness, it is therefore necessary to measure the compound returns that a strategy 
produces across multiple inception points. Inception point risk is a type of selection bias in 
which specific time periods or subsets of data that support a model’s validity are chosen while 
neglecting data that would potentially undermine the model as an acceptable forecasting tool.

Other pitfalls include the various biases that can infect the choice of investment universe in 
designing an investment strategy. For example, if a researcher wishes to use stocks from a 
particular equity index for its universe of assets, it is important that the researcher use stocks 
that were in the index at the time that the backtest begins. Because stocks are often included 
in indexes because of their previous performance, including recent additions to an index would 
bias the backtest because it will contain “sure winners.”
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A related bias, known as survivorship bias, arises when using only stocks that have stood the 
test of time—that is, survived. Without consideration of an expansive universe of stocks, includ-
ing those of companies that have failed, it is impossible to know whether a model is capable of 
discerning the fortunes of ultimately unsuccessful companies.

Another type of bias is called look-ahead bias, which arises when information that would not 
have been available during the time period being studied is used during the backtesting pro-
cess. A blatant example of such a bias is if, when testing the efficacy of an optimization model 
for an equity portfolio, the minimum weight constraints for the historically most successful 
stocks in a manager’s investment universe were set higher than for stocks with lower returns. 
While that example is a bit forced, there are subtler types of look-ahead bias that may creep 
into the model development and validation processes. The reason this happens is that every 
researcher has lived through and observed financial history and has presumably learned some 
lessons from it. Some of these lessons undoubtedly will make their way into model develop-
ment despite researchers’ best efforts to implement a bias-free process.

For example, after the Global Financial Crisis (GFC) of 2008–2009, the relationship between 
equity and credit risk was on every investment professional’s “risk radar.” It is inconceivable that 
any researcher or portfolio manager today would build a model of credit risk without account-
ing for the relationship between equity and credit, whereas before the GFC it was relatively 
common to do so. Thus, even without any kind of explicit data manipulation, it is possible to 
introduce biases into the model development process. Of course, all biases are not created 
equal, and some represent more egregious examples of cheating than others. What is most 
important from the standpoint of “statistical hygiene” is that model builders take appropriate 
care to eliminate the most significant biases in their backtests so that these tests can help them 
select viable candidates for further testing and development.

Backtesting is a critical process in investment management because it uses historical data to 
assess the performance of a strategy or a model. Its primary role is to simulate how a particular 
investment strategy would have performed in the past. When executed diligently, with the req-
uisite level of statistical and economic detail, it can serve as a valuable tool for researchers and 
portfolio managers, aiding them in the development and refinement of models that have the 
potential to perform well in various market conditions.

That said, while backtesting is a valuable tool, it is not without its limitations. It is thus import-
ant to approach backtesting with a critical eye and to understand its constraints and potential 
biases. By acknowledging these pitfalls, investors can make more informed decisions and 
develop more robust investment models. In the chapters ahead, I present a number of meth-
ods that address the various inherent shortcomings in backtesting that stem from its reliance 
on historical data, because such data might not accurately represent current or future market 
conditions, rendering backtested models less effective in real time. First, however, I will discuss 
a model-validation approach that can be considered an extension of standard backtesting: 
cross-validation.
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3. CROSS-VALIDATION
In the previous chapter, I emphasized the importance of out-of-sample backtesting. The rela-
tionship between out-of-sample backtesting and time-series cross-validation lies in their shared 
aim of evaluating a model’s performance on unseen future data in the context of time-series 
analysis. Out-of-sample testing represents a straightforward split between model training 
and testing data in a time-ordered manner, whereas time-series cross-validation techniques 
are designed to systematically simulate this process, considering different subsets (known as 
folds) of historical data for training and testing to assess the model’s performance over various 
time periods.

More generally, cross-validation, which originated in the 1930s (Larson 1931) and began to be 
developed in earnest in the 1960s (Mosteller and Tukey 1968; Lachenbruch and Mickey 1968), 
is a method used to assess how well a model generalizes to an independent dataset. It consists 
of the following basic elements:

•	 Training set: This subset of the complete dataset is used to train the model. The model 
learns the patterns and relationships within these data.

•	 Validation set: This separate subset of the data is not used during the training phase but is 
used to fine-tune the model’s hyperparameters and assess its performance during training.

•	 Test set: The test set is another separate subset of the data that is not used in either 
the training or validation phases. It is reserved for the final evaluation of the model’s 
performance.

Basic Cross-Validation Methodologies
The following list provides details on several basic methodologies for cross-validation.

•	 Holdout method: This is one of the simplest forms of cross-validation, where a portion of 
the dataset (often around 20%–30%) is withheld from the model during training and used 
for evaluation. While straightforward, this method might lead to high variance in the perfor-
mance estimate due to the randomness in the selection of the training and test sets.

•	 K-fold cross-validation: In this method, the dataset is divided into k subsets (folds). The 
model is trained on k − 1 folds and validated on the remaining fold. This process is repeated 
k times, with each fold being used once as the validation set. The final performance 
metric is the average of these k iterations, providing a more stable estimate of the model’s 
performance.

•	 Leave-one-out cross-validation (LOOCV): This cross-validation framework takes the concept 
of k-fold cross-validation to the extreme by using each observation as a validation set and 
the remaining observations as the training set. This process is repeated for each data point, 
with a different observation being left out for testing in each iteration. While computation-
ally expensive, LOOCV provides an unbiased estimate of model performance.
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Time-Series Cross-Validation Methodologies
As is well known, time series contain unique properties that distinguish them from other types 
of structured data. Perhaps the most fundamental is that the values in a time series at each 
point possess a memory of past values. Time-series cross-validation4 is intended to address the 
memory of the past that is embedded in data exhibiting chronological dependencies. It differs 
from standard types of cross-validation in its requirement that training data temporally precede 
validation data. The basic approaches to time-series cross-validation are as follows:

•	 Rolling window cross-validation: In this method, the training set size remains constant and 
the validation set moves forward in time. At each step, the model is trained on the current 
training set and validated on the subsequent time period.

•	 Expanding window cross-validation: In this method, the training set expands over time, 
including all data points up to the current validation point. The validation set also moves 
forward in time.

•	 Time-series split cross-validation: This method splits the data into multiple folds, each 
containing a training set and a validation set. The validation set always comes after the 
corresponding training set in time, ensuring that the model is evaluated on future data. 
For example, the data can be split into training sets from specific beginning and end dates 
and tested from that date forward on another specified date range.

Although time-series cross-validation solves the memory problem in chronologically dependent 
data, overfitting can still be a problem because validation and test samples are likely to 
have some memory of samples that immediately precede them in time. As a remedy, block 
time-series cross-validation has been introduced. This procedure is defined by the omission 
of some observations (blocks) that lie between training, validation, and test samples during 
cross-validation to reinforce the memoryless nature of the operation.

In setting up a time-series cross-validation, the question of the number and length of the folds 
used for testing, as well as the block size used between folds, naturally arises. Time-series 
cross-validation by itself, however, does not provide a clear-cut way to choose values for these 
parameters. The regime-switching models discussed in the previous section can provide 
some guidance in this respect because they specify the number and length of regimes and the 
order of the autoregressive process that drives regimes. The number and length of regimes 
can be used to guide the choice of folds, while the order value seems to be a natural choice 
for block size; it indicates the length of time beyond which the time series forgets.5 Figure 2 
shows a stylized example of one way in which blocked time-series split cross-validation can 
be implemented. As the chart shows, the folds proceed one after another in time. The train-
ing, validation, and test samples—colored blue, green, and red, respectively—are divided by 
the blocked observations, which are represented by black vertical lines. There are also gaps 
between each fold.

4See Burman, Chow, and Nolan (1994); Racine (2000); Bergmeir and Benítez (2012); Roberts, Bahn, Ciuti, Boyce, Elith, 
Guillera-Arroita, Hauenstein, et al. (2017); and Bergmeir, Hyndman, and Koo (2018) for discussions on various aspects of 
time-series cross-validation.
5For an illustration of an application of regime-switching models in this manner, see Simonian (2020).
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Finally, note that it is possible to extend cross-validation by using synthetic data. That is, it is 
possible to use a simulated time series to train, validate, and test a model-driven investment 
strategy. I will discuss methods for synthetic data generation later in the monograph.

Figure 2. Example of Blocked Time-Series Cross-Validation
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4. PERFORMANCE MEASUREMENT 
AND BENCHMARKING

6See Bacon (2004) for a comprehensive inventory of return calculation formulas and methodologies.

7The simple rate of return is calculated as 
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One of the important aspects of model validation is understanding and quantifying the perfor-
mance and risks associated with a particular model. This pertains to the metrics that apply both 
to the model being validated individually and to those in relation to a benchmark. This chapter 
provides an overview of the major metrics and frameworks for performance and risk mea-
surement, as well as the tenets of proper benchmarking. Performance measurement provides 
answers to three questions:

•	 What was the return on a strategy?

•	 Why has a strategy performed the way it has?

•	 How can the strategy’s performance be improved?

To help answer these questions, researchers have a multitude of performance metrics at their 
disposal. Performance metrics can be classified into two broad categories: return metrics and 
risk metrics. Calculating a strategy’s returns, in absolute or relative terms, is of course the fun-
damental way that the success or failure of an investment strategy is determined. Measures 
of risk can be viewed as ways of assessing the potential cost, in the form of uncertainty, that 
investors pay for a strategy’s returns.

Return Metrics
During the model validation process, a variety of return metrics are used.6 These typically 
include well-known return metrics, such as the simple rate of return7 and cumulative return.8 
While these return measures are important, calculating the time-weighted return9 is also 
important because it reveals the rate of growth (or shrinkage) that, if earned equally in every 
period, would match the return experience that actually occurred. In addition, there are different 
money-weighted return calculations, such as the modified Dietz10 method, that are often used 
by liability-driven and other cash flow–sensitive investors.
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Risk Measurement
The counterpart to investment return is of course, investment risk. In validating any investment 
model, numerous risk metrics must be considered to evaluate the effectiveness and robustness 
of the model. Investment risks must be properly identified and controlled to harvest the poten-
tial rewards that an investment offers. Various types of risk are important for investors, includ-
ing operational, legal, and counterparty risk, but most investment model validation concerns 
the measurement and assessment of various forms of market risk: the risk due to the price fluc-
tuations of continuously traded financial assets.

Risk metrics can measure the absolute level of risk in an asset or portfolio or the relative risk of 
an asset or portfolio in relation to some benchmark or reference value. Most assessment of asset 
and portfolio risk begins with variance or standard deviation, which are the primary measures 
of asset return variability. (Standard deviation is simply the square root of variance.) Variability 
is regarded as undesirable for investors because it reduces the certainty with which assets will 
produce positive payoffs. In a portfolio context, variance and standard deviation (the latter is also 
called volatility) are important because they play a central role in the most commonly used type 
of portfolio optimization, mean–variance optimization.11 Variance, signified by s2, is the average 
of the squared deviations of returns from the mean return and is formally defined as
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where n is the number of observations, ri is the return in period i, and r  is the mean return. 
As just mentioned, standard deviation is simply the square root of variance:
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To annualize standard deviation, sA, as is often desired in investment analysis, simply multiply 
the standard deviation at a given observation frequency (e.g., monthly) by the square root of 
the number of observations in a year (e.g., 12); that is, � �A t� � . Portfolio variance is derived 
by consideration of the variances of the individual assets in a portfolio along with a covariance 
matrix that describes the directional co-movements of the portfolio’s assets (covariance is 
described in detail later). Formally, this is expressed by w′Sw, where w signifies a vector of the 
portfolio’s asset weights and Σ the asset covariance matrix. It considers how a portfolio’s assets 
are weighted and how similar or dissimilar their return behavior is. Portfolio volatility is simply 
the square root of portfolio variance.

Volatility is important not only as a standalone risk measure but also as an input into the most 
commonly used measure of portfolio efficiency, the Sharpe ratio (see Sharpe 1966):

	 Sharpe ratio �
�r rP f

P�
, 	 (6)

horizon being considered and Dt represents the total number of calendar days since the start of the period when the 
cash flow was received.
11Mean–variance optimization was introduced by Markowitz (1952).
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where rp and rf are the portfolio (or asset) return and risk-free return, respectively, and σP is the 
portfolio (or asset) volatility. The Sharpe ratio is a measure of return per unit of (absolute) risk. 
Given two investments, the higher Sharpe ratio investment would be considered the more effi-
cient investment.

Mean and variance, while important, are not the only measures that contribute to an under-
standing of investment risk. Indeed, when examining the return distribution of an investment, 
investors are also typically concerned with skewness and kurtosis. Skewness measures the 
asymmetry in a distribution and is expressed mathematically as
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where the terms are defined as before. A perfectly symmetrical distribution will have a skew-
ness of zero. Such is the case with the normal, or Gaussian, distribution, which is commonly 
assumed to describe asset returns in investment analysis. As known, however, asset returns 
are rarely described accurately by the normal distribution and often exhibit significant positive 
or negative skewness. A positively skewed investment strategy will be expected to experience 
frequent small losses and a few large gains. The trend-following strategies often used by com-
modity trading advisers (CTAs) are examples of strategies that have been observed to exhibit 
positive skewness. In contrast, a negatively skewed investment strategy will be expected to 
experience frequent small gains and a few large losses. Equity market neutral strategies often 
exhibit a moderate amount of negative skewness, whereas catastrophe bonds, which pay off 
only in the event of a rare extreme event (e.g., an earthquake), are examples of investments 
with a high degree of negative skewness.

Along with the asymmetry of a distribution, investors are also generally concerned with 
the kurtosis of an investment’s return distribution. Kurtosis measures the “tailedness” of a 
distribution—that is, the incidence of observations that are significantly distant from the mean 
return. The formula for kurtosis is
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The “fatness” of a return distribution’s tails, especially the left tail, is naturally important for 
assessing the risk of any investment. The kurtosis of a normal distribution is 3. Distributions 
with kurtosis values greater than 3 (leptokurtic distributions) exhibit fatter tails and thus contain 
more extreme observations.

Equity returns have been observed to exhibit behavior that departs from that assumed by a 
normal distribution. However, many investment models still assume a normal distribution, 
mainly due to its mathematical tractability. Nevertheless, they do so to the potential det-
riment of investment performance. Consider, for example, a study conducted by Johansen 
and Sornette (1998) in which they found that in one million years of simulated trading, the 
generalized autoregressive conditional heteroscedasticity, or GARCH (1, 1), model,12 a well-
known volatility forecasting model that assumes that asset returns are normally distributed, 

12The GARCH model was introduced by Bollerslev (1986).
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fails to predict drops in the Dow Jones Industrial Average that approach the magnitude of the 
three largest actually observed drops in the index during the 20th century. Although the GARCH 
(1, 1) model can be (and has been) improved on, the noted predictive failure of the latter model 
highlights how difficult forecasting can be, even with a relatively sophisticated quantitative 
tool. Given the unexpected frequency of large market drops, the importance of understanding 
and properly measuring kurtosis to both risk management and model development cannot be 
overstated.

Rounding out the fundamental metrics of performance measurement are covariance and 
correlation, measures that describe the linear co-movement of assets with one another. 
As explained previously, covariances play an important role in mean–variance optimization, 
namely in determining a portfolio’s variance. All things being equal, the lower a portfolio’s 
asset covariances, the lower a portfolio’s variance—hence, the emphasis on diversification in 
contemporary investment theory. The covariance between two assets a and b is derived in the 
following manner:
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where ai is the return of asset a in period i, a is the mean return of asset a at the specified fre-
quency, bi is the return of asset b in period i, and b is the mean return for asset b at the specified 
frequency. Correlation, in turn, is derived from covariance as follows:
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where σa and σb are the respective volatilities for assets a and b.

Related to correlation is autocorrelation, which measures the degree to which a time series is 
correlated with its own past values. Among the most important practical risks that autocor-
relation poses to model development and validation is that autocorrelation can lead to faulty 
hypothesis testing. Standard errors may be underestimated if autocorrelation is not appro-
priately addressed, leading to an increased likelihood of Type I errors (false positives) or Type 
II errors (false negatives). Autocorrelation can also affect the accuracy of model forecasts. 
Specifically, autocorrelation can lead investors to underestimate or overestimate the forecasted 
values for model variables, particularly if the model does not consider the influence of past 
observations. Finally, autocorrelation may create spurious relationships in the data. This situa-
tion can lead to the identification of false patterns in the data, which may not accurately reflect 
the underlying processes being modeled.

Additional risk measures, both absolute and relative, are often used during the model valida-
tion process. Some of these metrics are focused on downside risk. For example, semi-standard 
deviation measures the volatility of an investment’s downside variability, considering only the 
negative returns below a specified threshold, such as the risk-free rate or the benchmark return, 
among others. Downside risk is defined mathematically as
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where rT is the threshold return (which could be a minimum target or benchmark or risk-free 
return). With the downside risk measure, the downside analog of the Sharpe ratio, the Sortino 
ratio, can be derived:

 	 Sortino ratio �
�( )

.
r rP T

D�
	 (12)

Another popular risk measure is value at risk (VaR), a metric used to estimate the potential loss, 
at a given confidence level, that an investment or portfolio might face over a specified time 
horizon. For instance, a 5% one-day VaR of $1 million means that there is a 5% chance that the 
portfolio may lose more than $1 million over a single day. The formula for VaR is

VaR = P × Volatility × Z-score,

where

P is the portfolio value of the investment being analyzed

Volatility is the standard deviation of the portfolio’s returns over the given time horizon

Z-score is the number of standard deviations corresponding to the chosen confidence 
level (for instance, for a 95% confidence level, the Z-score is 1.645, assuming a normal 
distribution)

Aside from the basic parametric VaR framework, a historical VaR can be implemented. This 
method of calculating VaR relies on historical data to estimate potential future losses, without 
any assumptions about the underlying distribution. To implement historical VaR, one simply 
chooses a historical time frame over which to calculate VaR, orders historical returns or price 
changes from the selected period in ascending order, and estimates VaR by selecting the return 
that corresponds to the desired confidence level and time horizon. For example, with weekly 
return data for the past year, one could calculate a one-week 95% VaR and would find the return 
value at the 5th percentile of the ordered historical one-week returns. This value represents the 
potential loss that would be exceeded only 5% of the time based on historical data.

While historical VaR is convenient, its use does carry some risk because it assumes that histor-
ical patterns will repeat. It thus does not account for potential changes in market conditions or 
for tail risks that are not present in the historical data. As a result, it is often used to comple-
ment other VaR methodologies in a more holistic assessment of investment risk. Beyond the 
foregoing two approaches to the calculation of VaR, it is also possible to use simulation tech-
niques, such as the Monte Carlo method. Simulation methods will be discussed in Chapter 5.

Aside from absolute measures of risk, several relative risk measures typically play an important 
role in model validation. Among the most important is what is known as the information 
ratio (IR), which is the relative return analog of the Sharpe ratio and is often used by portfolio 
managers to demonstrate the value of their active management process. The formula for 
the IR is
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where ER  is the arithmetic average of excess returns over a given time horizon and σ̂ER is the 
standard deviation of excess returns from the benchmark, otherwise known as tracking error.13

An additional important relative risk metric is the Treynor ratio,14 another analog to the Sharpe 
ratio, which measures the excess return on an investment in relation to its systematic risk. 
It measures the return earned in excess of that which could have been earned on an investment 
that has no diversifiable risk. It is derived as follows:

	 Treynor ratio �
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where βP is the portfolio’s beta (linear sensitivity) to a benchmark or market proxy. Related to 
the Treynor ratio is what is known as Fama decomposition (see Fama 1972), which tries to pro-
vide more insight into the relationship between excess returns and systematic risk. The Fama 
decomposition formula has the following components:
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As discussed previously, performance and risk measurement are usually conducted against a ref-
erence portfolio or other performance standard, otherwise known as a benchmark. We turn to the 
topic of benchmarking next, with a special emphasis on its role in the model validation process.

Benchmarking
The discussion of relative risk measures in the previous section attests to the fact that models are 
not evaluated in isolation: Investment managers typically measure their performance against some 
type of benchmark. In model validation, a benchmark is used in a manner that is complementary 
to its use in performance measurement. Thus, benchmarking a model’s performance provides 
context for evaluating whether a model’s performance satisfies whatever criteria a portfolio man-
agement team deems important. While portfolio managers with live strategies use benchmarks to 
understand how their investment decisions impacted their performance ex post, benchmarks can 
also be used to assess the robustness of a strategy ex ante before it is made available commer-
cially. If a proposed investment strategy demonstrates that it can beat an appropriate benchmark 
in both backtests and simulations, then that may provide convincing evidence that it is likely to 
outperform when the strategy goes “live” as a commercially available investment product.

Several characteristics are considered important for any valid benchmark.15 In the context of 
model validation, the most important characteristics of benchmarks include the following:

•	 Investable: Portfolio managers must be able to hold the assets of a benchmark and have the 
ability to hold and trade these assets without limitations.

•	 Measurable: The benchmark returns are readily calculable on a reasonably frequent basis.

13Tracking error can be calculated using � �P P B� �( ),1 2 , where rP,B is the correlation between the portfolio and the benchmark.
14See Treynor (1965). Manager alpha can also be used in the numerator.
15See Sharpe (1992), Siegel (2003), and Lo (2016) for further discussion of the roles and characteristics of investment 
benchmarks.
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•	 Appropriate: The benchmark is consistent with the manager’s investment style or area of 
expertise; it is the “home portfolio” to which the manager would return if he or she had no 
views on any of the securities in the benchmark.

•	 Unambiguous and known: The identities and the weights of the securities or factor expo-
sures that comprise the benchmark are clearly defined and identified.

•	 Accessible: Portfolio managers and researchers need to have access to all relevant statistics 
pertaining to a benchmark, as well as benchmark constituents and weights.

While the foregoing criteria are concisely stated and can be easily satisfied for some asset 
classes, such as liquid public equities, for other asset classes, benchmark selection is not always 
a simple matter. For example, in the case of fixed income, it is often the case that benchmarks 
are very complex. The multifaceted risk exposures in fixed-income instruments (e.g., interest 
rate, credit, prepayment) make bond index construction a challenging task. The mechanics of 
some bonds (e.g., those with embedded options) also add to the complexity of benchmark 
construction and selection.

Also, bond benchmarks need to be constantly refreshed with new bonds as the old ones 
mature (or age out of the maturity range of the benchmark). New issues of bonds in the market 
sector represented by the benchmark must be included in the benchmark. Including a bond in 
a benchmark index has an immediate impact on the liquidity and turnover of that bond. These 
are all important considerations when using or considering a given bond benchmark as a stan-
dard for performance measurement.16 Whatever the asset class, in selecting a benchmark for 
model validation, it is important to consider any challenges to building or selecting a stable and 
understandable standard by which a model’s viability can be evaluated.

Sometimes, more than one benchmark will be used during model validation. This situation 
contrasts with the use of benchmarks for performance measurement and reporting, where a 
single benchmark is typically used by portfolio managers, as well as their clients and employers, 
to assess the effectiveness of a strategy. In model validation, it is certainly the case that the 
benchmark that will eventually be used for performance measurement and reporting will also 
be used for model validation. This single benchmark, however, is not the only possible bench-
mark that could be used to assess the effectiveness of the investment manager’s model or the 
signals being used to make investment decisions.

For example, one useful benchmark that can be used alongside any “official” benchmark is an 
equal-weighted portfolio of securities in the manager’s investable universe. This benchmark is 
useful because it represents the “no information” portfolio—the portfolio one would presumably 
hold in the absence of either investment views on or knowledge of the market caps of any of 
the securities in the portfolio under consideration. The equal-weighted portfolio therefore rep-
resents a valid way to measure the informativeness of the signals being produced by an invest-
ment model. In addition, an equal-weighted portfolio is also often very difficult to beat and thus 
represents a high standard with which to evaluate a model’s effectiveness.

With some investment models, of course, it is more appropriate to use so-called absolute 
return benchmarks, which are not portfolios of assets but a reference return of some type, 

16For a detailed discussion of bond benchmarks, see Konstantinov, Fabozzi, and Simonian (2023).



Investment Model Validation: A Guide for Practitioners

CFA Institute Research Foundation    19

such as the 30-day SOFR17 rate + 5% or CPI18 + 3%. Even when an investment strategy has an 
investable benchmark as described, however, it is often useful to test its ability to outperform 
a fixed reference rate, such as 0%.

Finally, one can consider an “informational benchmark.” In developing a given model, one may 
observe that it indeed performs well along a number of metrics but nevertheless investigate 
whether it outperforms a much simpler model. If it does not, then that would be an indication 
that the model under consideration does not provide as much information as believed.

Luckily, there is a convenient way to test the informative power of a model by using the concept 
of Granger causality (see Granger 1969), which states that for a given predictor x and target 
variable y, x causes y if

(1)	 x temporally precedes y and

(2)	 x provides more predictively useful information than a rival “naive” predictor.

One way of formally expressing Condition 2 of Granger causality is P(Yt+1 | Xt · Yt) > P(Yt+1 | Yt), which 
can be interpreted as saying that given a target variable Y, the probability of a model predicting 
the one-step-ahead value Yt+1 is higher given prior information about variable X in addition to prior 
information about Y alone. Granger causality may also be articulated in a more general form:

C causes E if there is information transmission from C to E.

For active managers, one of the benefits of using benchmarks is that they play a prominent role 
in the most widely accepted return attribution frameworks. These frameworks can be applied to 
such studies as backtests to determine the sources of a model’s returns. The goal of any active 
investment strategy is to generate excess return, also known as alpha, over a specific bench-
mark. Using the popular attribution framework set forth by Brinson and his coauthors in the 
1980s, there are four sources of a portfolio’s return:19

•	 Benchmark return: Wi × bi

•	 Asset allocation alpha: (wi - Wi) × bi

•	 Security selection alpha: Wi × (ri - bi)

•	 Interaction effects: (wi - Wi) × (ri · bi),

where

Wi is the weight of the benchmark in the ith asset class

bi is the return of the benchmark in the ith asset class

ri is the return of the portfolio assets in the ith asset class

wi is the weight of the portfolio in the ith asset class

17SOFR stands for the Secured Overnight Financing Rate, a benchmark interest rate for dollar-denominated derivatives 
and loans. It is based on transactions in the Treasury repurchase market. SOFR replaced LIBOR (the London Interbank 
Offered Rate), which was based on estimated future borrowing rates rather than observable market data.
18CPI stands for the Consumer Price Index, a precise definition of which can be found at https://fred.stlouisfed.org/
series/CPIAUCSL.
19Adapted from Brinson and Fachler (1985) and Brinson, Hood, and Beebower (1986).

https://fred.stlouisfed.org/series/CPIAUCSL
https://fred.stlouisfed.org/series/CPIAUCSL
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This framework can be used to analyze any kind of portfolio with a benchmark conforming to 
the criteria cited earlier. Of course, additional, more granular types of analysis can be conducted 
alongside the basic attribution described by the previous formulas. For example, it is possible to 
analyze how much alpha has been generated by decisions pertaining to currency.20

Regarding the term alpha, note that while a very general definition was used earlier, it is import-
ant to remember that within the context of a regression or a traditional factor model of the 
form Y = b0 + bnXn + e, alpha is the intercept term β0, often interpreted as the baseline value of 
the dependent variable (Y) when the independent variables (Xn) are zero.21 I will provide a more 
detailed discussion of factor models in Chapter 7.

20See Karnosky and Singer (1994) for a discussion of currency decisions as they pertain to return attribution.
21ε is the error term, representing unobserved factors or random noise.
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5. SIMULATING ALTERNATIVE 
HISTORIES WITH SYNTHETIC 
DATASETS

22“Bread and Circuses,” Season 2, Episode 25, 1968.
23For an in-depth treatment of Monte Carlo methods in finance, see Glasserman (2003).
24In terms of statistical theory, the effectiveness of Monte Carlo simulations relies on the law of large numbers, which 
states that as the number of random samples increases, the sample mean converges to the true mean. In simulations, 
as the number of iterations increases, the simulated results tend to converge toward the expected value or the true 
solution.

In a well-known episode22 of the original Star Trek television show, the crew of the Enterprise 
encounters an Earth-like planet where the Roman empire is still in existence, albeit with 20th 
century technology. The episode thus presents an alternative history, one that resembles the 
Earth’s actual history in many ways but differs in others. These differences create challenges 
that the Enterprise crew must confront and adapt to. Simulation techniques likewise aim to 
create alternative economic and market histories so that the robustness and adaptability of 
investment models can be tested.

As emphasized in this monograph, the lack of sufficient data is a challenge to any kind of invest-
ment activity, including model validation. Consequently, the construction of synthetic time 
series should be a central concern when assessing the robustness of investment models. After 
all, it is highly desirable—mandatory, in fact, if performance in future “live action” is to be good—
for our models to be able to perform well in market scenarios that we have not yet experienced. 
To that end, in this chapter, I provide a detailed overview of various simulation techniques that 
can be used to supplement historical data during the model validation process.

Monte Carlo Simulation
Monte Carlo simulation is perhaps the most familiar simulation technique to investment pro-
fessionals.23 Monte Carlo methods encompass various related computational approaches to 
modeling the probability of different outcomes in systems that contain random elements. It is 
named after the Monte Carlo Casino in Monaco, known for its games of chance and random-
ness. In a basic parametric Monte Carlo simulation, the underlying model or system being simu-
lated is described by a precise set of parameters assumed to follow a known distribution. Monte 
Carlo simulations rely on random sampling, which, in turn, requires generating random numbers 
that follow specific probability distributions (e.g., uniform, normal, exponential) using pseudo-
random number generators. For example, when using Monte Carlo simulation to test an invest-
ment strategy, asset returns might be assumed to follow a normal distribution. In that case, a 
standard way of setting up the model would be to assume a mean return and volatility for each 
asset used in the strategy being evaluated, as well as a correlation matrix for the assets. Then, 
given these inputs, a sufficiently high number of simulations would be run (e.g., 10,000) so that 
the final distribution of the entire set of simulations has the shape of the stipulated distribution. 
So, for a normal distribution, the final shape of the distribution should resemble a bell curve.24
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It is also possible to implement nonparametric Monte Carlo simulations in which the distribu-
tion of the variables might not be explicitly stipulated. Instead, historical data or empirical distri-
butions might be used without the assumption that the distribution takes a specific form. The 
choice between parametric and nonparametric Monte Carlo simulations often depends on the 
availability of data, investors’ confidence in their capital market assumptions, and the level of 
detail or complexity required in the simulation.

Worked Example
Consider a portfolio with three assets, with an initial amount of capital allocated to each 
asset. Next, posit an investment horizon over which to test the strategy. Once input vari-
able values are acquired, set up a process that describes the assets’ behavior. For example, 
changes in asset values over time can be represented by a stochastic differential equation, 
dV V dt dZt t i i i i i� � �� �

� �� �1

3

1

3
� � , where Vt = [Vt,1, Vt,2, Vt,3] represents the portfolio values for three 

assets, σi is the volatility for asset i, and dZi is a random increment for asset i from a multivariate 
normal distribution with mean 0 and asset covariance matrix Σ.

Given initial values [V0,1, V0,2, V0,3], the simulated portfolio values at time T for N simulations are 
obtained by iterating
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where

VT
j( ) represents the portfolio values at time T for the jth simulation

m = [[m1L, m1U], [m2L, m2U], [m3L, m3U]] is the vector of mean return ranges with upper and lower 
bound values for each asset return (while it is possible to use point estimates, using ranges 
allows for more definition regarding the shape of the distribution; ranges can also be used 
for volatilities and correlations, although I have not done so here for the sake of expository 
simplicity).

s = [s1, s2, s3] is the vector of volatilities

Z( j) is a vector of random increments from a multivariate normal distribution with mean 0 
and covariance matrix Σ (the simulated values of the portfolio for each asset at time T from 
the simulation are represented as V V VT T T

N( ) ( ) ( ), � , ,1 2  where N is the number of simulations).

To look at some concrete input values, consider the following:

m = [[2%, 7%], [4%, 6%], [-2%, 10%]] is the vector of asset mean returns ranges.

s = [15%, 12%, 20%] is the vector of asset volatilities

Then stipulate a correlation matrix for the assets

Corr �
�

���
. .

. .
�� . ��� .

1 0 4 0 3
0 4 1 0 2
0 3 0 2 1

.
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The simulation consists of 1,000 runs, or trials, of returns over a 10-year investment horizon for 
each asset. Assume that the starting value for each asset is 100. Figure 3 shows the results of 
this simulation.

As shown in the three panels, each asset has a distribution with a different shape. Asset 3 
in particular exhibits a long right tail; however, this potential upside is tempered by the fact 
that in several simulations, it has an ending asset value at or close to zero. In contrast, Asset 
2 has the most range-bound outcomes, and its minimum values outcomes are well above 
zero. Asset 1 occupies somewhat of an intermediate position between Assets 2 and 3 but is 
closer to Asset 2 in terms of the shape of its distribution. Like Asset 2, Asset 1 has a consider-
ably shorter right tail compared with Asset 3. Asset 1’s left tail also resembles Asset 2’s more 
than it does Asset 3’s. Thus, from a statistical standpoint, Asset 1 and Asset 2 are somewhat 
similar. Nevertheless, even without knowing any other characteristics about the assets, it may 
still make sense to include both assets in a portfolio given that they are negatively correlated 
(ρ = −0.4) and hence should be diversifiers against one another.

Once the time series have been generated, they can be tested in a model validation context. 
For example, with an optimization model, one could dynamically generate portfolio weights 
through time and observe the range of outcomes for the optimized portfolios. With a trading 
model, one could see, through the set of simulated histories, how profitable the model- 
generated buy and sell signals are.

While Monte Carlo simulations can be helpful in providing high-quality simulated data, the tech-
nique does have its limitations. Perhaps most critical is that in the standard approach to Monte 
Carlo simulation, one is forced to simulate data based on a specified process or distribution. 
This is the weakness of the Monte Carlo technique: Although it offers some insight into market 
processes, important aspects of observed asset dynamics are, as in the example, often left out 
or insufficiently specified. Examples include such phenomena as momentum and mean rever-
sion (i.e., positive and negative autocorrelation). Incomplete model specification is generally 
due to researchers’ own limitations: It is impossible for anyone to have complete insight into 
every aspect of the drivers of asset behavior. For this reason, over time, researchers have grav-
itated toward more empirically based approaches to synthetic data creation. Bootstrapping, 

Figure 3. Example of Monte Carlo Simulation Output
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discussed next, is one of the more prominent data generation techniques that is grounded in 
observed data. It provides some remedy to the limitations encountered in standard Monte Carlo 
simulations.

Bootstrapping
Bootstrapping was introduced by Efron (1979) and could be considered a type of “historical 
combinatorics” because it literally is a method for recombining pieces of actual history in differ-
ent ways to form new histories. More formally, it is a resampling technique used to estimate the 
sampling distribution of a statistic by generating multiple samples from the observed data.

Standard Bootstrapping (Nonparametric Bootstrapping)
The basic approach to bootstrapping involves randomly sampling, with replacement, from 
an original dataset to create multiple bootstrap samples. In sampling with replacement, each 
element is selected from the population, and after selection, it is put back into the popula-
tion before the next draw. In the context of financial applications, an example of sampling 
with replacement would be to allow for the possibility of selecting the same historical return 
more than once in a single simulation. This action could reflect a belief that the market events 
observed in the past could occur again in the future.

Each bootstrap sample is the same size as the original dataset, and the statistic of interest 
(such as the sample mean) is computed for each resampled dataset. The distribution of these 
statistics across the bootstrap samples provides an approximation of the sampling distribution 
of the statistic. An important feature of bootstrapping from the standpoint of model validation 
is that it can be used to perform hypothesis tests by resampling under the null hypothesis. This 
process involves generating a null distribution of the test statistic by resampling from the entire 
original dataset under the assumption that the null hypothesis is true. The p-value can then be 
estimated by comparing the observed test statistic with the null distribution. Formally, the basic 
bootstrapping procedure can be described as follows:

(1)	 Given a dataset X = {x1, x2, …, xn} of size n, generate B bootstrap samples X X XB1 2
*, *, , *

  by 
sampling with replacement from X. For each bootstrap sample XB

*, compute statistic θ.

As can be seen in (1), the standard bootstrap approach is nonparametric. However, it is possible 
to implement parametric versions of the procedure as well:

(2)	 Given a dataset X = {x1, x2, …, xn} of size n, fit a parametric model θ θ( | )ˆf  to the observed data. 
The term θ̂ represents the estimated parameters. Generate bootstrap samples X X XB1 2

*, *, , *
  

from the fitted model, where the parameters θ̂ are used to generate simulated data from θ θ( | )ˆf .

To estimate a (1 − a) confidence interval for a statistic θ, the a/2 and 1 − a/2 percentiles of the 
bootstrap distribution are taken as the lower and upper bounds of the confidence interval. For 
example, to find a 95% confidence interval, the 2.5th and 97.5th percentiles of the bootstrap 
distribution are taken as the lower and upper bounds, respectively.

To improve the accuracy of confidence intervals generated by standard bootstrapping methods, 
one can use bias-corrected and accelerated bootstrapping (BCAB). This approach adjusts for 
potential bias and skewness in the bootstrap distribution, providing more accurate confidence 
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intervals, especially for smaller sample sizes or skewed distributions. It uses three components: 
bias ẑ, acceleration â, and correction factor ĉ. The bias-corrected confidence interval is calcu-

lated as 
ˆ

   * *,
ˆ ˆ
ˆ
z z
a c

 θ − θ − 
 

, where θ* is the observed statistic and ẑ, â, and ĉ are estimated from 

the bootstrap distribution.

Block Bootstrap
Over the years, several extensions to the basic bootstrapping framework have been developed. 
Perhaps the most prominent is block bootstrapping. Time-series data often exhibit strong 
chronological dependencies, especially for financial time series, where such phenomena as 
momentum and mean reversion are commonly observed. Thus, a standard bootstrap that 
draws observations one by one will be unsuitable for most investment applications. Block boot-
straps are designed to remedy this gap in the standard bootstrapping procedure. As implied by 
its name, block bootstrapping works by selecting blocks of temporally connected data rather 
than individual observations. Given time-series data Xt, where t = 1, 2, …, T data are divided into 
B blocks X X XB1 2

*, *, , *
  of size m with m < T, blocks are sampled with replacement, and the resa-

mpled series is formed by concatenating the selected blocks, preserving the dependence struc-
ture within each block. Block bootstraps can be run in a number of ways. The most common 
approach is to select a single block size—for example, six months—that is used throughout the 
simulation. Other approaches, however, vary the block size in different ways. For example, the 
stationary bootstrap approach described in Politis and Romano (1994) uses random exponen-
tially distributed block sizes, with the stipulation that the average block size match some prede-
termined number (e.g., three months).

Finally, it is possible to use bootstrapping to create more genuinely synthetic yet still empirically 
grounded data. We do this by means of what is known as a wild bootstrap (Wu 1986; Mammen 
1993). The wild bootstrap method is specifically designed to account for the heteroscedasticity 
of the residuals found in a dataset. Instead of directly resampling observed residuals, however, it 
involves resampling the residuals with a random scale factor applied to each residual. This scale 
factor can be generated from a distribution, thus preserving certain properties of the data’s 
structure. For example, assume that the observed data points are y1, y2, …, yn, and then proceed 
to fit the data to a model, such as a regression of the form Yi = b0 + b1X1 + i. Compute the resid-
uals 1, 2, …, n by subtracting the model predictions from the observed data and then apply a 
scaling factor g1, g2, …, gn to the residuals. Then, follow these steps:

(1)	 Generate random scale factors from a distribution centered at 1: γ γ γ1 2
*, *, , *

 n.

(2)	 Generate new “wild” residuals by multiplying the original residuals by the scale factors: 
     1 2 1 1 2 2
*, *, , * * *, * *, , *

 n n n� � � �� � � *.

(3)	 Reconstruct the resampled dataset using the modified residuals: 
� � �1 2 1 2
*, *, , * *, *, n � � �Predicted�values  Predicted�values    PPredicted�values� n* .

(4)	 Compute the statistic of interest θ̂ (e.g., mean) from the resampled datasets.

As alluded to earlier, bootstrap simulations often provide more empirically realistic distributions 
compared with Monte Carlo simulations. I demonstrate this by means of an example. Panel A of 
Figure 4 shows a bootstrap simulation of the S&P 500 using daily data from 1 January 1964  
to 1 January 2024. We can see that the distribution is quite unlike a normal distribution. 
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It is considerably peaked and most notably contains long tails, especially on the left-hand side. 
Indeed, consistent with history, several days appear to have a daily return approaching −10%. 
Panel B shows a distribution that is generated via Monte Carlo simulation, assuming a normal 
distribution and using the S&P 500’s mean return and variance over the same date range used 
to run the bootstrap simulation.

Figure 4. Bootstrapping vs. Monte Carlo Simulation
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It is no surprise that the Monte Carlo distribution, shown in Panel B, resembles a normal distri-
bution to a far greater extent, including far shorter and thinner tails, than the bootstrap simula-
tion shown in Panel A. Thus, in its basic form, bootstrap simulation produces significantly more 
realistic synthetic datasets when compared with Monte Carlo simulations. Although the Monte 
Carlo simulation possesses the advantage of being able to generate completely novel datasets, 
it generally takes a considerable amount of work to achieve a level of data realism suitable for 
rigorous model validation. Moreover, as discussed here, such techniques as wild bootstrapping 
may be invoked in order to introduce data novelties into synthetically generated time series.

Generative Adversarial Networks
Another possible approach to generating synthetic time series for use in model validation is 
to use generative adversarial networks (GANs; Goodfellow Pouget-Abadie, Mirza, Xu, Warde-
Farley, Ozair, Courville, and Bengio 2014). GANs are a type of machine learning architecture 
that consists of two neural networks, the Generator and the Discriminator, which are engaged 
in a minimax game. The Generator network, on the one hand, takes random noise as input and 
transforms it into data, such as images or time series. At the beginning of the game, its output is 
random and does not resemble the actual data of interest. Over multiple rounds (called epochs), 
the goal of the Generator is to learn how to produce data that are indistinguishable from real 
data. The Discriminator network, on the other hand, takes in both real data and data created by 
the Generator. It tries to correctly classify whether the given data are real or fake. In the initial 
epochs, the synthetic data created by the Generator are quite different from the data it is trying 
to reproduce, while the data generated in later epochs are much closer to the original data. Thus, 
when the algorithm terminates, what remains is a set of synthetic data, with some elements of 
the set more closely resembling the original data compared to other elements in the set.

For example, in the case of time series, in each epoch, a new time series will be created. When 
the algorithm terminates, the set of time series created will range from those that strongly 
parallel the original time series to those that scarcely resemble it. The different time series 
produced thus allow investors to determine the robustness of their strategies by testing them 
using a variety of alternate market histories.

The key idea behind GANs is the adversarial process. The Generator and Discriminator are in a 
competition. For example, imagine a case where a counterfeiter (Generator) wants to create fake 
artwork that looks like real masterpieces. On the other side is a detective (Discriminator) whose 
job is to tell whether a piece of art is genuine or fake. The Generator wants to create data that are 
so realistic that the Discriminator cannot distinguish the data from real data. The Discriminator, 
in turn, wants to become better at distinguishing real data from fake data. The training process 
involves alternating between training the Generator and training the Discriminator.25 The Generator 
starts by creating data from random ideas. Over time, however, the Generator tries to improve its 
skills by looking at the Discriminator’s feedback and refining its synthetic data in each epoch. The 
Discriminator, in turn, becomes better at catching fakes. This back-and-forth continues through 
successive epochs as the Generator gets better at creating realistic data and the Discriminator gets 
better at detecting fakes. If the algorithm is successful, the synthetic data created by the Generator 
eventually become indistinguishable from real data, and the Generator can be used on its own to 
generate new data that resemble the training data. Exhibit 1 formally describes the GAN algorithm.

25The neural networks in the GAN in the example are trained using the Adam optimizer. See Kingma and Ba (2015) for 
more detail.
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Exhibit 1. GAN Algorithm
Consider a Generator G and a Discriminator D engaged in a minimax game (a game 
where the Generator tries to minimize the difference between real and generated 
data while the Discriminator simultaneously tries to maximize its ability to distinguish 
between real and generated data). Let z be a latent variable (a random input to the 
Generator network that represents unobservable features of the data) sampled from 
pz(z) and x be a data sample from an unknown distribution pdata(x). The Generator G maps 
z to a generated sample x, parameterized by qg. The Discriminator D computes D(x;qd), 
indicating the probability that x is genuine. Both networks have parameters qg and qd.

Train the algorithm by iteratively updating G and D until convergence as follows:

Inputs: Real data samples x from pdata(x), latent samples z from pz(z), learning rates ag 
and ad, and hyperparameters k and n

Step 1. Randomly initialize qg and qd.

Step 2. Update Discriminator. For k steps:

Create a sample of real data x from pdata(x).

Create a sample of latent variables from pz(z).

Compute Discriminator loss:

d
i

k

i d i g dk
D x D G z� � �� ��� ��

�
�1 1

1

log log( ; ) ( ( ; ); ) .� � �

Update qd using gradient ascent (the optimization method): θθ ← θ + α ⋅∇   
dd d d d.

Step 3. Update Generator. For n steps:

Create a sample of latent variables from pz(z).

Compute Generator loss:

g
i

n

i g dn
D G z� �

�
�1

1

log ( ( ; ); ).� �

Update qg using gradient ascent: θθ ← θ + α ⋅∇  
gg g g g .

It is also possible to combine GANs with other techniques, such as bootstrapping. Specifically, 
we can use bootstrapping to create synthetic training data for a GAN. For example, suppose a 
researcher wants to test an investment model against the S&P 500. The first step in a bootstrap 
GAN would be to generate a number of bootstrapped time series. Next, the researcher would 
apply the GAN algorithm to try to replicate it. While moving through a number of epochs, the 
researcher will be generating a set of synthetic time series, each bearing various degrees of 
similarity to the original bootstrapped time series. Figure 5 shows this process with a boot-
strapped GAN over 100 epochs. As the figure shows, the generated data increasingly resemble 
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the original bootstrapped data as the epochs progress. Of course, the generated time series in 
Epoch 100 is not identical to the original bootstrapped time series. But that is the point; it is a 
realistic time series that differs in relevant ways from the source data.

Figure 5. Bootstrap GAN Example Output
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6. MODEL COMPARISON
Often, researchers want to compare the performance of different models to identify the most 
accurate and reliable one. The models being compared could be models with similar perfor-
mance statistics yet developed with completely different methodologies, or they could be vari-
ations of the same model. To compare models with an acceptable level of rigor requires using 
some formal criteria to evaluate them with.

The Akaike Information Criterion 
and Schwarz Criterion
Two of the most commonly used methodologies for model selection are the Akaike information 
criterion (AIC) and the Schwarz criterion (SC):

	 AIC RSS
� � �

�
�

�
�
�2k nln

n
� ; 	 (16)

	 SC RSS
� �

�
�

�
�
� �nln

n
k ln n� � ( ), 	 (17)

where

n is the number of data points in the time series

RSS is the residual sum of squares

k is the number of factors in a model

The intuition behind model selection when using the AIC and SC is that when researchers iden-
tify a model, there is always a certain amount of information loss. For example, a factor model 
applied to portfolio returns cannot be better than the true model that describes the portfolio 
returns. One can think of a true model as a hypothetical or imaginary model that is “perfect.” 
It generates the data one is trying to explain. Therefore, portfolio managers should select the 
model with the smallest information loss, which is what the AIC and SC seek to do. The smaller 
the number, the smaller the information loss—thus the closer the model is to the true model. 
Therefore, for both criteria, the model with the lowest value is preferred. Both the AIC and 
SC consider the number of explanatory variables. There is an advantage in using the SC when 
model simplicity is prioritized, however, because the SC imposes a higher penalty on models 
with many explanatory variables, thus favoring parsimonious models that adequately explain 
the data without unnecessarily adding complexity.

Worked Example
What follows is an example of how the AIC and SC work in practice. Consider a case in which 
a researcher wants to evaluate three predictive models for stock returns: linear regression, 
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random forest,26 and an LSTM network.27 Assume the following input values for each of the 
models:

n = 100.

Linear regression: kLR = 1; RSSBasic = 200.

Random forest: kRF = 2; RSSAlpha = 180.

LSTM neural network: kLSTM = 3; RSSActive value = 160.

Using these inputs, the AIC values are as follows:

AICLR = 2kLR - In(RSSLR/n) = 2(1) - In(200/100) = 71.31.

AICRF = 2kRF - In(RSSRF/n) = 2(2) - In(180/100) = 62.78.

AICLSTM = 2kLSTM - In(RSSLSTM/n) = 2(3) - In(160/100) = 53.00.

And these are the SC values:

SCLR = n × In(RSSLR/n) + kLR × In(n) = 100 × In(200/100) + 1 × In(100) = 73.91

SCRF = n × In(RSSRF/n) + kRF × In(n) = 100 × In(180/100) + 2 × In(100) = 67.99.

SCLSTM = n × In(RSSLSTM/n) + kLSTM × In(n) = 100 × In(160/100) + 3 × In(100) = 60.82.

As the results show, the LSTM model has the lowest AIC and SC values. This result is interest-
ing given the relative complexity of the model (3 factors) and the manner in which the criteria 
evaluate models. The AIC emphasizes goodness of fit while penalizing model complexity, favor-
ing models that explain the data well without being overly complex. Lower AIC values suggest 
better models with a balance between fit and simplicity. The SC prioritizes both fit and model 
complexity equally but penalizes more severely for additional parameters. It tends to favor 
simpler models more strongly than the AIC. Because it includes a term that scales with the 
logarithm of the sample size, the SC makes the penalty for additional parameters larger as the 
sample size increases. By penalizing complex models more harshly, the SC often leads to the 
selection of simpler models that have a better chance of generalizing well to new, unseen data.

While the choice of the “best” model might depend on whether one prioritizes models with 
strong goodness of fit or simpler models that might generalize better to new data, in invest-
ment contexts, the latter is often more important. Because investing, especially active 

26A random forest is a type of machine learning algorithm that uses decision trees. For regression-type problems, 
decision trees start from a topmost or root node and proceed to generate branches—with each branch containing a 
condition—and a prediction in the form of a real-valued number, given the condition in question. Trees are composed of 
a series of conditions attached to decision nodes, which ultimately arrive at a leaf or terminal node whose value is a real 
number. The latter value represents a predicted value for a target variable given a set of predictor values. For technical 
details on the random forest algorithm, see Breiman (2001). For an application of the random forest algorithm to predic-
tive modeling, see Simonian, Wu, Itano, and Narayanam (2019).
27An LSTM (long short-term memory) network is a type of recurrent neural network architecture designed to effectively 
model long-term dependencies in sequential data. As the name implies, neural networks are (partially) modeled on the 
functioning of the human brain. Their basic design consists of a collection of data processors organized in layers, called 
neurons (or nodes). Information is processed via the responses of neurons to external inputs. These responses are then 
passed on to the next layer and so on until the final output. The interconnectedness of neurons and their ability to pass 
information back and forth to each other facilitates the efficient solution of problems. See Hochreiter and Schmidhuber 
(1997) for more details on LSTM networks.
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management, is essentially an exercise in forecasting, models that are likely to exhibit stronger 
predictive power present an advantage to portfolio managers. By contrast, simpler models are 
often more attractive with regard to their explainability to clients and colleagues.

The McNemar Test
Given the importance of predictive power as a criterion for model selection, it is useful to 
employ a test that provides detailed insight into the predictive capabilities of the models 
being compared. The McNemar test, introduced in McNemar (1947), is one such model. It is a 
nonparametric statistical test for paired comparisons that can be applied to compare the per-
formance of two predictive models. The McNemar test is also referred to as the “within- 
subjects chi-squared test,” and it is applied to paired nominal data based on a version of a 2 × 2 
contingency table that compares the predictions of two models. In the McNemar test, one 
formulates the null hypothesis that neither of the two models performs better than the other. 
Thus, the alternative hypothesis is that the predictive efficacy of the two models is not equal. 

The McNemar chi-squared test statistic is computed as �2
21

�
� �

�

( )
( )�

b c
b c

, where b is the number 

of observations that Model 1 correctly predicted and Model 2 incorrectly predicted and c is the 
number of observations that Model 2 correctly predicted and Model 1 incorrectly predicted.28 
The test statistic measures how much the observed counts in the contingency table deviate 
from what would be expected if there were no difference between the models. A higher chi-
squared value suggests a larger difference between the models’ predictions.

Worked Example
Consider a case where we are testing two investment models for their effectiveness at correctly 
predicting at time t whether the S&P 500 will have a positive or negative return at time t + 1. The 
hypothetical test results are displayed in Table 1.

Looking at the matrix shows that Model 1 got five predictions correct that Model 2 got incorrect 
and Model 2 got 11 predictions correct that Model 1 got incorrect. So, the ratio is 11: 5, giving 
Model 2 somewhat better performance than Model 1. When calculating the McNemar chi-
squared test statistic, its value is 1.56, suggesting that there is not a large difference between 
the models. This conclusion is supported by a p-value of 0.2113, indicating that the probability 
of observing differences between the models is approximately 21.13%, even if there is no true 

28The version of the statistic used here was first presented in Edwards (1948).

Table 1. Example McNemar Matrix

Model 2 Correct Model 2 Incorrect

Model 1 Correct 15 5

Model 1 Incorrect 11 9
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difference between them. Moreover, since the p-value is greater than 0.05, one might fail to reject 
the null hypothesis. This result suggests that, based on the observed data, there is an absence 
of sufficient evidence to claim a significant difference between the two models according to the 
McNemar test. Luckily, in such cases as this, one can conduct additional predictive tests to aid in 
drawing more definitive conclusions regarding the choice between Model 1 and Model 2.

Measures of Predictive Accuracy
Next, I describe some of the major measures of predictive accuracy and show how they can give 
a more holistic picture of model strength. The measures are precision, true positive rate (recall), 
accuracy, and F1. I also define a measure called receiver operating characteristic (ROC).

Precision True�positives
True�positives� �False�positives�

�
�

.

A higher precision score indicates fewer false positives, meaning the model is more precise in 
its positive predictions.

Recall True�positives
True�positives� �False�negatives�

�
�

.

Higher recall implies that the model captures a larger proportion of actual positives.

Accuracy True�positives True�negatives
Total�samples�

�
� .

A higher accuracy score (closer to 1) suggests that the model makes fewer mistakes, correctly 
predicting more observations.

F Precision� Recall
Precision Recall

1 2� �
�
�

.

F1 scores range from 0 to 1. Higher F1 scores indicate a balance between precision and recall.

ROC Curve
ROC is a graphical metric with 1 as its maximum. It is based on a curve determined by two input 
metrics, the previously described true positive rate and the false positive rate:

False positive rate False�positives
False�positives� �True�

�
� nnegatives�

.

The ROC curve shows how well a model can distinguish between the two classes by plotting 
the tradeoff between its true positive rate and false positive rate across different decision 
thresholds. A good ROC curve will tend toward the upper left corner of the plot, indicating high 
sensitivity and specificity. Thus, a larger area under the curve (AUC) value indicates a model that 
is better at distinguishing between positive and negative classes. In contrast, a random or inef-
fective model would produce a curve close to a diagonal line.
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Applying these metrics to our hypothetical Models 1 and 2, Figure 6 and Figure 7 show that 
Model 2 exhibits significantly superior predictive power. This result is interesting given that 
the McNemar test revealed that there are no significant differences between the models. 
Nevertheless, the statistical tests considered here show a clear difference between the two 
models.

Figure 6. Predictive Tests for Hypothetical Models 1 and 2
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Figure 7. ROC Curves for Hypothetical Models 1 and 2
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7. STRESS TESTING AND SCENARIO 
ANALYSIS

29See Connor (1995) for an overview of the various types of factor models.

The most fundamental way to test the robustness of a machine, structure, or product is to try 
to break it. In engineering, stress testing and scenario analysis are fundamental aspects of proj-
ect development. Their aim is to assess the robustness of physical objects to various rare and/
or extreme natural and manmade phenomena that could damage the object or impair its func-
tioning. Financial products are likewise vulnerable to unforeseen negative shocks. Thus, stress 
testing and scenario analysis are typically an integral part of the model validation process.

Stress Testing
Stress testing seeks to quantify the impact of low-probability yet high-impact market events, 
with the intent of allowing investors to form some reasonable expectation of the magnitude of 
portfolio losses if such events occur. Part of the stress-testing process involves the calculation 
of statistics that allow for a quantitative assessment of extreme investment losses. The VaR 
measure described previously is one such metric.

The primary focus of stress testing, however, is calibrating the primary risk factors in a model 
in disadvantageous ways in order to observe the reactions of a portfolio and to understand the 
most vulnerable dimensions of a particular investment strategy. For example, in a fixed-income 
model, various changes in credit spreads and the level, slope, and curvature of the yield 
curve may be posited to isolate the points of fragility. Or consider a multiasset portfolio for 
which one might assume various values for the correlations that exist between the commodity, 
currency, stock, and bond positions in a portfolio to assess how truly diversified it is.

Stress testing that encompasses this type of sensitivity analysis is also known as factor push. 
As is implied by its name, factor push assumes a factor model that describes a portfolio or strat-
egy. Many, if not most, quantitative models today are constructed on the basis of risk factors.

Multifactor models are by now commonplace in investment management.29 The primary 
attraction of factor models is that they help explain asset behavior using a parsimonious set of 
drivers, hence simplifying the analysis of portfolios consisting of many assets.

Because factor models provide a transparent view of the systemic risks that a portfolio is 
exposed to, they can be used for both risk management and alpha generation. One of the chal-
lenges in building factor models is that they must explain asset behavior adequately under the 
condition that the set of explanatory variables must be parsimonious. Given this constraint, 
the primary challenge for anyone building a factor model is to settle on a set of factors that, on 
the one hand, can adequately explain portfolio behavior over time and, on the other, is simple 
enough to remain computationally tractable. In this way, the challenge faced in building a factor 
model is the same as that faced by scientists when building theories to explain natural phe-
nomena, in which the tradeoff between informative power and simplicity is also a fundamental 
consideration.



Investment Model Validation: A Guide for Practitioners

CFA Institute Research Foundation    37

The type of stress testing exemplified by factor push presumably relies on the factors that 
have already been selected to build a model. Thus, the choice of which factors to use to build a 
model is inextricably connected to the factors used in stress testing. This choice can be made 
in a number of ways. Given the fact that investors need to be concerned with both prediction 
and explanatory power, however, the ideal choice for a factor selection tool would be one that 
balances these two priorities. Luckily, the analytical framework known as LASSO (least absolute 
shrinkage and selection operator) is precisely such a tool (Santosa and Symes 1986; Tibshirani 
1996). LASSO is a regression-based methodology that can help in both selecting variables for 
and mitigating against overfitting in models to enhance their predictive accuracy and interpret-
ability. LASSO is described formally in the following manner:
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Equation 18 is an optimization in which the objective is to minimize the combination of the sum 
of squared errors and a penalization term. In it, yi is the variable to be predicted, a0 is an inter-
cept, xij signifies the value of the jth predictor (factor) for the ith observation, and βj is the coeffi-

cient for the jth predictor. The regularization term �
j

P

j�� 0
�  penalizes the absolute values of the 

coefficients. The strength of the penalty is controlled by the regularization parameter λ. When λ 
takes a value of zero, it results in the ordinary least-squares model. A sufficiently large value of 
λ, however, will force some of the coefficients βj to become zero, thus excluding them from the 
model. If one wanted to select a subset of factors (say, 5) from a larger set of candidate factors 

(say, 40), one would add the constraint 
j

P

j k
�� � �

1
0( )�  to Equation 18, where k is the desired 

number of factors, P is the number of candidate factors, and  is an indicator function.

There are many convenient and practical ways to use LASSO in the context of model devel-
opment. For example, when building a multiasset model, typically dozens of potential factors 
could provide some informational value. However, in keeping with the goal of parsimony for 
factor models, it would be impractical to use a multitude of factors, only some of which would 
be the primary drivers of portfolio behavior. It would be much more efficient to select a subset 
of a more expansive array of risk factors. To do this via LASSO, one would simply have to select 
a large number of factors, specify the final number of factors in our model, and run the proce-
dure described here. Then, LASSO will provide the subset of risk factors that have the most 
explanatory and predictive power while simultaneously having the lowest correlation with one 
another. With a LASSO-derived factor model in hand, one can proceed with sensitivity analyses, 
such as factor push.

One of the most important aspects of sensitivity analysis is the recalibration of assumed cor-
relations between risk factors and/or assets. The reason why correlations play such a prom-
inent role in stress testing is that diversification is the cornerstone of portfolio construction. 
As described earlier in this monograph, lower correlations between assets and the factors that 
drive a portfolio’s behavior will, all things being equal, result in lower portfolio volatility. Thus, 
within the context of stress testing, it is often useful to assume that factors and assets have 
significantly higher but still realistic correlations with one another compared to their historical 
average correlations.
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Reverse Stress Testing
Stress testing evaluates how a model would perform under adverse market conditions, such as 
a severe market crash or a sudden spike in interest rates. Reverse stress testing, in contrast, is 
an approach to risk analysis where the traditional stress-testing process is reversed. Instead of 
testing the impact of predefined stress scenarios on a portfolio, reverse stress testing begins 
with determining the extreme adverse outcomes that would lead to the failure of an institu-
tion, portfolio, or financial system. The researcher then figures out what combination of market 
events would produce those outcomes.

For example, suppose a portfolio management team expects that in the event of a 25% draw-
down, they will lose 75% of their invested capital due to client withdrawals. The latter is the 
team’s definition of “catastrophic loss.” Once defined, they can proceed to determine what turn 
of events could lead to such a scenario.

Scenario Analysis
Scenario analysis is a process in which portfolio outcomes are evaluated under different market 
scenarios. The scenarios may be based on actual events, but they do not have to be. The use of 
data from recessionary or otherwise adverse market events (such as inflation shocks), however, 
is common.

The market events used as templates in scenario analysis could be regularly occurring disloca-
tions or more idiosyncratic events. For example, Packham and Woebbeking (2019) present a 
correlation stress-testing case study based on the “London Whale” episode, which resulted in a 
$6.2 billion loss on a credit derivative portfolio at JPMorgan due to rogue trading by a single indi-
vidual. A primary driver of the portfolio losses was the breakdown of the correlations between 
positions that were assumed to be hedges for each other. The authors show that correlation 
stress testing would have revealed this risk early on and allowed the appropriate risk manage-
ment response to be implemented. The risk factors used in the case study were chosen to 
match the characteristics of a credit derivative portfolio, such as credit quality and maturity.

Stylized scenarios do not necessarily have to be ex post, drawn from actual history, but may 
be based on ex ante expected events. For example, a concrete risk event may be clearly seen 
on the horizon even though there are no actual cases to draw specific data from. An example 
of such a scenario was the risk of a “fiscal cliff” in 2012, when a number of tax increases and 
spending cuts were scheduled to take effect simultaneously at the beginning of 2013. The 
key elements of the fiscal cliff included the expiration of the Bush-era tax cuts, the end of a 
temporary payroll tax cut, automatic spending cuts (also known as “sequestration”) that were 
mandated by the Budget Control Act of 2011, and the expiration of extended unemployment 
benefits. The risk to the markets was that Congress would be unable to reach a bipartisan com-
promise regarding how to address the impending contraction in fiscal support to the economy. 
The fear was that, due to the forthcoming tax increases and spending cuts, negative repercus-
sions would be transmitted to financial markets.

The most extreme scenario was ultimately avoided due to the passage of the American 
Taxpayer Relief Act, which made permanent the tax cuts for most Americans but allowed some 
tax increases for higher-income earners. The automatic spending cuts were also delayed for a 
brief period. From the standpoint of scenario analysis, the specific combination of tax increases 
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and spending cuts that created the fiscal cliff scenario in 2012 was unusual. It is thus an exam-
ple of a type of scenario that can prove challenging during model validation. Rather than being 
able to draw directly on historical data, one would have to construct the scenario from different 
historical occurrences. For example, one could assume that in the worst fiscal cliff scenario, the 
US economy would contract by 3%. The next step would be to study the various episodes when 
the US economy did experience that level of contraction. Then, possible ranges for movement 
in the stock market, credit spreads, commodities, and so on, could be derived. Next, a given 
portfolio could be run through various combinations of values falling in the ranges posited for 
each asset in the portfolio, and one could thereby derive some understanding of possible losses 
to the investment strategy under consideration.

Of course, it is possible to create entirely fabricated scenarios. The basic way that this is accom-
plished is by assuming extreme risk and return assumptions for the risk factors and assets of 
interest. As mentioned previously, among the most important metrics is the set of correlation 
coefficients between assets. Thus, creating “shock” correlation matrices is typically a central 
aspect of creating stylized scenarios. One way of generating appropriate correlation matrices 
for stress testing is to choose a real-valued reference matrix R—for example, one representing 
a more tranquil or commonplace market environment—and then “pull” it toward a real-valued 
target matrix T representing a more turbulent or low-probability state of the world.

Doing this mathematically generally involves using a methodology called shrinkage (Ledoit and 
Wolf 2004) to produce a convex linear combination of the two matrices. The precise values 
of the shrinkage matrix Sl = (1 - l)R + lT are determined by accounting for a shrinkage factor 
l ∈ [0,1], which expresses the degree to which we wish Sλ to resemble a given market scenario. 
One heuristic that can help us calibrate λ is to assume that it represents the probability of the 
stress scenario materializing. The stipulated probability can be objective, based on historical 
frequency, or subjective, based on forward-looking views.
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8. VALIDATING MODELS AGAINST 
ECONOMIC THEORY

30For a complete list of these assumptions, see Elton, Gruber, Brown, and Goetzmann (2003).

In building any investment model, it is important to assess whether a model aligns with basic 
economic intuition and theory. There are many theories of market behavior encompassing a 
wide array of ideas regarding market efficiency, risk and return tradeoffs, utility maximization, 
behavioral biases, and macroeconomic themes. And while these theories are not always con-
sistent with one another, there are nevertheless some fundamental drivers of economic behav-
ior that have been accepted by the majority of economists and investors. The understanding 
of these principles should inform the conceptual framework on which investment models are 
built. While it is beyond the scope of a monograph on the topic of model validation to judge the 
merits of any investment theory, I can provide some insight into how investment theories can 
be used to assess the consistency of a model during the validation process.

First consider one of the cornerstones of contemporary investment theory, the capital asset 
pricing model (CAPM; Treynor 1961, 1962; Sharpe 1964; Lintner 1965; Mossin 1966). The CAPM 
provides a framework for estimating the expected return of an asset given its risk (specifically 
systematic risk, that part of the asset’s total risk that is correlated with the cap-weighted portfo-
lio of all stocks or all risky assets). The model says that asset expected returns, in excess of the 
riskless rate, are proportional to the systematic risk of the asset. The systematic risk inherent in 
a given asset is called the asset’s beta, measured on a scale where the beta of the overall market 
is 1. In the CAPM, a stock’s expected return is the sum of the risk-free rate and a risk premium, 
which is the product of the stock’s beta and the expected excess return of the market as a whole 
above the risk-free rate (the market risk premium).

The CAPM can be used in model validation in a number of ways. The CAPM assumes that in an 
efficient market, the only way to achieve returns above the market is by taking on additional risk 
(beta). If a trading model consistently generates excess returns (alpha) that cannot be explained 
by CAPM, it suggests the model is adding value beyond what would be expected based on 
systematic risk. A related application is in cross-validation. One can compare the predictions 
of a trading model, evaluated against the CAPM, by observing the alphas it generated to deter-
mine whether the trading model produces material improvements over some other model that 
is already in use or being considered. If it does, that could be an indication that the model is 
additive to a portfolio manager’s investment process.

Of course, the CAPM involves a number of assumptions that undermine its status as a complete 
and accurate descriptor of market behavior.30 One of these assumptions is that the market beta 
is the sole source of all explainable variation in asset returns. Over the years, this assumption 
has been brought into question and multifactor models—models that posit multiple sources of 
systematic risk—have been developed in its stead. In the realm of equities, perhaps the most 
well-known of these models is the Fama–French–Carhart model (Fama and French 1992, 1993; 
Carhart 1997), which extends the CAPM framework by introducing three new factors in addition 
to the market factor: the size factor (small-cap stock returns minus large-cap stock returns), 
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value (high-book-to-price stock returns minus low-book-to-price stock returns), and momentum 
(high-returning stocks over some previous period, usually a year, minus low-returning stocks). 
As in the case of the CAPM, multifactor models can also be used in model validation to assess 
the effectiveness of trading models. For example, it is often important for a trading model to 
generate alpha via security selection (idiosyncratic risk) rather than by taking on systematic 
exposures to risk factors. Using a multifactor model during the model validation process can 
help determine the sources of a model’s performance relative to a benchmark. If a model main-
tains the same factor exposures as its designated benchmark yet still produces alpha, that pro-
vides evidence that the model is adding value. Multifactor models can also be used in the same 
manner as the CAPM to test the predictive efficacy of an investment model.

Another mainstay of investment theory is what is known as the efficient market hypothesis 
(EMH),31 which asserts that asset prices reflect all available information. Most investors accept 
that the strongest version of the EMH is not true—that some inefficiencies are characteristic of 
all markets to varying degrees. This belief is not hard to understand. Given that security prices 
are a function of information, it is implausible that every piece of relevant information is reflected 
in asset prices. The “information loss” is especially pronounced in less efficient markets, 
such as those found in emerging economies or in the high-yield bond sector. Exploiting such 
informational inefficiencies is what many trading models are designed to do. Thus, when evalu-
ating an investment model’s performance, it may be important to ask the following questions: 
What inefficiencies is the model exploiting, if any? Are the inefficiencies that are being exploited 
the ones intended by the model? How reliable is the model in terms of its ability to exploit its 
targeted inefficiencies? Is the model better at exploiting some inefficiencies over others?

One of the ways that investment models often capitalize on market inefficiencies is by effec-
tively detecting and trading around the various aspects of investor behavior that cause market 
inefficiencies. The body of investment theory that studies such behavioral drivers of market 
dynamics is known as behavioral finance.32 This field of study combines insights from psychol-
ogy and economics to understand and explain how individuals make financial decisions. Unlike 
traditional financial theories that assume rationality and efficiency in financial markets, behav-
ioral finance recognizes that human behavior and emotions play a significant role in shaping 
market anomalies, such as bubbles, crashes, momentum, and the value effect (the outperfor-
mance of undervalued stocks over time).

Behavioral finance often focuses on the related concepts of biases and heuristics. Various cogni-
tive biases impact decision making, including confirmation bias (seeking or giving extra weight 
to information that confirms preexisting beliefs) and availability bias (relying on the most 
readily available information). Familiarity bias refers to the propensity of individuals to invest 
in familiar assets, sectors, or regions rather than considering unexplored investment opportu-
nities. Overconfidence, the tendency of individuals to overestimate their own abilities, knowl-
edge, or judgments, is another common cognitive bias. Anchoring is a cognitive bias where 
individuals rely heavily on the initial information they receive. Recency bias is exhibited when 
individuals give more weight to recent information or experiences when making decisions. The 
foregoing list of cognitive biases, while not exhaustive, inventories some of the most important 
cognitive biases in finance. Heuristics are the mental “shortcuts” or “rules of thumb” that help 

31See Fama (1970) for a detailed discussion of the EMH.
32For a review of behavioral finance, see Shleifer (2000).
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us make decisions quickly. While heuristics can assist in accelerating the decision-making pro-
cess, they can also lead to systematic errors if used constantly without giving any scrutiny to 
the appropriateness of their application. Examples of heuristics include the following of expert 
opinion and abiding by majority rule, basing decisions on team or firmwide popularity rather 
than thoughtful deliberation.

Often, investment models are built on behavioral foundations; perhaps the most obvious are 
momentum strategies. Indeed, the recognition of behavioral concepts and their application to 
investment products is now widespread. Thus, when evaluating a model during the validation 
process, it is important to answer three questions: Is the model, in fact, successfully exploiting 
one or more aspects of investor behavior? Is the model able to exploit said behaviors in a sys-
tematic fashion? And how much of a model’s performance can be attributed to the exploitation 
of the behaviors(s) in question versus other factors?

Finally, as mentioned earlier, diversification as a means to control risk in portfolios is almost 
axiomatic in modern investment practice. However, investment models often call for portfolio 
weights that deviate, at times significantly, from those of a mean–variance-optimal portfolio. 
Comparing an investment model’s performance to a mean–variance-optimal or otherwise 
diversified portfolio (e.g., a risk parity portfolio)33 in backtests and simulations can often provide 
insight into the risk and return tradeoffs inherent in using a given model. This is especially 
true when an investment model uses risk measures other than variance or standard deviation 
as inputs.

33For a discussion of the development of risk parity strategies, see Fabozzi, Simonian, and Fabozzi (2021).
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9. PREPARING MODEL 
DOCUMENTATION
Model documentation must be comprehensive, accurate, and well maintained so that the 
validation process is transparent and facilitates understanding of the model by stakeholders. 
The documentation should describe both the model and the various tests that have been used 
throughout the validation process. Preparing two types of model documentation is useful. First, 
a comprehensive set of documents should be prepared for internal use and for the purposes of 
any external audits. This set of documents should be considered the canonical model documen-
tation. This type of documentation is important because it facilitates the following aspects of 
model acceptance and implementation:

Reproducibility: The canonical set of documents should be detailed enough that the model and 
any tests involved in validation could be reproduced by any member of the firm possessing 
sufficient technical capabilities. Such stakeholders should be able to understand the steps 
taken, the data used, the metrics evaluated, and the decisions made during validation. This 
reproducibility helps in verifying and validating the model’s performance and results.

Transparency and accountability: Documentation provides transparency about the methods, 
assumptions, and choices made during model validation. This transparency is essential for 
accountability and allows stakeholders to understand how conclusions and assessments 
were reached during the validation process.

Traceability: Detailed documentation helps trace the lineage of the model, including data 
sources, preprocessing steps, factor selection, and the reasoning behind specific model 
choices. This traceability is important for understanding the model’s life cycle and for 
identifying potential biases or errors.

Problem diagnosis and improvement: In case of issues or unexpected results, documentation 
acts as a reference for diagnosing problems in a model. Understanding the validation pro-
cess also helps identify where improvements or adjustments to a model could be made.

Regulatory and firm compliance: In regulated industries, such as banking, documentation is 
often a regulatory requirement. Comprehensive documentation ensures that the model 
validation process complies with industry standards and regulations. Even in the absence 
of industry-wide regulations, firms may have “best practices” with regard to model devel-
opment and testing. Proper documentation provides a tangible record that firm-wide best 
practices have been adhered to.

Communication: Well-documented validation processes facilitate communication among team 
members, allowing them to understand each other’s work, collaborate effectively, and build 
on previous validation efforts. Communication is also important for the second type of 
model documentation, called expository model documentation. This type of documentation 
is intended for those stakeholders who, while potentially important for the approval, dis-
semination, and/or use of the model within a firm, may not be technically proficient enough 
to follow every technical and mathematical detail pertaining to it or the model validation 
process. Expository documentation should thus transmit the relevant specifications of the 
model and validation process in conceptual terms that could be understood by any invest-
ment professional.
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There is an additional, residual benefit to preparing thorough and detailed model 
documentation—the potential to publish schematic or otherwise more “skeletal” versions of 
the model documentation as research in peer-reviewed journals. While care must be taken to 
withhold any proprietary information (the “secret sauce”) in any published paper, transmitting 
the main ideas and results of model development and validation in a journal can serve a useful 
purpose for firms: It exposes their work to subject matter experts who can provide valuable 
feedback on the reasonableness of model assumptions and outputs. It can also serve to 
publicize the firm’s research efforts to the wider investment community.
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10. CONCLUSION
The goal of this monograph is to provide an in-depth overview of the most important dimen-
sions of model validation. The general assumption is that when validating financial models, 
investment professionals should take a scientific approach. What this means in practice is that 
the purpose of model validation should be to try to falsify an investment model. If attempts at 
falsification fail despite the use of different approaches and techniques to falsify it, the model 
can be considered valid and suitable for implementation.

Various methods can be used in an attempt to validate (falsify) an investment model. 
Backtesting—evaluating a model’s performance on historical data—is fundamental and often 
the first step in a model validation process. Because there is no guarantee that the future will 
resemble the past, however, backtesting has its limitations. For that reason, methods beyond 
basic backtesting have been developed to further gauge the robustness of investment models. 
This monograph attempts to summarize and explain in accessible language such additional 
techniques.

First and foremost is cross-validation, which can be considered a cousin of backtesting. 
Although cross-validation in its basic form is also based on historical data, it nevertheless 
provides a way to clearly separate model development and calibration from model testing. 
It thus serves as a formal way of mitigating overfitting. In both backtesting and cross-validation, 
it is important to use a range of return and risk statistics and carefully select appropriate 
benchmarks in order to gain a clear picture of the performance characteristics of a given 
investment model.

Relative to natural science, finance is data limited. This fact makes the development and appli-
cation of tools to generate synthetic time series an important component of robust model vali-
dation. The monograph discusses two traditional synthetic data generation techniques, Monte 
Carlo simulation and bootstrapping, as well as a newer machine-learning-driven approach based 
on generative adversarial networks.

Often, more than one candidate model is being evaluated during the model validation process. 
It is thus necessary to have the formal means to compare models. The monograph discusses 
two of the most widely used model comparison methodologies—the Akaike information crite-
rion and the Schwarz criterion—as well as the most widely accepted methods for evaluating the 
predictive efficacy of models.

A major component of model validation is evaluating a model’s response to different extreme 
or stress scenarios to assess its robustness. These scenarios can be hypothetical or based on 
actual market events. Stress testing and scenario analysis are useful for understanding how a 
model performs under various market conditions and how it responds to isolated or multiple 
economic shocks.

Aside from empirical tests, additional insight regarding a model may be gained by evaluating its 
consistency with prevailing investment theory. Although investment models do not necessarily 
have to completely conform to any given investment theory to be considered valid, it would 
be unusual for the mechanics of an effective investment model to be wholly inconsistent with 
basic economic intuition and the fundamentals of market behavior.
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Finally, it is important to document the model validation process in detail for the benefit of 
model users and stakeholders, including any external auditors. Model validators may benefit 
from developing two sets of documentation, a technically detailed canonical set of documents 
and a more accessible expository set of documents. The latter would serve those stakeholders 
who do not possess the requisite technical background that would allow them to thoroughly 
evaluate the quantitative aspects of a model validation process.

Model validation is a critical aspect of any quantitative investment process. This guide provides 
investment professionals with a blueprint with which they can fashion their own model valida-
tion frameworks. By using the various techniques and methodologies described in the mono-
graph, investors will be able to conduct model validation with scientific and statistical rigor and 
enhance the quality of their investment products for the ultimate benefit of their clients and 
beneficiaries.
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